
Department Informatik
Technical Reports / ISSN 2191-5008

Andreas Kurtz, Felix Freiling, Daniel Metz

Usability vs. Security: The Everlasting Trade-Off
in the Context of Apple iOS Mobile Hotspots

Technical Report CS-2013-02

June 2013

Please cite as:

Andreas Kurtz, Felix Freiling, Daniel Metz, “Usability vs. Security: The Everlasting Trade-Off in the Context of Apple iOS

Mobile Hotspots,” University of Erlangen, Dept. of Computer Science, Technical Reports, CS-2013-02, June 2013.

Friedrich-Alexander-Universität Erlangen-Nürnberg
Department Informatik

Martensstr. 3 · 91058 Erlangen · Germany

www.informatik.uni-erlangen.de

Usability vs. Security: The Everlasting Trade-Off
in the Context of Apple iOS Mobile Hotspots

Andreas Kurtz, Felix Freiling, Daniel Metz
Dept. of Computer Science, Friedrich-Alexander-University, Erlangen, Germany

{andreas.kurtz,felix.freiling}@cs.fau.de, daniel.metz@studium.fau.de

Abstract—Passwords have to be secure and usable
at the same time, a trade-off that is long known.
There are many approaches to avoid this trade-off,
e.g., to advice users on generating strong passwords
and to reject user passwords that are weak. The same
usability/security trade-off arises in scenarios where
passwords are generated by machines but exchanged
by humans, as is the case in pre-shared key (PSK)
authentication. We investigate this trade-off by analyzing
the PSK authentication method used by Apple iOS to set
up a secure WPA2 connection when using an iPhone as a
Wi-Fi mobile hotspot. We show that Apple iOS generates
weak default passwords which makes the mobile hotspot
feature of Apple iOS susceptible to brute force attacks
on the WPA2 handshake. More precisely, we observed
that the generation of default passwords is based on
a word list, of which only 1.842 entries are taken
into consideration. In addition, the process of selecting
words from that word list is not random at all, resulting
in a skewed frequency distribution and the possibility
to compromise a hotspot connection in less than 50
seconds. Spot tests show that other mobile platforms
are also affected by similar problems. We conclude that
more care should be taken to create secure passwords
even in PSK scenarios.

I. INTRODUCTION

It is well known that security is severely influenced
by the usability of security enforcing mechanisms.
One particularly striking example is the use of secure
passwords for authentication since weak passwords are
a major entry point for attackers.

The main reason why password based authentication
schemes are often easy to break is a result of human
memory limitations. As it is well-known in cognitive
psychology [1], the capacity of the human brain is
limited to around seven (plus or minus two) items
that can be hold in memory continuously. In addition,
chunks that are familiar to a human, can be remem-
bered more easily than any random fragments. This is
why password based authentication always involves a

trade-off: strong passwords that are difficult to crack,
can hardly be remembered.

This trade-off is even an issue in mutual authentica-
tion using shared keys. A prominent example is setting
up a secure wireless connection between two devices
using a pre-shared key (PSK). A common scenario
for PSK authentication is Internet tethering where an
existing Internet connection is shared by turning a
smartphone into a portable Wi-Fi hotspot. Thus, elec-
tronic devices in the vicinity of the hotspot can connect
to the Internet using the cellular data connection of
the smartphone. This option is particularly popular,
because mobile hotspots are most often used during
traveling or business trips. Using the Wi-Fi hotspot,
users are able to conveniently connect their computers
to the Internet, avoiding the need to carry cumbersome
cables. The wireless connection is secured by entering
the same passphrase on all devices.

While previously users were allowed to use any
passphrase in PSK setup, today systems propose pass-
words that should be both easily memorizable and
secure. A standard way to generate such passwords
is to combine words from a list of sufficient size with
random numbers in a suitable way. While this can
increase the entropy of the generated passphrase in
theory, it is unclear how secure this approach is in
practice.

In this report, we study the security of PSK based
authentication in the context of the mobile hotspot
feature of Apple iOS version 6 and below. We show that
the generation of default passwords in iOS is flawed.
We describe an attack to compromise Apple iOS mobile
hotspots within seconds to underline the practical
impact of the problem. Consequently, an attacker is
able to abuse the existing Internet connection or attack
any connected notebook from within the trusted local
network. Furthermore, even services running on the
smart device disclosing personal data might be accessed
via the hotspot connection and thus violating the

privacy of a smart device owner. We believe that other
mobile platforms are also affected by similar problems
and therefore conclude that more care should be taken
to create secure passwords in PSK scenarios.

A. Related Work

Within a few studies on password based authentica-
tion, system users were surveyed about their experi-
ences in dealing with passwords [2], [3]. Thereby,
the authors have identified a considerable number
of usability issues with password mechanisms and
concluded that the primary impact on password design
is memorability. Based on these results, Yan et al.
[4] investigated how to help users to choose strong
passwords. Therefore, they performed a controlled trial
on the effects of giving users different kinds of advice.
They have also confirmed that users have difficulties
remembering random passwords.

The literature on breaking WPA/WPA2 protected
wireless networks is relatively sparse. In 2008, Beck
and Tews described the first practical attack on WPA
protected networks, besides launching a dictionary
attack when a weak PSK is used [5]. This attack has
been improved by Tomcscany and Lueg [6] by using
not only data gathered from the 4-way handshake
but also some known-plaintexts. Although these weak-
nesses have demonstrated some minor weaknesses in
the WPA/WPA2 protocol, the most practical way of
breaking into a WPA secured wireless network today
is still attacking the PSK.

B. Contributions

Within this report we make the following contribu-
tions:
• We discuss the security issues that arise from the

usability/security trade-off in PSK authentication.
• We reveal serious security defects in the procedure

of generating default passwords in the mobile
hotspot feature of Apple iOS version 6 and below.
We describe an attack to compromise Apple iOS
mobile hotspots within seconds and introduce the
iOS app Hotspot Cracker to assist those attacks.

• We give suggestions on how to remedy this
problem and how to generate passwords that are
both usable and secure.

C. Roadmap

This report is structured as follows: In Section II,
we explain the idea behind our attack and provide
some relevant background information. Furthermore,

we outline the additional attack surface induced by
mobile hotspot features and discuss possible risks. The
results and attack details to compromise Apple iOS
based mobile hotspots are presented in Section III. We
conclude and discuss possible mitigations in Section V.

II. BACKGROUND

A. Wireless Security

Wireless networks provided by mobile hotspot so-
lutions are usually protected by security mechanisms
specified within the IEEE 802.11i [7] standard, which
is widely recognized as Wi-Fi Protected Access version 2
(WPA2). WPA2 supports two different authentication
mechanisms, either using a RADIUS server or a shared
key. In the context of mobile hotspots, authentication
and encryption is always based on a passphrase. This
passphrase is used to derive a pre-shared key (PSK)
using the Password-Based Key Derivation Function 2
(PBKDF2) [8]. However, the PSK itself is never used for
encryption purposes. Instead, the PSK is used within a 4-
way handshake to derive a hierarchy of temporary keys,
which are used for encryption and integrity checking
purposes. In more detail, during authentication the
PSK is used as a so-called Pairwise Master Key (PMK).
This PMK itself is never used for data encryption, but
to derive a temporary encryption key, the Pairwise
Transient Key (PTK). This key encloses several other
temporary keys which are used for data encryption
and for message authentication purposes. It should
be noted that all generated keys are only valid for
the lifetime of a single session and that generation of
those keys only relies on the PSK. This implies that the
security level of the whole mobile hotspot depends on
the quality of the passphrase.

Unlike the outdated security algorithm Wired Equiva-
lent Privacy (WEP), which suffers from subtle statistical
flaws and is known to be broken [9]–[12], the only
practical way to break into WPA2 protected networks
so far, is by attacking the PSK based authentication
mechanism. An attacker may attempt to discover a PSK
by systematically trying every possible combination of
letters, numbers and symbols until a correct passphrase
is identified (brute force). For this, an attacker needs
to capture a 4-way handshake between a Wi-Fi enabled
device and the mobile hotspot. Afterwards, brute force
or targeted dictionary attacks can be conducted to
determine the PSK within offline computations.

B. Apple iOS

iOS (previously iPhone OS) is an operating system
used on mobile devices by Apple. iOS is derived from
Apple’s desktop operating system OS X, which is mostly
based on Darwin. Darwin again is an open-source
operating system developed by Apple which consists
of several different software parts including BSD. The
core of the Darwin operating system is based on XNU,
a hybrid kernel that combines various parts of BSD and
the Mach microkernel. While some components of the
iOS kernel are open-source due to historical reasons,
the main parts of the iOS operating system are closed
and information on it is not publicly available.

The functionality of the iOS operating system can
be extended by applications (so-called apps), that
can be build using a software development kit (SDK)
based on Objective-C. In order to interact with the
operating system, iOS provides an extensive application
programming interface (API) organized in several
different abstraction layers: the Core OS layer, the
Core Services layer, the Media layer, and the Cocoa
Touch layer. While lower layers provide fundamental
system services on which all apps rely on, the higher-
level layers provide object-oriented abstractions for
lower-level constructs [13].

Most of the iOS system interfaces are provided in
special packages, so-called frameworks. A framework
consists of a dynamic shared library and corresponding
resources (such as header files). Frameworks provide
the relevant interfaces needed to build software for
the iOS platform. Basically, there are two types of
frameworks: public frameworks and private frameworks.
Public frameworks are those recommended by Apple to
built third-party apps. Private frameworks are intended
to be used only by iOS itself within its system apps.

In order to interact with the underlying kernel,
the IPC mechanism of the Mach kernel is used. This
mechanism is different from monolithic kernels as
messages are sent to a specific port provided by the
kernel (so-called Mach messages), instead of calling
kernel functionality via a system call or a trap.

C. Mobile Hotspot Attack Surface

When it comes to discussing the attack surface
of a smart device, its multiple connectivity options
are often named first [14], [15]. A smart device
provides plenty of wireless interfaces, like cellular
radios (GSM/CDMA/LTE), Wi-Fi, Bluetooth, NFC or
RFID. These aggregated communication abilities are
a unique characteristic of smart devices, compared to

ordinary desktop computers, and they increase the
attack surface in many different ways [16].

What has been neglected so far, is the ability of a
smart device to be turned into a mobile hotspot. The
purpose of this is to share a cellular data connection to
other Wi-Fi enabled devices. When the hotspot feature
is switched on, a software-based wireless access point
is started on the smart device. This access point allows
other wireless devices to connect using a pre-shared
key and forwards data packets to the Internet.

As these mobile hotspots are often used in public and
can be accessed by any surrounding devices, some new
hotspot-specific threats are arising, which are discussed
in the following.

1) Abuse of the Internet Connection: If a mobile
hotspot is compromised, an attacker will instantly
gain access to the existing Internet connection. This
poses a special risk, as the registered smartphone
holder is responsible for the exchanged data [17].
If a mobile hotspot is used to conduct any illegal
activities by a malicious party, a remote compromise can
hardly be proven, as no relevant log files are recorded.
Furthermore, most data plans are subjected to wide
restrictions: If a certain data volume is exceeded, the
bandwidth might either be reduced until the end of
the month or extra fees might be charged.

2) Exposed Services: Access to a mobile hotspot also
results in access to services running on a smart device.
There are different services, which might be exposed:

In the recent past, it became quite popular to transfer
files from a computer to a smart device, in order to
access them during travel. To make this procedure
more convenient, dedicated apps are often used to
turn a smart device into a wireless flash drive (like e.g.
AirDrive HD [18]). These apps usually provide services
to exchange files over the air using a web browser,
without requiring any cable-based synchronization.
Therefore, these file transfer apps spawn a HTTP
service, providing a web-based interface to upload
and manage personal data files. As these file sharing
services are bound to the wireless interface, they can
also be accessed through a mobile hotspot connection.
Consequently, any malicious party compromising a
mobile hotspot might also have access to those stored
files.

Furthermore, even system services are accessible
through a hotspot connection. During the process
of removing the restrictions of a mobile operating
system in order to install software not authorized
by the vendor (iOS Jailbreaking, Android Rooting),

often additional services are installed. For instance,
many jailbroken iOS devices provide remote access
via an unapproved Secure Shell daemon (SSHD). As
the well-known factory default password (alpine [19])
for the root user remains often unchanged, a smart
device might be compromised through a mobile hotspot
connection.

Furthermore, not only the smart device itself, but also
services running on the connected computers might
be attacked from within the trusted local network. If
any of the connected computers provide file-sharing
services, or have known vulnerabilities within outdated
operating system services, personal data might be
compromised.

3) Eavesdropping: Finally, an attacker might inter-
cept messages passing between connected devices
and the mobile hotspot using a man-in-the-middle
attack. As a cellular data connection is often considered
more trustworthy than any foreign wireless network
connection, mobile hotspot users might underestimate
the risk of eavesdropping.

III. THE PSK MECHANISM OF APPLE IOS HOTSPOTS

Within this section we describe our results of reverse
engineering Apple iOS based mobile hotspots. First,
we found out that hotspot default passwords consist
of 4 to 6 characters, followed by a four-digit number.
As this scheme enables only a very limited number
of possible password combinations, the limited search
space already makes the mobile hotspot feature of
Apple susceptible to brute force attacks on the WPA
handshake.

When having a closer look on the default passwords
of iOS mobile hotspots, it is noticeable that those
passwords do not only comply to the limited scheme
introduced above, but are also easily to remember
as familiar words are used. After retrieving several
hotspot passwords by manually resetting the hotspot
settings, we revealed a word list on the Internet, which
contained all our collected samples. This list consists
of around 52.500 entries and was originated from an
open-source Scrabble crossword game [20]. Using this
inofficial Scrabble word list within offline dictionary
attacks, we already had a 100% success rate of cracking
any arbitrary iOS hotspot default password1. However,
it still took us around 49 minutes to cycle over all

1There was no evidence indicating that Apple uses this Scrabble
word list to generate default passwords. As it will turn out later,
both Apple and the game developers might have referred to the
same base word list.

52.500 entries (∼525 mio. permutations according to
the 4 digit suffix) by cracking on a AMD Radeon HD
6990 GPU.

Thinking of a real-life scenario where, e.g., business
travelers should be attacked during their trip, that time
frame would have been excessively too long. For this
reason, we aimed to optimize the cracking procedure
in order to provide more realistic attacks.

Since our preliminary word list was not precise
enough and contained many entries, not complying
with the underlying password scheme, reduction of
the search space was our primary goal. Therefore, we
reverse engineered the relevant parts of the Apple iOS
operating system, to extract the exact word list which is
used during the iOS setup procedure to create hotspot
default passwords.

As most parts of the iOS operating system are
proprietary, we combined static and dynamic analysis
techniques to reverse engineer the iOS operating sys-
tem. Therefore, most of the reverse engineering effort
was spent on manually analyzing the ARM disassembly
of the relevant iOS frameworks. In addition, our static
analysis was supplemented by dynamic analysis using
the GNU Debugger.

Using those techniques, we determined that the offi-
cial Preferences system app is responsible for generating
default hotspot passwords during the first launch. We
found out, that every time a new hotspot password
is generated an English-language dictionary file is
accessed from the file system. Consequently, we moni-
tored all accesses to the file system by intercepting all
open() system calls to the iOS kernel and analyzed
the corresponding backtrace of the method calls that
caused this file access. Listing 1 shows an excerpt of the
relevant backtrace when the dictionary file is accessed.

Within one of the first steps, the method
generateDefaultPassword() of the
WifiPasswordController class triggers
the overall initialization (Frame #17 in Listing 1).
This method invokes a frontend method of the Apple
spell checking service, located in the UIKit framework.
The method suggestWordInLanguage() of
the class UITextChecker (Frame #16) is normally
used by Apple to enhance the user experience and to
predict user input. Whenever a user enters some text,
words are suggested appearing above the keyboard
based on the letters a user already typed in. This
method is re-used to generate easy pronounceable
hotspot passwords that can be easily remembered.
Next, the ProofReader framework, a private framework

and the core of the iOS spell checking service is
utilized to pick a single word in a specific length range
from this English-language dictionary file (Frames
#15 to #13). According to the relevant disassembly
output, only words in the length of 4 to 6 characters
are selected.

#0 0x36b26dc4 in open ()
...
#13 0x3076bd1e in -[AppleSpell

databaseConnectionForLanguage:] ()
#14 0x307d7bf4 in -[AppleSpell(Guessing)

spellServer:
suggestWordWithMinimumLength:
maximumLength:language:] ()

#15 0x3077be12 in -[AppleSpell
spellServer:
suggestWordWithLengthInRange:
language:] ()

#16 0x353fc342 in -[UITextChecker
suggestWordInLanguage:] ()

#17 0x33b1e874 in +[Wi-
FiPasswordController
generateDefaultPassword] ()

...
0x2fe5d6a4: "/System/Library/

PrivateFrameworks/ProofReader.
framework/English.lproj/Dictionary.
dat"

Listing 1: Stack backtrace while debugging the
Apple iOS Preferences app revealing that an English-
language spell checking dictionary is used to
generate hotspot default passwords.

During static analysis, we revealed that a four digit
random number is appended to the word picked from
the dictionary. Finally, the private MobileWiFi frame-
work is instrumented to deliver the newly generated
default password to the Wi-Fi daemon (wifid) using
a Mach message call. The wifid is responsible for
managing the Wi-Fi based connectivity and stores
the default password into the iOS keychain (Account:
AppleWi-FiInternetTetheringSSID). The password is
retrieved from the keychain, everytime the mobile
hotspot is switched on.

Although, we revealed the exact location of the
dictionary file, we were still not able to acquire the
relevant entries. As it turned out, the dictionary used
by Apple’s spell checking service is highly encoded and
copyrighted by Lernout & Hauspie Speech Products,
a former provider of speech and language technology
products. To not violate any copyright laws or licenses,
we avoided to reverse engineer the dictionary format.
Instead, we preferred a dynamic approach to retrieve
qualified words from the dictionary and to build up a

0 500 1000 1500

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

Wordlist Frequency Distribution

Wordlist Index

R
el

at
iv

e
F

re
qu

en
cy

 o
f O

cc
ur

en
ce

Fig. 1: Skewed Frequency Distribution: Words from the
Top 10 are ten times more likely selected to be used
as a default password than any other words.

hotspot cracking word list. We repeatedly invoked the
suggestWordInLanguage() method of the spell checking
framework (100 mio. times) and stored the derived
words in a database for further analysis.

As it turned out, the list of retrieved passwords
was stabilized after around 250.000 invocations of the
method above and only 1.842 different entries of that
dictionary are taken into consideration. Consequently,
any default password used within an arbitrary iOS
mobile hotspot, is based on one of these 1.842 different
words. This fact reduced the search space of our initial
brute force attack by more than 96% and thus increased
the overall cracking speed significantly. Compared to
∼525 mio. permutations at the beginning, the total
amount of possible candidates which have to be tried
out during a dictionary attack was reduced to ∼18.4
mio.

In addition, the process of selecting words from the
spell checking dictionary was found to be not random
at all, resulting in a skewed frequency distribution (see
Figure 1). Although we did not reverse engineer the
dictionary mechanism in detail, it seems that these
abnormalities are caused by inner optimizations in the
processing of the dictionary format.

Table I lists the most commonly used hotspot pass-
words ordered by their relative frequency of occurrence.
Our analysis has shown that words from this Top 10

Top 10 Word RF

1. suave 0.80%
2. subbed 0.76%
3. headed 0.61%
4. head 0.53%
5. header 0.50%
6. coal 0.41%
7. ohms 0.40%
8. coach 0.40%
9. reach 0.38%

10. macaws 0.29%

TABLE I: Top 10 of the most commonly used iOS
hotspot passwords ordered by relative frequency (RF)
of occurrence.

list are ten times more likely to be selected as a default
password than other words. This further speeds up the
attack, as we process our word list according to the
relative frequency of occurrence of a single word.

IV. ATTACKING IOS PSK AUTHENTICATION

Another well-known way to improve brute force
attacks, is to speed up the actual cracking process
and to increase the number of guesses per second by
using distributed cracking methods. Instead of using
only a single GPU, we balanced the cracking load on
several GPUs and compared the cracking times of each
cluster. As shown in Table II, a GPU cluster composed of
four AMD Radeon HD 7970 was able to cycle through
around 390.000 guesses per second. Using our reduced
and optimized search space, which consists of only
around 18.5 million (= 1.842 ·104) possible candidates,
such a GPU cluster will crack an arbitrary iOS hotspot
default password in less than 50 seconds.

A. Practical Attack Scenarios

To attack arbitrary hotspot users, an attacker simply
has to monitor the traffic and to wait for a wireless
client to connect to a mobile hotspot. To accelerate
the process, or to perform a targeted attack against a
specific hotspot, an attacker might deauthenticate an
existing wireless client. By forcing clients to reauthen-
ticate, the probability of capturing a WPA handshake is
increased. Within both attack types, iOS based hotspot
targets can be identified by their vendor-specific MAC
addresses.

The whole process of (1) identifying iOS targets, (2)
deauthenticating wireless clients, (3) capturing WPA

handshakes and (4) cracking the hotspot default pass-
word can be automated easily, using freely available
tools [21], [22]. To automate the process of word
list generation, we built the iOS app Hotspot Cracker
[23]. This app assists in generating an iOS hotspot
cracking word list, which might be used in subsequent
attacks on other hotspot users. The app also gives
explanations and hints on how to crack a captured WPA
handshake using well-known password crackers. Future
releases might also automate the process of capturing
and cracking hotspot passwords. As computing power
on smart devices is limited, one solution is to involve
online password cracking services like CloudCracker
[24], to crack hotspot passwords on-the-fly.

B. Brief Comparison to other Platforms

Other mobile platforms might be affected by these
deficits as well. Although, we did not analyze other
platforms in detail, spot-checks have revealed that
default passwords in Windows Phone 8 consist of
only 8-digit numbers. As this results in a search
space of 108 candidates, attacks on Windows-based
hotspot passwords might be practicable. Moreover,
while the official version of Android generates strong
passwords2, some vendors modified the Wi-Fi related
components utilized in their devices and weakened
the algorithm of generating default passwords. For
instance, some Android-based models of the smart-
phone and tablet manufacturer HTC are even shipped
with constant default passwords consisting of a static
string (1234567890) [26]. However, future studies will
be necessary to evaluate the security level of mobile
hotspots on other platforms in more detail.

V. COUNTERMEASURES AND CONCLUSION

As the mobile hotspot feature is probably most often
used while being on travel, on conferences, or hotel
stays, an attacker will only have a limited amount
of time to succeed in breaking into a mobile hotspot.
Therefore, a very limited cracking time frame is the
main requirement for such an attack to be practically
relevant. Taking our optimizations into consideration,
we are now able to show that it is possible for an
attacker to reveal a default password of an arbitrary
iOS hotspot user within seconds. For that to happen, an
attacker only needs to capture a WPA2 authentication

2The method setDefaultApConfiguration() within
the Android WifiApConfigStore class [25] is responsible
for creating random WPA2 passwords based on Java’s universally
unique identifiers (UUID).

GPUs Hardware Cycles per Second ACT

2x Nvidia Tesla C2075 46.600 3m 18s
1x AMD Radeon HD 6990 180.000 52s
4x AMD Radeon HD 7970 390.000 24s

TABLE II: Average cracking time (ACT) of an arbitrary iOS hotspot default password using different GPU clusters.

handshake and to crack the pre-shared key using our
optimized dictionary.

As it is always a good advice to replace initial
default passwords by user-defined strong and secure
passwords, this becomes particular relevant on mobile
hotspots passwords. Therefore, users of mobile hotspots,
especially of iOS-based mobile hotspots, are advised
to change their passwords. In addition, some mobile
platforms (like Apple iOS) display the number of
connected clients on the lock screen. Therefore, it is
a good advice to periodically check that screen for
any conspicuous activity. Finally, hotspot capabilities of
smart devices should be switched off every time when
they are no longer needed, to keep the overall attack
surface as minimal as possible.

Vendors of mobile hotspot solutions should improve
their way of generating initial default passwords.
System-generated passwords should be reasonably
long and should use a reasonably large character set.
Consequently, hotspot passwords should be composed
of completely random sequences of letters, numbers
and special characters. It can be neglected that in-
creased randomness could have a negative impact on
the memorability of the passwords. Particularly, in
the context of mobile hotspots there is no need to
create easily memorizable passwords. After a device has
been paired once by typing out the displayed hotspot
password, the entered credentials are usually cached
within the associating device and are re-used within
subsequent connections.

Summing up, the results of our analysis have shown
that the mobile hotspot feature of smart devices
increases the attack surface in several ways. As the
default password of an arbitrary iOS hotspot user can
be revealed within seconds, attacks on mobile hotspots
might have been underestimated in the past and might
be an attractive target in the future.

ACKNOWLEDGMENT

The authors would like to thank Tobias Klein (NESO
Security Labs GmbH), Simon Streicher (Heilbronn Uni-

versity) and Markus Troßbach (University of Heidel-
berg).

REFERENCES

[1] G. Miller, “The magical number seven, plus or minus two:
Some limits on our capacity for processing information,” The
psychological review, vol. 63, pp. 81–97, 1956.

[2] A. Adams and M. A. Sasse, “Users are not the enemy,”
Communications of the ACM, vol. 42, no. 12, pp. 40–46,
1999.

[3] M. A. Sasse, S. Brostoff, and D. Weirich, “Transforming the
weakest link - a human/computer interaction approach to
usable and effective security,” BT technology journal, vol. 19,
no. 3, pp. 122–131, 2001.

[4] J. Yan, A. Blackwell, R. Anderson, and A. Grant, “Password
memorability and security: Empirical results,” Security &
Privacy, IEEE, vol. 2, no. 5, pp. 25–31, 2004.

[5] E. Tews and M. Beck, “Practical attacks against WEP and
WPA,” in Proceedings of the second ACM conference on Wireless
network security. ACM, 2009, pp. 79–86.

[6] D. P. Tomcsanyi and L. Lueg, “CCMP known-plain-text attack,”
2010.

[7] IEEE, Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications, Amendment 6: Medium Access
Control (MAC) Security Enhancements (IEEE Std 802.11i-
2004), Institute of Electrical and Electronics Engineers, Inc.

[8] B. Kaliski, PKCS #5: Password-Based Cryptography Specifica-
tion Version 2.0(IETF RFC 2898), The Internet Society, Sep.
2000.

[9] S. R. Fluhrer, I. Mantin, and A. Shamir, “Weaknesses in the
Key Scheduling Algorithm of RC4,” in Revised Papers from
the 8th Annual International Workshop on Selected Areas in
Cryptography, ser. SAC ’01. London, UK, UK: Springer-Verlag,
2001, pp. 1–24.

[10] N. Cam-Winget, R. Housley, D. Wagner, and J. Walker,
“Security flaws in 802.11 data link protocols,” Communications
of the ACM, vol. 46, no. 5, pp. 35–39, 2003.

[11] A. Klein, “Attacks on the rc4 stream cipher,” Designs, Codes
and Cryptography, vol. 48, no. 3, pp. 269–286, 2008.

[12] A. Bittau, M. Handley, and J. Lackey, “The final nail in WEP’s
coffin,” in Security and Privacy, 2006 IEEE Symposium on.
IEEE, 2006, pp. 15–pp.

[13] iOS Technology Overview. [Online]. Available:
http://developer.apple.com/library/ios/#documentation/
Miscellaneous/Conceptual/iPhoneOSTechOverview/
Introduction/Introduction.html

[14] C. Guo, H. J. Wang, and W. Zhu, “Smart-phone attacks and
defenses,” in HotNets III, 2004.

[15] C. Miller, “Mobile attacks and defense,” Security & Privacy,
IEEE, vol. 9, no. 4, pp. 68–70, 2011.

[16] M. Becher, F. C. Freiling, J. Hoffmann, T. Holz, S. Uellenbeck,
and C. Wolf, “Mobile Security Catching Up?Revealing the
Nuts and Bolts of the Security of Mobile Devices,” 2011.

http://developer.apple.com/library/ios/#documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/Introduction/Introduction.html
http://developer.apple.com/library/ios/#documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/Introduction/Introduction.html
http://developer.apple.com/library/ios/#documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/Introduction/Introduction.html

[17] R. Hale, “Wi-Fi Liability: Potential Legal Risks in Accessing
and Operating Wireless Internet,” Santa Clara Computer and
High Technology Law Journal, vol. 21, p. 543, 2005.

[18] iOS App AirDrive HD, Version 1.6.0. [On-
line]. Available: https://itunes.apple.com/us/app/
airdrive-hd-wireless-flash/id484724740?mt=8

[19] iOS Default Root Password. [Online]. Available: http:
//cydia.saurik.com/password.html

[20] Scrabble Word List. [Online]. Available: http://www.
badgehungry.com/scrabble-word-list/

[21] J. Steube. Hashcat Advanced Password Recovery. [Online].
Available: http://hashcat.net/oclhashcat-plus/

[22] Aircrack-ng. [Online]. Available: http://www.aircrack-ng.
org/

[23] iOS App Hotspot Cracker. [Online]. Available: http:
//www1.cs.fau.de/hotspot/

[24] M. Marlinspike. (2013, Apr.) CloudCracker, an online
password cracking service. [Online]. Available: https:
//www.cloudcracker.com

[25] Google, Android Developer Documentation.
WifiApConfigStore class. [Online]. Available: https://android.
googlesource.com/platform/frameworks/base/+/master/
wifi/java/android/net/wifi/WifiApConfigStore.java

[26] Verizon. (2013, Apr.) Support Page on the Mobile
HotSpot Settings of some HTC Models. [Online].
Available: http://support.verizonwireless.com/clc/devices/
knowledge_base.html?id=35523

https://itunes.apple.com/us/app/airdrive-hd-wireless-flash/id484724740?mt=8
https://itunes.apple.com/us/app/airdrive-hd-wireless-flash/id484724740?mt=8
http://cydia.saurik.com/password.html
http://cydia.saurik.com/password.html
http://www.badgehungry.com/scrabble-word-list/
http://www.badgehungry.com/scrabble-word-list/
http://hashcat.net/oclhashcat-plus/
http://www.aircrack-ng.org/
http://www.aircrack-ng.org/
http://www1.cs.fau.de/hotspot/
http://www1.cs.fau.de/hotspot/
https://www.cloudcracker.com
https://www.cloudcracker.com
https://android.googlesource.com/platform/frameworks/base/+/master/wifi/java/android/net/wifi/WifiApConfigStore.java
https://android.googlesource.com/platform/frameworks/base/+/master/wifi/java/android/net/wifi/WifiApConfigStore.java
https://android.googlesource.com/platform/frameworks/base/+/master/wifi/java/android/net/wifi/WifiApConfigStore.java
http://support.verizonwireless.com/clc/devices/knowledge_base.html?id=35523
http://support.verizonwireless.com/clc/devices/knowledge_base.html?id=35523

	Introduction
	Related Work
	Contributions
	Roadmap

	Background
	Wireless Security
	Apple iOS
	Mobile Hotspot Attack Surface
	Abuse of the Internet Connection
	Exposed Services
	Eavesdropping

	The PSK Mechanism of Apple iOS Hotspots
	Attacking iOS PSK Authentication
	Practical Attack Scenarios
	Brief Comparison to other Platforms

	Countermeasures and Conclusion
	References

