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Abstract — Buffer Overflows are conditions relating to the 
Von-Neumann orientated model of computer architectures. 
Buffer Overflow conditions have been known for the past 25 
years, and are still very common today and still ranked in the top 
threats of the threat landscape. The aim of this essay is to identify 
the attack vectors, the offensive and also defensive methodologies 
in conjunction to a chronological evaluation of the first, second 
and third generation buffer overflows. The objective is to 
critically evaluate the past, present and foreseeable future of 
buffer overflow conditions; The objective of this essay is to 
analyze buffer overflow conditions, and thus to study the 
reasons for their occurrence, to investigate the cause and effect 
of their occurrence in modern computer systems, and the 
predicament they create; The question to be raised “Why do 
buffer overflows continue to exist today, even with safer 
operating systems and programming languages?” Challenging 
the drawbacks of conventional approaches an evaluation of 
security vulnerabilities and modern attack methodologies enable 
us to speculate, on the foreseeable future of memory exploitation. 

 
 

 

1. Introduction 

 

In programming languages such as C and C++, the 

programmer is responsible for the adequate provision of 

manual memory management metrics and security controls in 

the security life cycle of a development tool, and since 

languages such as C and C++ have no inherent built-in 

protections for memory management, and this has to be 

provided by the programmer. Thus if the programmer is not 

careful to construct the security development lifecycle, for 

managing memory issues manually, then there is a great risk 

that hundreds of lines of legacy code could be unconditionally 

exposed to memory errors, and therefore exposing the system 

to a variety of vulnerabilities. Buffer overflow conditions 

occur when a fixed-length variable, stored either locally, or in 

the dynamic allocated segments of memory, is overflowed 

with excessive information. In such instances the excess data 

would overwrite the program’s memory, the referenced buffer 

and adjacent memory locations next to it. A malicious 

adversary could take advantage, of the unprotected memory 

space thus with intent to circumvent the programs execution 

flow, and to directly tamper with the program’s memory, and 

thus to execute malicious code in other unprotected adjacent 

executable locations in memory. Memory error exploitation is 

also dependent on other co-factors such as the microprocessor 

computer architecture (CPU enforces some basic constraints 

on memory access and can set control between privilege 

levels), can set control of the Operating System, the access 

control model (e.g.:  RBAC, DAC), or the system’s TCB 

(Trusted Computing Base – which contains the assurance 

mechanisms entailing also the access control to memory 

locations), and the reference monitor which regulates access 

of subjects to objects. A buffer overflow condition occurs 

when the software makes use of a subroutine and within that 

subroutine call, the user is allowed either by software design, 

or by poor programming practice, to input ‘excessive’ data 

into a fixed-length buffer, greater than the actual size it can 

store. A buffer overflow attack can further be identified as 

either local or remote. In a local overflow, the attacker aims 

for ‘Escalation of Privileges’ or (EoP)’ on a system that he 

already has user-access on. In a remote overflow attack the 

malicious adversary overflows an active service by placing a 

malicious payload in the transmission data, with ultimate 

purpose to crash the service, or to cause an exception, and 

finally to trigger a buffer overflow condition, and 

subsequently control of the program’s execution flow. This 

would eventually lead to access control at ring-0 or escalation 

of privileges with further exploitations, from ring-3 (user- 

land) to ring-0 (kernel-land); Classification of buffer overflows 

occurs according to their chronological discovery and 

methodology. 

 

 
 

 

2. The Evolution of Buffer overflows 

 

The emergence of ‘Buffer Overflow’ conditions dates back 

to the early 1970’s with the Morris worm making its debut. 

The Internet worm that nearly shut down the Internet of that 

time, and of course took advantage of buffer overflow 

conditions, authored by a Cornell University student - Robert 

Tappan Morris. The Morris worm was a good enough cause 

for DARPA to found the establishment of CERT (Computer 

Emergency Response Team), at Carnegie Mellon University, 

and furthermore was a good enough cause for the emergence 

of the first ‘Internet Law’ the “US, Computer Fraud and Abuse 

patent”. Robert Tappan Morris, the motivation of freedom 

of information inspired many security enthusiasts to author 

about buffer overflow conditions, and such are “Elias Levy” 

or also known as “Aleph 1”, publishing the first ever public 

article on Buffer Overflows, “Smashing the Stack for Fun and 

Profit”. Because of the lack of literature on memory 

exploitation trends then, in November, 1993 Scott Chasin 

founded the first ever white hat hacker mailing-list “Bugtraq”, 

and generally the lack of a security community at that time. 

Furthermore, in 1995, Thomas Lopatic, published a step-by- 



step exploitation tutorial on the “NCSA HTTP” service. 

Peiter Zatko or also known in the hacker-scene by the alias 

“Mudge” has authored an article on stack-based overflows 

months after Lopatic’s publication. The introduction of a non- 

executable stack (NX Stack) was the first ever 

countermeasure to address memory exploitation, and that was 

authored by another famous name in the hacker-scene 

“Alexander Peslyak” – also known as “Solar Designer”- . 

Alexander was the first to publish a software implementation 

of the non-executable stack called “Stack Patch”, and that 

came in 1997. Crispin Cowan introduced SSP and Canaries in 

1998. In 1999 the w00w00 team, a group of white-hat security 

enthusiasts were the first to author about heap overflows. In 

September, 1999 Tymm Twillman” introduced the first 

literature on format string attacks following a security audit of 

the ProFtpd daemon, in which the audit uncovered an insecure 

snprintf() call that directly passed user-generated data. 

Tillman’s journal gained so much popularity even years after 

his ProFtpd publication. Despite 25 years independent and 

academic research, buffer overflow conditions continue to 

exist, and the research community has introduced numerous 

innovative approaches for the effective mitigation of memory 

vulnerabilities. Such approaches incorporate the utilization 

of software for automated ‘bound-checking’, safer compiler 

options, kernel modules, structure handling, novel techniques 

such as probabilistic and entropy based randomization, and 

virtualization, secure sandboxing techniques. The first ever 

defensive ‘non-executable’ stack mechanism, against Buffer 

overflows was proposed by ‘Alexander Peslyak’ in 1997 

along with a proof of concept exploit of ‘retun-to-libc’ 

attacks. The now popular “return-to- libc” attacks can still be 

used to defeat a non-executable stack. In 2000, the PaX 

project was released. 

In July 2001, The PaX team also introduced the concept of a 

new technology “Address Space Layout Randomization” 

(ASLR). The concept elucidated that randomization of 

executable locations, and randomization of memory addresses 

would act as an adequate preventive barrier against code- 

reuse, and injection attacks. According to subject literature 

(Negral, 2001), some of the first custom attacks on 

randomization that remain a popular attack vector in present 

day, are the return-to-libc attacks.  In 2008, Mark Dowd 

presented the first ever publication on NULL point de- 

references. Buffer overflow conditions continue to thrive and 

are still classified as one of the top threats, in the current 

threat landscape. However, what changed since, in terms of 

the protection mechanisms, are the enhanced mitigation 

techniques that contributed to novel defensive techniques, 

which constituted exploitation to become tougher, than 

previous controversial methodologies. The main problem is 

that vulnerabilities are profligate, and hundreds of programs 

run with root privileges by default. 

 

 
Fig. 1. Chronological evolution of Buffer Overflows. 

 
 

 

3. Trend Analysis and Evaluation 

 

3.1 W  X (Data Execution Prevention) 

Write XOR Execute is an orthogonal methodology developed 

for the protection against injection attacks, which is evident in 

first and second generation buffer overflows. Subject matter 

literature suggests that, first generation overflows take 

occurrence due to the feasibility to overwrite fixed-space 

addresses, a condition which is referred to as a ‘Fandango 

Core’. The W   X mechanism (also referred to as Data 

Execution Prevention – DEP) accumulates the micro- 

processor to mark adjacent memory as non-executable, in 

areas such as the heap, the program’s stack and the mmap 

section – (shared libraries), as well as the ELF section in the 

program header table. Thus the following defines the W X 

concept: “Writable memory pages, but not executable,” or 

either “Executable, but then not writable, but not both.” 

Based on this concept malicious adversaries are barred from 

making changes to memory, by overwriting tables as in 

classical stack-overflows. A threat-actor at this point, would 

only be given the option to abuse what is already existent in 

memory, and such are function calls to existing libraries. 

However, DEP as a mitigation method has its efficacy rated 

high, especially due to its effectiveness to guard against 

stack-overflows. DEP is considered the best non-executable 

defence against stack overflows. DEP is often complemented 

with ASLR to enhance its efficacy. However, this mitigation 

technique has been effectively defeated using a (1) ‘return-to- 

libc’ attack (2) Return Object Orientated Programming - ROP 

attack – which can disable DEP/NX, (3) “NOPSled” attack. 

(Zheng Xu, 2011). 

 

3.2 Stack Smashing Protection (SSP) 

 

SSP is a mitigation method and it can be applied at compile- 

time. This mitigation method works by altering every 

function’s prologue and epilogue regions. This mitigation 

methodology inserts a copy of a ‘detection cookie’ in a 

program’s stack, just right before the program’s return 

address. Therefore if a buffer overflow was to occur within a 

function, the cookie would have to get overwritten first. In 

case it gets overwritten, an exception would be thrown. This 

mechanism works by comparison of the Stack cookie and a 

wider master cookie which is located in the .data section. 

It is pertinent to note, that an exception is a critical error 

which defines that the program should be terminated and 



therefore has to step outside its normal execution flow. This 

method is an effective mitigation, specifically for stack-based 

overflows, but its efficacy has been rated as very low since it 

cannot protect against heap overflows, and allocated 

structures. This method can be defeated either by (1) Go 

Beyond the EIP register overwriting the exception handler, 

using a Structured Exception Handler (SEH) exploit and 

redirecting that to a shell code. (2) Overwrite parent calls of 

object and V-Table pointers inside the stack layout (3) Guess 

where the cookie is and reduce its entropy. Although SSP 

significantly reduces the probability of a single attempt 

succeeding, it will however not prevent exploitation. 

Although it can reduce the impact of the attack. If it is 

combined with DEP then a return-to-libc / “stack-pivot" or 

using a Return-Object Orientated Programming – ROP 

attack”. (Cowan, 1991) 

an ELF (executable) binary. The ASLR pseudorandom 

algorithm randomizes only the first bits of a virtual address. 

In fact the 16 bits out of the 32-bits are randomized (32bits or 

64 architectures) using a PRNG pseudo random number 

generator. 

 

 
Fig. 4. Address Space Layout Randomization and base addresses. 

(Brumley, 2010) 

 

The space of randomization is only on a 32 bit 

architecture, thus giving an attacker the probability of success 

with: 
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Fig. 2. SSP and the relationship to the Stack Layout. 
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Fig. 3. Stack   Smashing   Protection   epilogue   and   prologue 

sections. (Gerardo, 2002). 

 

 
 

3.3 Address Space Layout Randomization 
 

The first, second and third generation of buffer overflows and 

general attacks against non-executable stack methodologies 

were reliant on knowledge of fixed memory addresses. In the 

virtual address space each page has its ‘virtual addresses 

assigned to a physical memory location through page tables. 

Classical “return-to-libc” attacks required knowledge of the 

exact offsets in memory, normally referenced to the ‘libc’ 

function which is used by all C orientated operating systems. 

Thus ASLR reduces the impact of a buffer overflow attack, 

by randomizing all base addresses in “The Heap”, “The 

shared libraries mmap() area”, “Code segment” and parts of 

Furthermore on the probability of success with brute forcing 

in case that a malicious adversary brute forces the “fixed” 

addresses of the randomized space, the expected number of 

probes required by a brute force attack can only be , 

while re-randomization of the address space can be thought of 

as selecting replaceable balls, to the point we get the ball with 

the number we are looking for. Therefore the probability of 

success after a number of probes “t”, and thus where “n” is 

defined as the number of randomized bits in the address space 

- the success rate would be equivalent to the following 

equation below, which defines the expected number of 

attempts before a successful probe occurs, which is defined as 

1 divided by 2 to the power of “n” probes, and which is 

therefore equal to 2^“n” bits plus 1 divided by 2. According 

to current literature, re-randomization occurs constantly for 

all child processes, and periodically after every call to the 

fork function, re-randomizing offsets of all child processes. 



4) Brute forcing. 

5) Return-Object-Orientated-Programming – ROP 

attack. (similar to return-to-libc but uses gadgets) 

6) Just-in-Time (JIT) Spraying (JavaScript Payload) 

 

(3) Probability expectations 

 

 
Fig. 5. Estimated relationship between the successful probes and 

the randomization bits utilized in ASLR. (Brumley, 2010) 

 

 
Fig. 6. Estimated relationship between the number of tries and 

randomization bits used in ASLR. (Brumley, 2010) 

 

 

Address Space Layout Randomization is susceptible to brute- 

force attacks, partial-overwrites, information leak attacks (e.g: 

printf() arbitrary read or vulnerabilities that disclose 

information about the memory structure), and JIT spraying 

attacks. The success of brute-forcing an ASLR exploit is 

dependent on how tolerant an exploit is to the memory layout. 

Address Space Layout Randomization is often complemented 

with DEP or other mitigation technologies, due to  

deficiencies in its design that limit its efficacy and mitigation 

capabilities. ASLR can be bypassed with a partial EIP 

overwrite due to the fact that the least significant non- 

executable bits are not used. The following methodologies 

have successfully defeated ASLR; (Schacham, 2004), 

(Schwartz, 2012) (Sotirov, 2010) 

1) Return-to-Libc attacks. (Calls outside the stack 

function) 

2) Heap Spraying. 

3) Information Leak attacks. 

3.4 Fine-Grained User-Space Security through 

Virtualization 
Programs in a nutshell are verified, with additional security 

barriers added to the executable image. User-space 

virtualization confines and secures the application. The code 

is secured and system calls are authorized. All insecure 

functions are protected or rewritten. 

 

i. Secure control flow transfers. (Verification of return 

addresses on the stack and protection from Return 

Orientated Programming, code injections through 

heap and stack-based overflows ) 

ii. Signal handling. (Protects from break-outs out of the 

sandbox) 

iii. Executable bit removal. (Executable bit removal for 

libraries and applications). 

iv. Address Space Layout Randomization. (Probabilistic 

Measures that makes attacks more difficult to 

circumvent). 

v. Protection of internal data-structures. 

 

 

 
Fig. 7. A process’s “Fine-Grained” user-space virtualization 

layout.  (Payer, 2012). 

 

 
3.5  Supervisor Mode Execution Protection (SMEP)  

Supervisor Mode Execution Protection is a recent mitigation 

technology. SMEP prevents execution out of an untrusted 

application memory while operating at a more privileged 

level. SMEP protects against Elevation of Privilege (EoP) 

attacks, and specifically against kernel exploits. 

This defensive methods only protects against EoP (Elevation 

of Privilege attacks), but fails to address Denial of Service 

and Information Disclosure attacks. Furthermore this 

defensive method is susceptible to (1) Return-Oriented 

Programming attacks  

(2) Overwriting the “nt!MmUserProbeAddress” global 

variable, which is used for the verification process of 

memory addresses. 



 

 

4. Conclusion 

 

Therefore while custom protection techniques attempt to 

equilibrate the impact of buffer overflow conditions, the most 

successful approach would be to prevent them before they 

occur. The accumulation of pointer arithmetic is the reason 

that languages such as ANSI C and C++ can be subtle to 

memory related vulnerabilities. Languages such as C can have 

measurable levels of security if used with an appropriate 

security life-cycle, but the human factor is accountable, and 

thus languages such as C, only make it easier for vulnerable 

code to occur. Thus the hypothesis formed is that high-level 

languages such as Java to cite as an example, prevent buffer 

overflows from occurring by design although, the majority of 

open-source applications and operating-systems have been 

written in the C and C++ languages, and that is one of the 

reasons why buffer overflows actually continue to exist. Also 

approaches such as static and dynamic source code analysis 

techniques are harder to manage with hundreds of legacy code, 

and only work to a certain extend requiring manual 

verification. However, while custom mitigation techniques 

were developed to reduce the impact from memory 

exploitation, they do not substitute vulnerable code. Security 

and robustness both incorporate equal levels of allowable 

inputs and user driven responses, by limiting user supplied 

data, so that undesirable outcomes are prevented from 

circumventing the execution flow. Even if all of the latest 

technologies are used on a system to the fullest, memory 

issues will continue to exist. 

  Although mitigation techniques do considerably reduce the 

impact, and this is their scope; to reduce the impact to 

manageable levels. Therefore the future of buffer overflows 

would gather more interest towards the circumvention of fine- 

grained user-space virtualization, and perhaps virtualization 

systems such as Pacifica or HVM. (Levin, 2011). Thus it is 

submitted that the foreseeable future of memory exploitation 

techniques will perhaps gather more interest against 

exploitation of the 64-bit heap, exploitation against novel 

methods envisaging ‘Moving Target Defense’ concepts, and 

such are memory permutation techniques with greater 

emphasis towards substitution-permutation networks. 
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