

ProxBrute: Taking ProxCard Cloning to the
Next Level

Author:

Brad Antoniewicz
Managing Consultant

Foundstone Professional Services

2 www.foundstone.com | 1.877.91.FOUND

ProxBrute: Taking ProxCard Cloning to the Next Level

Introduction

In 2007 Chris Paget was working for IOActive when he decided to give a talk at Blackhat DC on cloning RFID

proximity badges, specifically covering HID ProxCard badges. Once HID Global, the makers of the ProxCard

badges, discovered this was about to happen, it was reported that HID Global threatened IOActive with a

lawsuit, forcing IOActive to disallow Paget from presenting. Although another researcher, Jonathan

Westhues, previously showed ways to clone similar tags using his “proxmark” device, Paget’s very public

attempt to raise the concern around the security of proximity cards was most effective. Since that time, it

became increasingly practical for anyone with an interest, to obtain the appropriate hardware required to

read and clone the ProxCard II badges. Today, HID Global offers a variety of proximity cards, with varying

levels of security, to be used to control physical access. Unfortunately, the ProxCard II still remains very

much a staple for most organizations and the threat it poses often goes unnoticed as a practical security

vulnerability.

This paper was written to further educate the reader and describe a newly implemented attack. Since much

of the information presented in this paper is already available in scattered forms on the Internet, the writer

assumes no responsibility.

Huge thanks go to Foundstone’s Chris Silvers for the motivation to write ProxBrute and the title suggestion!

Quick Introduction to RFID

Radio Frequency Identification (RFID) is a technology that facilitates tagging or identification via radio waves.

So rather than having to physically inspect a photo ID, UPC code, or insert a key into your card door, RFID

can be used to accomplish the same task, just in a little bit easier of a way. For every RFID system, you have

generally three components: the tag, the reader and the backend. The tag and the reader are pretty self

explanatory, while the backend is usually some sort of processing system which associates the value on the

tag (read by the reader) with something more applicable to what the actual object the tag is representing. In

some cases like physical access controls, the backend may also trigger an event such as opening the door

associated with the reader. In other implementations, the tag actually stores a value which is manipulated as

the tag interacts with the reader. This is important to note so that we don’t assume that the realm of RFID

should not be limited to simply reading a value and processing it on the backend.

3 www.foundstone.com | 1.877.91.FOUND

ProxBrute: Taking ProxCard Cloning to the Next Level

RFID generally operates in 3 frequency spectrums shown in the below table.

Name Frequency Distance

Low-Frequency (LF) 120kHz – 140kHz <3ft (Commonly under 1.5ft)

High-Frequency (HF) 13.56MHz <2.5ft (Commonly under 1.5ft)

Ultra-High-Frequency
(UHF)

860-960MHz (Regional) ~30ft

The spectrum that any specific tag/reader may operate in is defined by the specific standard used. Since

there are so many different use cases for RFID, many different standards exist, so it is important to identify

what standard the technology you’re looking at follows. In addition to the operating frequency, the standard

will also define a variety of other things, such as modulation, what data is stored on the tag, how the reader

queries the tag, etc. Some standards are public while others are proprietary, so identifying the standard used

by a specific tag (which may require some reverse engineering) can be a daunting task.

Tags

Tags are usually of most interest to an attacker since they are used as the identifier. In situations such as

retail inventory, this could be useful to change the price of an item or disable the anti-theft security

mechanism. In more enticing situations, by being able to clone a card, you can then assume the identity and

physical access authorizations of the holder.

Tag design and shape will vary from manufacturer to manufacturer but they always, at minimum, contain two

components: an antenna and a chip.

Figure 1: RFID Tag Design

4 www.foundstone.com | 1.877.91.FOUND

ProxBrute: Taking ProxCard Cloning to the Next Level

There are also three different types of RFID tags, described below.

Type Description

Active Uses a battery and automatically transmit

Passive No battery, requires reader to provide power and
provoke transmission

Battery Assisted Passive (BAP) Uses a battery, requires reader to provoke
transmission. Has greater range capabilities

When we think about RFID we generally think about passive tags. These tags enter the field of the reader

and then use that field for power in order to communicate back and forth with the reader.

Tools - Low-Frequency Readers/Simulators

In order to even get your feet wet with cloning the ProxCard II badge or playing with and RFID tags, you’ll

need a good reader. If you want the ability the clone, you’ll also need simulator. There are a couple different

devices out there, but the most popular for what we’ll be doing is the proxmark3.

proxmark3

http://www.proxmark3.com

The proxmark3 is a general all-around RFID testing device. It was originally created by Jonathan Westhues

(http://www.cq.cx/proxmark3.pl) and released under the terms of GPL. The nice thing about this is that if

you were so inclined, you could download the specifications and build your own! Unfortunately many people

don’t have the knowledge and/or drive to get involved in a project like that, and so to facilitate those people,

there is a way to buy a proxmark3 online! proxmark3.com sells an enhanced version of the Jonathan

Westhues’ original design, and for $399, one of these little devices can be yours!

The proxmark3 supports both HF and LF reading/simulation, plus a ton of other useful features if you

regularly need to identify, query, or otherwise “tinker” with RFID. The thing about the proxmark3, is that if

you’re not really interested in RFID, or you don’t have a decent level of technical skill, you’ll be spending a

decent amount of money to feel abandoned by unanswered forum posts and outdated wiki content.

ProxPick

http://www.proxpick.com

Not too long ago, Chris Paget gave another presentation about RFID and demonstrated a homegrown tool he

created and named the ProxPick. It seemed like a great idea, and even better, he said it would be offered for

5 www.foundstone.com | 1.877.91.FOUND

ProxBrute: Taking ProxCard Cloning to the Next Level

$50! However since then, the status of this project is unknown, and Chris’ last update (in 2009) was “it’s

coming soon!”

ProxClone

http://proxclone.com/reader_cloner.html

ProxClone.com was created by an enthusiast to document his/her experiences playing with RFID. On the site,

the author details instructions on how to create a proximity card reader/cloner for $30. Now the ProxBrute

firmware cannot be flashed to this device, but to implement the idea of ProxBrute is relatively easy to do, so

modifying ProxClone’s reader/cloner shouldn’t be too hard. The site also has a lot of great information

concerning a variety of RFID tags and their operations, so be sure to pay it a visit.

ProxCard II

The most popular card in commercial card access control systems is the HID ProxCard. Although known to be

flawed, they are still being deployed in new systems today. The passive card simply stores a 44bit value

which is read then sent to the backend systems which decides whether or not that value has access to the

specific door the tag was presented at. If it does, the system triggers the door to open and the card holder

gains access. This 44 bit value is split up in a number of different fields. The most important fields are the

facility or site code, and the actual card number. Figure 1 shows the breakdown of the 44bit value.

Figure 21: HID ProxCard II format

The facility/site code and card number are preset by the manufacturer, so when you place an order for the

new cards you have to specifically provide acceptable values/ranges for these fields.

Of this 44-bit value, only 26-bits are actually used to identify the card holder and so if you’re able to obtain

that value, then you’ll be able to impersonate that user. Additionally it should be noted that no

authentication, encryption, or any other real security mechanism is used to protect the card’s value or to

validate the card to the reader, all that’s there is a 26-bit value.

1 This image was taken from ProxClone.com (http://proxclone.com/pdfs/HID_format_example.pdf), so big
thanks go out to them.

6 www.foundstone.com | 1.877.91.FOUND

ProxBrute: Taking ProxCard Cloning to the Next Level

Cloning with the proxmark3

As previously mentioned, the proxmark3 is de facto tool for RFID tinkering (at the time of this writing), and

so we’ll be using the proxmark3 for everything discussed in this paper. It already has functionality which

facilitates HID ProxCard II cloning, however it is limited to just record and playback. ProxBrute (discussed

below) takes that functionality one step further by offering brute force capabilities as well.

Manual ProxCard II Cloning

The proxmark3 firmware supports ProxCard II natively through the lf hid fskdemod and lf hid sim

commands. By connecting to the proxmark3 and issuing lf hid fskdemod, as soon as a tag enters the

field of the antenna it will be read and displayed. When you press the button on the proxmark3, it’ll stop the

function. An example of this operation is provided below:

proxmark3> lf hid fskdemod

#db# TAG ID: 98139d7c32 (5432)

#db# TAG ID: 98139d7c32 (5432)

#db# TAG ID: 98139d7c32 (5432)

#db# Stopped

Then using the lf hid sim command, the user can have the proxmark3 transmit the tag captured by the

previous command. And just as before, by pressing the button will stop the function. An example of this

operation is provided below:

proxmark3> lf hid sim 98139d7c32

Emulating tag with ID 98139d7c32

#db# Stopped

Manual cloning can be a bit obvious (in a physical sense) considering the type of attack that is the topic of

this discussion. A proxmark3 developer who goes by the name samy created a function for standalone

cloning, where a computer would not need to be connected to the proxmark3.

Standalone ProxCard II Cloning

Power

The proxmark3 can be powered from any power source that will provide a mini-USB connection. A perfect fit

for the proxmark3 are those emergency cell phone chargers. You can charge one of these up and use it with

the proxmark3 (assuming the emergency cell phone charger provides a mini-USB connection).

7 www.foundstone.com | 1.877.91.FOUND

ProxBrute: Taking ProxCard Cloning to the Next Level

One battery pack recommendation that has been proven to work is the Kensington K33396US2

(http://us.kensington.com/html/15458.html).

Operation

The standalone mode is defined in the OS firmware, appmain.c under function SamyRun() (Thanks Samy!).

Basically the way it works is that when the proxmark3 is powered, if you hold down the button for about 2

seconds, it’ll enter standalone mode. If a computer running the proxmark3 client is connected, you’ll get

debugging information. Otherwise, you’ll need to use the proxmark3’s lights to identify what mode you’re in.

The overall operation of standalone mode is described in the below diagram. A normal clone would be:

1. Hold the button for 2 seconds to enter standalone mode, the red light with be lit indicating

memory slot 1 is selected.

2. Hold the button for another 2 seconds and now two red lights will be lit, this means the

proxmark3 is ready to read a tag and store it in memory slot 1. Once it reads a tag and stores it

in slot 1, it’ll go back to just one red light lit.

3. Press the button again and it’ll enter simulate mode where the tag that was just read is played. If

you hit the button again that’ll stop the simulation and move onto memory slot 2, indicated by

the orange light. Operation for slot 2 (orange light) is the same as slot 1 (red light).

Figure 3: Traditional Standalone mode operation

2 Another note of thanks goes to Chris Silvers for this one!

8 www.foundstone.com | 1.877.91.FOUND

ProxBrute: Taking ProxCard Cloning to the Next Level

ProxBrute

ProxBrute is simply a modification to the available firmware of the proxmark3. It enables functionality so that

one can capture a valid card and using the facility/site code from that card brute force another valid card

number. This can be used to vertically or horizontally elevate physical privileges. For instance, let’s say you’re

able to read one person’s card and have the ability to access a common area, but need to access a more

privileged area. You can use ProxBrute to read a user’s card, then brute force another valid tag ID. Or

perhaps you’re able to obtain a temporary card or previously disabled card. You can then use ProxBrute to

brute force a valid card tag ID using the facility/site code of the temporary or disabled card, and gain access.

Brute Forcing Approach

An important note is that ProxBrute does not attempt to brute force both the facility/site code and the card

number. Instead it starts with the value of a valid card, retrieves the facility/site code and decrements the

card number until it reaches 0x00000000. The reasoning behind this is that it will take a substantial amount

of time to brute force the entire key space. It is therefore likely you’ll have better luck when you already

know the facility/site code. The entire key space for the 26-bit facility/site code and card number is 2^8 *

2^18 or 67,108,864. It takes about 1 second per try so, you’re looking at standing in front of the door

causing a loud beeping sound every second for somewhere around 776 days (over 2 years) to try every

attempt. Granted, you don’t need to exhaust the entire key space, but it’s just a lot easier and likely when

you already know the site code.

That being said, it does not, by any means, mean brute forcing a valid card number and facility/site code is

impossible or totally impractical. When you purchase a new set of cards you’re asked to provide a facility/site

code and a starting number or range for the card numbers. This indicates that card numbers may be

sequential or based on some predictable algorithm. So let’s say card numbers are sequential starting at

0x00000001. If you guess every possible site ID, (256 possible values), with the card number 0x00000001,

you may be able to identify both the facility/site code and card number in the same guess, under 5 minutes.

Additionally, you could use a number of other approaches to deduce valid values while reducing the key

space. For instance, instead of guessing just one value for each site ID, you can guess maybe 10 – 20 (or

even 500) values spread out across possible values for the card number. If you land somewhere within the

sequential/predictable range of card numbers purchased, you’ve guessed successfully and gained access!

The algorithms that can be conjured up to help reduce the brute force time seem limitless and perhaps in the

later releases of ProxBrute, one or many of them will be implemented. Unfortunately, for the version timed

with this whitepaper (ProxBrute v0.3), the only method implemented requires prior access of a [once]

9 www.foundstone.com | 1.877.91.FOUND

ProxBrute: Taking ProxCard Cloning to the Next Level

working tag, containing a valid site/facility code. In practice, over the course of a number of different tests,

using the ProxBrute decrementing method, some “starting” tags would successfully guess multiple, valid tag

IDs in seconds, while others would take longer. On average though, I discovered that by standing with the

proxmark3 antenna in the field of the reader for about 5 minutes, I’d likely guess at least one valid tag ID.

Standalone Brute Forcing

Standalone brute forcing is similar to the default functionality within the proxmark3. However instead of

performing the same playback functionality on slot 2 as slot 1, when the orange light and green lights are lit,

the proxmark3 is in ProxBrute mode, meaning it is guessing card ID values using the same facility/site code

that was previously stored in slot 1 OR explicitly read and stored in slot 2. The method in which it guesses

card ID values is very simple, it just sequentially decrements the valid value by one and keeps trying until it

reaches an ID value of 0x00000000.

Figure 4: ProxBrute's standalone mode

NOTE: Keep in mind if a computer is powering the system via standalone mode you’ll get debugging

information via the proxmark3 client. This is really useful if you want to do something like, record successfully

brute forced tags for usage later on.

Here’s some output from a valid run with a computer connected.

Action Debug Output

Hold down button for 2 seconds –
Enter standalone mode – Lights
cycle colors, then Red LED

#db# Stand-alone mode! No PC necessary.

10 www.foundstone.com | 1.877.91.FOUND

ProxBrute: Taking ProxCard Cloning to the Next Level

becomes lit (Slot 1 selected)

(Red lit) Hold down button for 2
seconds – Enter Record mode –
Two Red LEDs become lit, after
successful read, tag is stored in
slot 1 and slot 2, and only one Red
LED is lit

#db# Starting recording

#db# TAG ID: 98139d7c32 (5432)

#db# Recorded 98139d7c32

#db# [ProxBrute] In Mode Red, Copying read tag to

Orange

(Red Lit) Press button – Briefly
enter play mode - Red and Green
LEDs become lit.

#db# Playing

#db# Red is lit, not entering ProxBrute Mode

#db# 98139d7c32

(Red Lit + Green Lit) Press Button
– Slot 2 Selected – Orange
becomes Lit

#db# Done playing

(Orange lit) Press button – Enter
ProxBrute mode, using previously
recorded tag in slot 1, Orange and
Green are lit – Button is held down
to stop and exit, then no lights are
lit

#db# Playing

#db# Entering ProxBrute Mode

#db# brad a. - foundstone

#db# Current Tag: Selected = 1 Facility = 00000098 ID

#db# Trying Facility = 00000098 ID 139d7c32

#db# Stopped

#db# Trying Facility = 00000098 ID 139d7c31

#db# Stopped

#db# Trying Facility = 00000098 ID 139d7c30

#db# Stopped

#db# Told to Stop

#db# Exiting

proxmark3>

Source Code

The source code for ProxBrute is incredibly simple. Original functions were duplicated so that no other

functionality would be unintentionally affected.

ProxBrute functionality is enabled by reflashing your proxmark3 with the ProxBrute OS firmware. The

ProxBrute OS firmware is just a fancy name for the modified version of the Winter’10 release (SVN revision

465) that has been patched. The patch is available via the proxbrute-bundle which contains the patch, the

pre-compiled ProxBrute OS firmware, and Linux client utilities compiled on BackTrack Linux 4.

Source code is available at http://www.mcafee.com/us/downloads/free-tools/proxbrute.aspx or more

specifically at http://downloadcenter.mcafee.com/products/tools/foundstone/proxbrute-bundle-v0.3.tar.gz.

Compiling

Within this paper, we’re dealing specifically with revision 465 from the proxmark3 trunk. The proxmark3

(bootloader, fpga, and os) was first flashed with the Winter ’10 release, then modifications were made to the

OS image from revision 465 and then the proxmark3’s OS was reflashed. During testing I observed

11 www.foundstone.com | 1.877.91.FOUND

ProxBrute: Taking ProxCard Cloning to the Next Level

unpredictable results within Windows, so I’d highly recommend just booting into Backtrack to set up you’re

build environment.

Install all the required packages:

sudo apt-get install build-essential libreadline5 libreadline-dev libusb-0.1-4

libusb-dev libqt4-dev perl pkg-config

Check out revision 465:

svn co –r 465 h ttp://proxmark3.googlecode.com/svn/trunk proxmark3-r465

Download devkitARM (http://sourceforge.net/projects/devkitpro/files/devkitARM/) and extract. Then adjust

your PATH to point to the appropriate location of the extracted devkitARM.

export PATH=${PATH}:/root/devkitARM/bin

Patch the source to enable ProxBrute functionality:

cd proxmark3-r465

patch –p1 < ../proxbrute-bundle-v0.3/proxbrute-v0.3.patch

Your output should be this:

patching file armsrc/appmain.c

patching file armsrc/apps.h

patching file armsrc/lfops.c

patching file armsrc/version.c

To compile just:

cd armsrc

make

Flashing

12 www.foundstone.com | 1.877.91.FOUND

ProxBrute: Taking ProxCard Cloning to the Next Level

The proxbrute-bundle was created so that you could boot up BackTrack 4, extract the bundle and flash the

proxmark3 with the proxbrute firmware. However, some may want to compile everything from source, so

there is additional information listed here.

If building everything from source, you may have to recompile the flasher and the proxmark3 client to do

that:

cd ../client

make clean

make

Then to flash just:

./flasher ../armsrc/obj/osimage.elf

Or if you just downloaded the proxbrute-bundle with the pre-compiled image in it, you can use this

command:

/path/to/bundle/client/flasher /path/to/bundle/osimage-proxbrute-v0.3.elf

Here’s the example output of the flashing process:

client/flasher osimage-proxbrute-v0.3.elf

Loading ELF file 'osimage-proxbrute-v0.3.elf'...

Loading usable ELF segments:

1: V 0x00110000 P 0x00110000 (0x0000bc44->0x0000bc44) [R X] @0xb8

2: V 0x00200000 P 0x0011bc44 (0x00000d68->0x00000d68) [RWX] @0xbd00

Note: Extending previous segment from 0xbc44 to 0xc9ac bytes

Waiting for Proxmark to appear on USB..........

Connected units:

 1. SN: ChangeMe [006/013]

 Found.

Entering bootloader...

(Press and release the button only to abort)

Waiting for Proxmark to reappear on USB....

Connected units:

 1. SN: ? [006/014]

 Found.

Flashing...

Writing segments for file: osimage-proxbrute-v0.3.elf

13 www.foundstone.com | 1.877.91.FOUND

ProxBrute: Taking ProxCard Cloning to the Next Level

 0x00110000..0x0011c9ab [0xc9ac / 202 blocks].................................

..

..

............. OK

Resetting hardware...

All done.

Have a nice day!

All done! Now go forth and educate!

Conclusion

The design of the ProxCard II (and other, similar proximity cards) is significantly flawed, which not only

facilitates cloning, but other more serious attacks. ProxBrute aims to demonstrate the risks associated with

implementing this type of proximity card system, and hopes to further highlight the fact that these systems

should no longer be installed. HID offers a number of different secure proximity card systems which have

since been developed to correct the issues found in the ProxCard II. Unlike the ProxCard II, many of the

newer system design specifications are publically available and have been reviewed by the community to

ensure a secure design. Unfortunately however, the ProxCard II is still widely implemented and the threats to

these systems are relatively unknown to those outside of the hacking community.

14 www.foundstone.com | 1.877.91.FOUND

ProxBrute: Taking ProxCard Cloning to the Next Level

About the Author

Based out of Foundstone’s New York office, Brad is a Managing Consultant focusing on internal/external

penetration testing, web application penetration testing, firewall configuration reviews, network architecture

reviews, and 802.11 wireless assessments. Brad is a contributing author to the sixth edition of Hacking

Exposed and the second edition of Hacking Exposed: Wireless. He has authored articles and white papers

such as 802.11 Attacks, Defeating the iPhone Passcode and Java Basics - Extracting Decompiling,

Recompiling, and Signing. He has developed a variety of different hacking tools such as “FreeRADIUS-WPE”,

and multiple internal Foundstone testing tools. Brad is also involved in security research and is an active

member of Foundstone internal vulnerability discovery team which focuses on finding flaws in popular

software.

About Foundstone Professional Services

Foundstone® Professional Services, a division of McAfee. Inc. offers expert services and education to help

organizations continuously and measurably protect their most important assets from the most critical threats.

Through a strategic approach to security, Foundstone identifies and implements the right balance of

technology, people, and process to manage digital risk and leverage security investments more effectively.

The company’s professional services team consists of recognized security experts and authors with broad

security experience with multinational corporations, the public sector, and the US military.

