

Bypassing SSL Pinning on Android via Reverse Engineering

Denis Andzakovic – Security-Assessment.com

15 May 2014

Table of Contents
Bypassing SSL Pinning on Android via Reverse Engineering ... 1

Introduction .. 3

Tools Used ... 3

The Victim ... 3

The Approach .. 4

Reversing ... 5

Retrieving and Disassembling the APK ... 5

Patching .. 6

Patch at class instantiation ... 6

Patch the Class .. 7

Hijacking the Keystore .. 8

Repacking and Running ... 10

Tricks ... 11

Information in Stack Traces .. 11

Decompiling into Java Code .. 12

References .. 12

Introduction
Android applications may implement a feature called ‘SSL Pinning’ (1). This effectively allows the

developer to specify the certificate(s) that an application will consider valid. In normal circumstances,

one can add their custom certificate chain to the trusted store of their device and subsequently

intercept SSL traffic. SSL pinning prevents this from being possible, as the “pinned” certificate will not

match the user-supplied certificate. This introduces an issue when one wishes to intercept traffic

between the application and whatever backend systems it may be communicating with.

In many cases it is possible to bypass the SSL pinning with publicly available solutions, such as iSEC

Partners ‘android-ssl-bypass’ (2). In the event that this is not suitable for the target application, a more

hands-on approach is required to disable the pinning. This whitepaper will detail the steps taken to

unpack an application, locate the pinning handler, patch and repack. The techniques detailed in this

whitepaper may also be used to achieve other goals when hacking Android applications.

The aim of this exercise is to remove the pinning in order to be able to intercept the requests with a

Web proxy. The Burp Proxy (3) is used in this example.

Tools Used
 Android SDK - http://developer.android.com/sdk/index.html

 Smali/baksmali - https://code.google.com/p/smali/w/list

 Signapk – https://code.google.com/p/signapk/

 Burp - http://portswigger.net/burp/

The Victim
For the purpose of this whitepaper, will we be using the SSLPinningExample application, which can be

found here (http://security-assessment.com/files/documents/whitepapers/SSLPinningExample.zip). This

is a very simple application that performs an HTTP request to https://github.com and displays the result

of the request – in general operation, this will be the HTTP response returned from GitHub. As SSL

Pinning is enabled, a Man-In-The-Middle with Burp results in an SSL error.

http://developer.android.com/sdk/index.html
https://code.google.com/p/smali/w/list
https://code.google.com/p/signapk/
http://portswigger.net/burp/
http://security-assessment.com/files/documents/whitepapers/SSLPinningExample.zip
https://github.com/

Attempting to use an intercepting proxy with the default application results in no response, where as a

successful request returns the response data:

Failure Success

The Approach
In order to disable the pinning, one can disassemble the application, locate the method responsible for

pinning control and remove the check. The aim is to have the client accept your own SSL certificate as

valid. Note: the proxy’s certificate should be installed in the Android trusted certificate store.

The application needs to be disassembled into Smali code (based on Jasmin syntax) (4).

The Smali code will then be patched to remove the SSL Pinning check and the application reassembled

and repacked.

Reversing

Retrieving and Disassembling the APK
After the correct package is located, the APK file can be pulled from the device. List all installed

packages, find the relevant APK for your desired package and then pull said package off the device.

After pulling ‘/data/app/com.example.sslpinningexample-1.apk’, unzip the APK to retrieve the

classes.dex file. Baksmali is then run to disassemble the Dalvik bytecode into Smali.

Patching

Patch at class instantiation
The first method we will discuss is patching the file that spawns the HTTPS client. Starting with

MainActivity.smali and working back from the onClick method, we can see that the GET method

is responsible for retrieving https://github.com:

Further analysis shows the GET method calls the HttpClientBuilder class to build the

DefaultHttpClient. DefaultHttpClient expects a number of parameters when it is created,

so our goal is to remove the parameter containing the keystore responsible for SSL Pinning (5). Working

through the GET method, we see that the pinCertificates method of the

HttpClientBuilder class is called. We will remove this, as well as the pinCertificates call’s

relevant variables.

https://github.com/

As can be seen above, lines 148 through 164 need to be removed. The application is then re-assembled

and reinstalled on the device.

Patch the Class

A more elegant solution would be to patch the HttpClientBuilder class itself. The application may

call this class multiple times from different locations in the code, so patching the library guarantees that

we won’t get stung by SSL Pinning further down the track.

The MainActivity.smali shows which method we need to patch within the

HttpClientBuilder class. This is indicated by the invoke-virtual on line 162:

invoke-virtual {v6, v7, v8},

Lcom/example/sslpinningexample/HttpClientBuilder/HttpClientBuilder;-

>pinCertificates(Ljava/io/InputStream;[C

)Lcom/example/sslpinningexample/HttpClientBuilder/HttpClientBuilder;

Looking at the above, we can see that the pinCertificates method expects an InputStream

and a Char array as its parameters. This is enough information to locate the method within the

HTTPClientBuilder.smali file and patch it:

The above method is what we need to patch to bypass the check. Looking at lines 264 and 265, we see

this is the pinCertificates method expecting an InputStream and a character array. We don’t

particularly care what the method does, we just want it to return p0 (this).

This modification means that even though the pinCertificates method is called, the keystore

information is never added to the parameters passed to the DefaultHttpClient.

The above lines are removed, the application re-assembled and then reinstalled on the device.

Hijacking the Keystore

Another method is hijacking the keystore. The DefaultHttpClient can be passed a keystore file

which contains the pins as a parameter. In order for the application to be able to be able to access this

keystore, it must know the password. If the location of the keystore and the password is known, then

one can add their own CA into the keystore and leave the pinning in place. This can be especially useful

when the application is large, convoluted or obfuscated.

The first step is the location of the keystore. The HttpClientBuilder class specifies the string

‘BKS”, which is then passed to java/security/Keystore, indicating we are dealing with a BKS format

keystore file. This can be seen on line 277 of the HttpClientBuilder.smali file:

In the MainActivity.smali file, under the GET method, we see the STORE_PASS variable be set to

“testing”, giving us the key:

By inspecting the APK archive, we can determine the location of the keystore (in this case,

res/raw/keystore.bks):

After extraction, we can add our own certificate file, repack and reinstall. Due to the BKS format, we

need to use the Bouncy Castle APIs (6). The keytool command is used to add the certificate:

keytool -provider org.bouncycastle.jce.provider.BouncyCastleProvider -

providerpath path-to-bcprov.jar -storetype BKS -keystore

keystore-file -importcert -v -trustcacerts -file certificate-file -

alias hax

The end result should look similar to this:

.

Repacking and Running
Once the modifications are made, the Smali code needs to be reassembled back into Dalvik bytecode,

the new classes.dex file needs to be zipped and the signatures need to be updated. Smali is used to

achieve the reassembly:

SignAPK is then used to update the signature, however any tool used for signing APKs will suffice. After

the signing is completed, the app is installed onto the device:

SignAPK expects a certificate, a key, the original APK and the output APK as its parameters. After signing

and reinstallation, the application is run. We can then intercept requests with Burp (again - make sure

Burp’s CA is in the OS trust store):

Tricks

Information in Stack Traces
In the event that the application logs its stack traces, an attacker may use the stack trace to determine

the location of the function responsible for the pinning. This trick can be particularly useful when faced

with applications that have been obfuscated with a tool such as ProGuard (7). The SSLPinningExample

application throws the following when the SSL connection fails:

The trace points us to line 69 in the MainActivity file, saving the headache of reversing the

application from scratch.

Decompiling into Java Code
Working with Smali may not be the easiest way to quickly understand what the application is doing if

one is not familiar with Smali. Another approach is; after extraction, Dex2Jar (8) can be used to convert

the classes.dex file into a JAR file. The resulting JAR file can then be decompiled with JD-Gui or similar

(9).

References
1. Google. (n.d.). Retrieved from http://developer.android.com/training/articles/security-ssl.html

2. iSEC Partners. (n.d.). Retrieved from https://github.com/iSECPartners/android-ssl-bypass

3. Portswigger. (n.d.) Retrieved from http://portswigger.net/burp/proxy.html

4. Ben Gruver. (n.d.) Retrieved from https://code.google.com/p/smali/w/list

5. Google. (n.d.). Retrieved from

http://developer.android.com/reference/org/apache/http/impl/client/DefaultHttpClient.html

6. Bouncy Castle. (n.d.). http://www.bouncycastle.org/

7. Google. (n.d.). http://developer.android.com/tools/help/proguard.html

8. pxb1...@gmail.com. (n.d.). https://code.google.com/p/dex2jar/

9. Dupuy, E. (n.d.). http://jd.benow.ca/

http://developer.android.com/training/articles/security-ssl.html
https://github.com/iSECPartners/android-ssl-bypass
http://portswigger.net/burp/proxy.html
https://code.google.com/p/smali/w/list
http://developer.android.com/reference/org/apache/http/impl/client/DefaultHttpClient.html
http://www.bouncycastle.org/
http://developer.android.com/tools/help/proguard.html
https://code.google.com/p/dex2jar/
http://jd.benow.ca/

