
ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

In-Memory Fuzzing in JAVA

2012.12.17

Xavier ROUSSEL

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

Summary

I. What is Fuzzing?
 Introduction

 Fuzzing process

 Targets

 Inputs vectors

 Data generation

 Target monitoring

 Advantages and drawbacks

II. In Memory Fuzzing
 Why use in-memory Fuzzing?

 Principle

 Data injection example

 Building in-memory Fuzzer

 Creating loop in memory

 Advantages and drawbacks

III. DbgHelp4J
 Presentation

 Key features

 Example

 Implementing in-memory Fuzzer

IV. Real case study
 EasyFTP 1.7.0.11

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

I. What is fuzzing?
Introduction

 OWASP definition :

“Fuzz testing or Fuzzing is a Black Box software testing technique, which basically
consists in finding implementation bugs using malformed/semi-malformed data
injection in an automated fashion.“

 Alternative to code review mainly used in white box testing.

 Due to automated tests, fuzzing allows us to assess a software against a

huge set of test cases in a few time.

 Especially useful to test common applications implementations like FTP

server or HTTP server.

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

I. What is fuzzing?
Fuzzing process

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

I. What is fuzzing?
Targets

Fuzzing can be used against almost all types of software running on a

computer. Preferred targets are privileged applications, remotely accessible

applications and file readers.

Example of some commonly targeted applications :

 Server applications (Apache, IIS, etc.)

 Client applications (Internet Explorer, Thunderbird, etc.)

 File readers (Adobe reader, Windows Media Player, etc.)

 Web applications

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

I. What is fuzzing?
Inputs vectors

Computer security experts commonly use fuzzing to find flaws in software

which can lead to system compromise. Attack vectors rely on all components

which could be abused to obtain more privileges, mostly:

 Network

 File

 Environment variables

 Execution variables

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

I. What is fuzzing?
Data generation

 Random-based

Random-based Fuzzers generate input data for applications in a random way.

This type of data generation is very quick to implement but also useless in

most cases.

 Mutation-based

Mutation-based Fuzzers generate data by analyzing an existing set of data

provided by the user and mutating some fields inside these data.

 Proxy-based

A proxy-based Fuzzer takes place between a legitimate client and the target

server or vice-versa. This architecture allows to capture packets in transition

and mutate them before forwarding them to the destination.

 Specification-based

Specification-based Fuzzers generate input data based on specifications of the

application. This way, the Fuzzer can test the application very deeply.

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

I. What is fuzzing?
Target monitoring

Target monitoring could be realized in several ways depending on the target

application.

 For binary applications, target monitoring could be realized by a debugger

to listen for exceptions triggered in the application.

 A web application Fuzzer will analyze page returned by the server to find

flaws in the application.

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

I. What is fuzzing?
Advantages & drawbacks

Advantages

 One Fuzzer implementation can be used against all implemented versions

of the targeted (e.g. FTP or HTTP).

 A specification-based Fuzzer can quickly audit an application in depth.

 Fuzzing allows software applications testing in black-box.

Drawbacks

 Mutation-based and Random-based Fuzzers are quite quick to implement

but in most cases, they can’t fuzz the application in depth.

 In the opposite, specification-based Fuzzers can test an application in

depth but can be very long to implement.

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

Summary

I. What is Fuzzing?
 Introduction

 Fuzzing process

 Targets

 Inputs vectors

 Data generation

 Target monitoring

 Advantages and drawbacks

II. In Memory Fuzzing
 Why use in-memory Fuzzing?

 Principle

 Data injection example

 Building in-memory Fuzzer

 Creating loop in memory

 Advantages and drawbacks

III. DbgHelp4J
 Presentation

 Key features

 Example

 Implementing in-memory Fuzzer

IV. Real case study
 EasyFTP 1.7.0.11

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

II. In Memory Fuzzing
Why using in memory fuzzing?

 As seen before, fuzzing an application require to write a third-party

application which allows to launch test cases. That could sometime be

difficult if no functions are provided by the target.

 In some case, fuzz testing an application can require a full restart of the

latter for each test case. This can lead to very low speed test.

 If an unknown encryption is used by the target application, building an

efficient Fuzzer can be quite difficult.

In-memory fuzzing can avoid all these problems by directly injecting fuzz data

into memory.

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

II. In Memory Fuzzing
Principle

 Inject fuzz data directly into memory instead of using the attack vector.

Injection can be done by hooking Windows API or a whole function in the

process.

 Directly manipulates process memory to clean memory state after each test

cases.

 Allow to shortcut data encryption and inject raw data in memory.

 Requires a debugger to place breakpoints and hook key functions.

 Referring to the diagram “Fuzzing process”, in-memory fuzzing operates at

the step "Send data to target"

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

II. In Memory Fuzzing
Data injection example

 The code block below use the API “recv”. This API reads data received

from the network through a socket connection.

 Hooking this function and replacing the value pointed by the EDX register

will allow us to change API's output by our data and thus, to inject our data

into the application’s memory.

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

II. In Memory Fuzzing
Building in-memory Fuzzer

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

II. In Memory Fuzzing
Creating loop in memory

Effective in-memory Fuzzer creates a loop in code flow to restore the memory

and allow to launch a new test case. Several ways can be used to create a

loop in memory depending on the targeted application.

 Create a loop in memory by manipulating application’s code. For example,

add a JMP at the end of the function to jump to the beginning of another

function previously used in the code flow.

 Obviously, instructions should be adjusted to application’s code flow. Stack

& heap cleaning might sometime be necessary.

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

II. In Memory Fuzzing
Creating loop in memory

 Another way to create a loop in the code flow is to use memory Snapshots.

Memory Snapshot save memory state including threads contexts at the

beginning of the loop and restore it at the end of the loop. This way, a loop

is virtually created into the code flow and the memory context is restored for

each test cases.

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

II. In Memory Fuzzing
Advantages and drawbacks

Advantages

 Speed : In-memory fuzzing inject data straight into memory and therefore

avoid data transfer slowdowns.

 Shortcut : Allows to inject data at desired position and therefore avoid

encryption functions or checksum for example.

 Implementation time : avoiding all the different attack vectors, experienced

user can build a Fuzzer in a few time.

Drawbacks

 Complexity : build a memory Fuzzer require in-depth analysis of the

software and a good knowledge in debugging and assembly language.

Forgetting to hook key input functions could make the test ineffective.

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

Summary

I. What is Fuzzing?
 Introduction

 Fuzzing process

 Targets

 Inputs vectors

 Data generation

 Target monitoring

 Advantages and drawbacks

II. In Memory Fuzzing
 Why use in-memory Fuzzing?

 Principle

 Data injection example

 Building in-memory Fuzzer

 Creating loop in memory

 Advantages and drawbacks

III. DbgHelp4J
 Presentation

 Key features

 Example

 Implementing in-memory Fuzzer

IV. Real case study
 EasyFTP 1.7.0.11

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

III. DbgHelp4J
Presentation

 DbgHelp4J is a JAVA library developed by High-Tech Bridge to debug

process in Windows environment.

 It provides all required functions to implements a debug environment and

in-memory Fuzzer.

 It provides functionalities to perform static and dynamic binary analysis.

 It permits to perform path analysis.

 It uses the diStorm library to perform binary code analysis.

 It also remains in development.

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

III. DbgHelp4J
Key features

 Process debugging

 Events listener

 Memory access (Threads, Modules, Process, Windows structures, etc.)

 Read instructions

 Place breakpoints

 Hook functions

 Memory snapshots

 Static / dynamic path analysis

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

III. DbgHelp4J
Example – process debug

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

III. DbgHelp4J
Example – process debug

 Line 18 - WinProcess class owns windows representation of a process

 Line 19 - WinProcess class allows to attach debugger to a process

 Line 20 - ProcessDebugListener sets up debug event listeners

 Line 58 - We attach the debug listeners to the process

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

III. DbgHelp4J
Implementing in-memory Fuzzer

 Based on this code, we can easily implement an in-memory Fuzzer using

functions from the library.

 We will use memory Snapshots to create the loop.

 Following the process supplied earlier, we first have to identify inputs

vectors and hook related functions.

 Here we will use arbitrary address for a “recv” (0x1100) function as for save

(0x1000) and restore (0x2000) addresses.

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

III. DbgHelp4J
Implementing in-memory Fuzzer

 The first thing to do is to prepare the “recv” hook. It can be achieved by
using CallHook class.

 preCallHook function will save pointer address of the string buffer

 postCallHook function will change the value of EAX and insert fuzz value
into the string buffer saved previously.

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

III. DbgHelp4J
Implementing in-memory Fuzzer

 Next, we have to enable the CallHook for the windows process and put 2

breakpoints to define save and restore addresses.

 To handle exceptions throws by breakpoints, we have to use the

exceptionThrown function from ProcessDebugListener.

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

III. DbgHelp4J
Implementing in-memory Fuzzer

 The function exceptionHandler will be responsible for saving and restoring

memory snapshot.

 Snapshots will be saved in a global variable.

 That’s it ! Our Fuzzer is now ready. To run the loop, just run a function

which reach the save snapshot address.

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

III. DbgHelp4J
Implementing in-memory Fuzzer

 This example was an ideal case of in-memory Fuzzer implementation. In

real cases, additional functions hooks could be required.

 For example, in many case, there is a select function present before recv

function. If select function fail to find the socket (what will certainly happen

because the socket connection cannot be kept alive by the Fuzzer) the

program will probably take another path and don’t reach recv.

 We’ll see in the next chapter how to find functions to hook and how to find,

save and restore addresses for Snapshots.

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

Summary

I. What is Fuzzing?
 Introduction

 Fuzzing process

 Targets

 Inputs vectors

 Data generation

 Target monitoring

 Advantages and drawbacks

II. In Memory Fuzzing
 Why use in-memory Fuzzing?

 Principle

 Data injection example

 Building in-memory Fuzzer

 Creating loop in memory

 Advantages and drawbacks

III. DbgHelp4J
 Presentation

 Key features

 Example

 Implementing in-memory Fuzzer

IV. Real case study
 EasyFTP 1.7.0.11

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

IV. Real case study
EasyFTP 1.7.0.11

 Now that we know how to implement an in-memory Fuzzer, in this section

we will study how to find functions to hook.

 For the Proof of Concept, we’ll use an old and well known flaw in EasyFTP

1.7.0.11.

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

IV. Real case study
EasyFTP 1.7.0.11

 Following the process supplied earlier, the first thing to do is to identify input

vectors.

 Because we work on a FTP server, the main attack vector here is the

network.

 The second step is to hook desired input functions. To do this, we must find

the address of the these input functions.

 The best way to proceed is to do a static analysis on the application to find

common API used in network communication.

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

IV. Real case study
EasyFTP 1.7.0.11

 Here, IDA will be used for static analysis.

 Let’s examine the import table of the application :

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

IV. Real case study
EasyFTP 1.7.0.11

 The most interesting API here is “recv”.

 Other API like “bind”, “select”, “listen” or “accept” could also be useful to

help reverse engineering the application.

 Let’s analyze references to the “bind”, “recv” and “listen” API.

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

IV. Real case study
EasyFTP 1.7.0.11

 We can easily see that a function 0x40D110 use both “bind” and “listen”

API.

 By reversing this function, after “bind” and “listen” calls, an interesting block

appears.

 This block of instructions accepts connections coming from port 21 and

launches a thread using function loc_40D870 to handle the connection.

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

IV. Real case study
EasyFTP 1.7.0.11

 Inspecting the instruction at loc_40D870, we can find a call to sub_40D850

displayed below.

 Here is the main thread loop. It calls function sub_409700 to receive

information and deal with them.

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

IV. Real case study
EasyFTP 1.7.0.11

 At this juncture, we have all that we need to create a full loop, but in the graph of
the function sub_40D850 presented earlier, we can see that the main thread
function is running on a loop. So is it really necessary ?

 Manually implement a loop would be useless because the loop is already
present in the code flow.

 Create a loop with memory Snapshots would have the advantage to restore
memory to the initial state for each test but this way would prevent the Fuzzer to
go deeper into the code as no trace would be kept in memory of previously
executed commands.

 Fuzzing the application with the initial code will allow the Fuzzer to go deeper
but could also corrupt the memory after several iterations.

 A good alternative here should be to implements memory Snapshots with a
counter triggered only after N iterations. Selecting this solution, we should place
our save address on the “MOV ESI,ECX” instruction, and restore on “JNZ
SHORT LOC_40D853”.

 To simplify this example, we will not use a counter here and will restore memory
for each test case after connecting.

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

IV. Real case study
EasyFTP 1.7.0.11

 Having set out our Snapshots addresses, we should now search for the

“recv” function to inject our data.

 By inspecting function sub_409700, we find function sub_4095D0 which

appears to be the receive function. Here we have 2 solutions. Hook the

“recv” call or hook the whole function.

 The second solution appears to be the best one because it allows us to

inject data in one block while the “recv” function reads data byte by byte.

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

IV. Real case study
EasyFTP 1.7.0.11

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

IV. Real case study
EasyFTP 1.7.0.11

 Launching the Fuzzer now will reveal another problem. As said earlier, in-

memory Fuzzer cannot keep network connection up. Even if we have

hooked the “recv” function and so avoid the problem here, the “send”

function returns an error and kills the thread.

 So the last thing we have to do is to hook the send function and replace its

return value by 1 to entice the application to think the function has

terminated correctly.

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

IV. Real case study
EasyFTP 1.7.0.11 - PoC

 By running the Fuzzer less than 1 minute an “ACCESS VIOLATION” is

thrown showing an error in the CWD command handling.

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

Conclusion

 In this paper, we have discussed about advantages and disadvantages of

in-memory fuzzing.

 We have also seen how to build a simple in-memory Fuzzer and analyze

the process to place breakpoints and hookpoints.

 In a future paper, we will cover how to harness in-memory fuzzing to help in

data generation.

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

References

 Fuzzing, Brute Force Vulnerability Discovery by Michael Sutton, Adam

Greene and Pedram Amini.

 In-Memory Fuzzing on EmbeddedSystems by Andreas Reiter.

 http://resources.infosecinstitute.com/intro-to-fuzzing/

 http://www.ragestorm.net/blogs/

 http://ragestorm.net/distorm/

 https://www.owasp.org/index.php/Fuzzing

ORIGINAL SWISS ETHICAL HACKING

Your texte here ….

©2012 High-Tech Bridge SA – www.htbridge.com

Thank you for reading

Your questions are always welcome!
 xavier.roussel@htbridge.com

