
Creating your own Abstract Processor
© Aodrulez.

Introduction

In this paper, I'll try to explain to you how to create your own Abstract
Processor. It can be really simple or absolutely complex & it'll depend entirely on
your imagination. First of all, let me explain what is an Abstract Processor. Its
nothing but a purely theoretical processor architecture that one can develop by
programming at software level. If that sounded too complex, think of it like
creating your own processor by writing code in lets say c/c++ or PERL with
registers, stack-size etc that you define. Don't worry much if you didn't get the
concept yet. Am sure you will grasp it on the way.

Less theory, more code.

Alrighty! I hate theory as much as you do. So lets get started with a
practical example that'll help you understand this better. Lets say, that you want
to create your own Abstract Processor. The first thing that you'll need to decide
might be its name. :)
Yea.. thats right! Its your own processor so think of a cool name for it. Once
you've nailed that down, the next thing would be to decide what goes into it & its
specifications. So here, as an example lets design an Abstract Processor named
'Aod'. Now that we've decided on a name, lets decide the specifications.

Specification
Processor name Aod

Registers IP,SP,X,FLAG

Stack 256 bytes.

Thats one really simple design. Let me explain each & every part of it.
Every processor needs to have registers. Some of these might be special & for
internal use only while others might be general purpose ones that we can let the
programmers use to write software for our architecture. That apart, a processor
needs to have some amount of memory, to which it can read & write data.
(RAM?). Thats the most basic necessity of every design. You can add more to this
if you want & if you are really adventurous, remove some of these.
The beauty of writing an abstract processor is that you dont have to worry about
the internal electronics stuff like how will the Data-Bus or the Address-Bus work,
how the I/O pins will work etc. You can create any design that you fancy.

Explanation of each part

IP = Instruction Pointer.
Every processor needs to keep a track of the code it has to execute. Thus

every processor needs to have this register compulsorily. Here, this register will
point to the next instruction that the processor has to execute.

SP = Stack Pointer.
Just like the instruction pointer, we need to have a stack pointer that'll point

to some location on the stack. This is where we read/write data.

X = General Purpose Register.
Well, this register is provided to the programmer to store data temporarily.

Its like variables inside a processor that can store any value. Although this is not
really compulsory, its good to have these.

FLAG = Internal register.
This one is a special register. Its used internally to store certain data like if

there was a carry when a subtraction operation was carried out.. etc. We'll dig
deeper into this later.

STACK = Read/Write Memory.
Well, this is like your computers' RAM. Here, we can store data temporarily.

The processor can read as well as write data to any location on the stack. We've
decided to have a stack size of 256 bytes.

Yea.. thats all! Thats your processor's specification. Ain't that easy? But..we
still have some more thinking to do. :) We hav'nt yet decided the Instruction-Set
for our processor, have we? In the next section, we'll decide upon a simple
Instruction-Set for our 'Aod' processor.

Instruction-Set

The fundamental function of a processor is to execute code, right? For that,
it needs to have a set of instructions to follow using which we can program it to
execute some task for us. This unique set of instructions for a particular processor
architecture is popularly called as its Instruction-Set. So, lets design our own
instruction set.

OpCode Instruction Description

0x01 input Takes one char as input & saves it on the
STACK where SP is pointing to.

0x02 output Prints the character from the stack
where SP is pointing to.

0x03 mov sp,x SP=X

0x04 mov x,data X=byte following the OpCode.

0x05 cmp x,data FLAG=X-byte following the OpCode.

0x06 je data If FLAG==0, IP=IP+byte following
OpCode.

0x07 inc x X=X+1

0X08 inc sp SP=SP+1

0x09 mov [sp],x Write the value in X to the location on
STACK specified by SP

0x0A halt End execution

This is just a small set that I could think of right now, enough to give you a
working demo of the idea. A good processor will need some more instructions or
maybe I should say, a clever Instruction-Set. This is where your creativity will
help you. Now, lemme explain the concept of OpCode. It stands for 'Operation
Code'. On second thoughts, lemme give a full-blown explanation of the internal
working of a processor.

Some interesting stuff

See, the processor needs code so that it can start executing them. 'Code' is
nothing but a sequence of 1s & 0s & so is data. To help you visualize better, think
of a straight line of 1s & 0s & lets assume that this is the code that has to be
executed. Ah yes, one more thing.. 'Units of Data'. I know it'll sound stupid as
most of you already know this, but what exactly are the units of data? Data, like
any other quantity needs to be measured. We measure Mass in terms of grams &
Kilograms. Similarly, even Data has its own units. They are :

1. Bits == Binary Digits. (Either '1' or '0' since its binary)
2. Nibble == 4 Bits.
3. Byte == 8 Bits or 2 Nibbles.
4. Kilobyte == 1024 Bytes.

And so on..

So lets say, I have 1 byte worth of data. How many bits are there in all?
1 Byte == 8 Bits.

Cool, now lets think of some basic Mathematics. When I say Binary, its to the
'Base 2'. This is one of the Numbering systems. Similarly there are others like
Decimal (which we usually use. Its Base 10.), Hexadecimal (Base 16) & so on.
I find it easier to remember & understand this 'Base' term by thinking of it this
way.

Binary == Base 2 == Maximum number of unique digits == 2. (1 & 0)
Decimal == Base 10 == Maximum number of unique digits == 10. (0 to 9)
Hexadecimal == Base 16 == Max. unique digits == 16. (0 to 9 & A to F)

Lets think of Decimal system.
Q. What is the Biggest 2 digit number that I can have?
A. 99. Because in decimal, the biggest digit is '9' & when we are talking about 2
 digits, it has to be 99.

Q. In Binary, what is the Biggest 8 digit number?
A. Yea.. you guessed it right. It is 11111111.

With this in mind, lets try some conversion. Kick up your calculator & convert the
above Binary number 11111111 to Decimal. It turns out to be 255 in Decimal.
(Note : This is Conversion. If you find the calculator too complex, try some online
conversion tool.) I hope you still remember that 1 Byte == 8 Bits.

So tell me, what is the biggest Byte of data you can have?
Its 255 in Decimal or 11111111 in Binary or, if you convert it to Hex, it'll be
0xFF in Hexadecimal.

People often get confused between Data & Numbering Systems. I'll give
you a simple example. Lets say, I want to measure a length of 5mm of a piece of
cloth. Its exactly the same as saying 0.5cm of cloth or 0.005 meters of cloth.
The length is still the same. Am just expressing it in different units of Length.

In the same way, Data can be expressed in multiple Units as well as Numbering
Systems. What am trying to explain is this:

1 Byte of Data. == up to 11111111 in Binary
 == up to 255 in Decimal
 == up to 0xFF in Hex.

The quantity of data remains the same. We are simply expressing it in multiple
numbering systems. Phew! I hope you are not confused now. :)

Lets again come back to the initial sequence of 1s & 0s the processor has to
execute. I hope you understand now that here, we are talking in terms of Binary.
So, let me put it in a different way, the processor has a continuous stream of
Binary data that its supposed to execute. It'll be tedious for us Humans to
understand & work with Binary data, right? So, what we do is.. we take the initial
8 Bits (1 Byte) & convert it into the corresponding Hexadecimal Number. We term
this number as the OpCode. Its a special sequence of 1s & 0s that instructs the
processor to carry out some task. So, instead of working with the Binary
Numbers, we usually convert these bytes to Hexadecimal numbers (its still the
same.) & assign an instruction to it.

Now, again lookup the Instruction-Set table we've designed. Am sure, the
opcodes section makes more sense now. The next section will cover programming
of the processor.

Aod Processor implemented in PERL

-- snip here ---------------------------------------
#!/usr/bin/perl
use strict;
use warnings;
my $IP=0;
my $SP=0;
my $FLAG=0;
my $X=0;
my @STACK=(0);
my @ROM=(0x04,0x41,0x09,0x02,0xA);
my $opcode=0;
while($IP>=0)
{

$opcode=$ROM[$IP];
if($opcode == 0x01){$STACK[$SP]=ord(getc());$IP++;}
if($opcode == 0x02){printf("%c",$STACK[$SP]);$IP++;}
if($opcode == 0x03){$SP=$X;$IP++;}
if($opcode == 0x04){$X=$ROM[++$IP];$IP++;}
if($opcode == 0x05){$FLAG=$X-$ROM[++$IP];$IP++;}

 if($opcode == 0x06){if($FLAG==0){$IP=$IP+$ROM[++$IP];}else{$IP=$IP+2;}}
if($opcode == 0x07){$X++;$IP++;}
if($opcode == 0x08){$SP++;$IP++;}
if($opcode == 0x09){$STACK[$SP]=$X;$IP++;}
if($opcode == 0x0A){print"\nHalt.\n";exit(1);}

}
-- snip here ---------------------------------------

 Yea! Its as simple as that! The above code is a fully functional Aod Processor
along with a dummy ROM (code to execute). Lets analyze the above @ROM array.

@ROM[0] == 0x04
@ROM[1] == 0x41
@ROM[2] == 0x09
@ROM[3] == 0x02
@ROM[4] == 0x0A

Lets try to understand what it does. :)

Disassembly (Refer the Instruction-Set Table)

@ROM[0] == 0x04 (mov x,data)
@ROM[1] == 0x41 (since the previous command was mov x,data , this
 byte is the data provided. So skipping this byte.)
@ROM[2] == 0x09 (mov [sp],x)
@ROM[3] == 0x02 (output)
@ROM[4] == 0x0A (halt)

Lets see exactly what should happen here by manually analyzing every single
instruction.

Manual Walk-through.

IP=0, SP=0, X=0, FLAG=0, STACK[SP]=0
0x04 mov x,data (data == the following byte & hence data=0x41)

IP=2, SP=0, X=0x41, FLAG=0, STACK[SP]=0
0x09 mov [sp],x

IP=3, SP=0, X=0x41, FLAG=0, STACK[SP]=0x41
0x02 output (Should print the character at STACK[SP] which is 0x41= 'A')

IP=4, SP=0, X=0x41, FLAG=0, STACK[SP]=0x41
0x0A halt (End execution.)

Expected output:
A
Halt.

 This is how your abstract processor or any processor for that matter, works
at the lowest possible level. A screenshot of the above PERL implementation with
the output from our dummy code :

More Sample Code to try out. :)

1. @ROM=(0x04,0x41,0x09,0x02,0x07,0x09,0x02,0x07,0x09,0x02,0x07,
 0x09,0x02,0x07,0x09,0x02,0x0A);

2. @ROM=(0x04,69,0x09,0x02,0x04,110,0x09,0x02,
 0x04,116,0x09,0x02,0x04,101,0x09,0x02,
 0x04,114,0x09,0x02,0x04,32,0x09,0x02,
 0x04,97,0x09,0x02,0x04,32,0x09,0x02,
 0x04,67,0x09,0x02,0x04,104,0x09,0x02,
 0x04,97,0x09,0x02,0x04,114,0x09,0x02,
 0x04,32,0x09,0x02,0x04,58,0x09,0x02,
 0x04,32,0x09,0x02,0x04,50,0x03, 0x01,
 0x04,2,0x03,0x04,89,0x09,0x02,0x04,111,
 0x09,0x02,0x04,117,0x09,0x02,0x04,32,
 0x09,0x02,0x04,84,0x09,0x02,0x04,121,
 0x09,0x02,0x04,112,0x09,0x02,0x04,101,
 0x09,0x02,0x04,100,0x09,0x02,0x04,32,
 0x09,0x02,0x04,58,0x09,0x02,0x04,32,0x09,
 0x02,0x04,50,0x03,0x02,0x0A);

Conclusion

 This research paper was born out of a personal project for an International
Malware Conference's online challenge that I was designing. Initially, it was just a
thought & took hours of hard work to understand every aspect of implementing
such a theory at a very practical level. But once I got it working, I got completely
hooked onto it & within a span of weeks learnt more about computers & their
underlying theory than I did in all these years, combined. This is like learning
Programming, Reverse-Engineering & 'how to write a compiler, debugger' all
rolled into one. Not to forget that understanding this clearly will mean that one
can Reverse-Engineer code belonging to any Platform or Architecture. This is a
Universal approach to the Art of Reversing.

(Note : This is a highly simplified example to help you understand the core
 concepts.)

Practical Implementations

• 'Virtual-Machine Theory' thats used in many copy-protection Mechanisms.
• As an Anti-Debugging technique.
• As a portable Architecture.

 Sky is the limit if you are creative.

Proof Of Concept

 Am working on an Abstract Design that I've named as Aod8. It'll be up
on Github pretty soon, so stay tuned. Its part of MalCon-2011 'Capture the
Mal Challenge' & I'll be uploading all the tools, code, easter-eggs etc which
includes a full-blown 3-pass Assembler, a usable debugger & the source-code of
the CTM challenge.

References

• Online Javascript based Emulators for various Architectures.
• Esoteric Languages like Brainfuck

Greetz Fly out to :

• TheBlueGenius.
• Amforked()
• ne0 & TCC.
• Orchidseven.com
• Malcon.org
• Shantanu Gawde for Beta-Testing the CTM challenge. :)
• The legendary +ORC

Point your Flames/Suggestions/Greetz to :

• Email : atul.alex@orchidseven.com
• Email : f3arm3d3ar@gmail.com
• Blog : http://aodrulez.blogspot.com
• Twitter : http://twitter.com/Aodrulez

Have a Wonderful Day!

http://www.orchidseven.com/
http://twitter.com/Aodrulez
http://aodrulez.blogspot.com/
mailto:f3arm3d3ar@gmail.com
mailto:atul.alex@orchidseven.com
http://malcon.org/

