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Android:  What is it?

● Linux-based software stack for mobile devices.
● Very divergent from typical Linux.

● Almost everything above the kernel is different.
– Dalvik VM, application frameworks
– bionic C library, system daemons
– init, ueventd

● Even the kernel is different.
– Unique subsystems/drivers: Binder, Ashmem, ...
– Hardcoded security checks.
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Binder & Ashmem

● Android-specific mechanisms for IPC and 
shared memory.

● Binder
● Primary IPC mechanism.
● Inspired by BeOS/Palm OpenBinder.

● Ashmem
● Shared memory mechanism.
● Designed to overcome limitations of existing shared 

memory mechanisms in Linux (debatable).
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Android Security Model

● Application-level permissions model.
● Controls access to app components.
● Controls access to system resources.
● Specified by the app writers and seen by the users.

● Kernel-level sandboxing and isolation.
● Isolate apps from each other and the system.
● Prevent bypass of application-level controls.
● Relies on Linux discretionary access control (DAC).
● Normally invisible to the users and app writers.
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Discretionary Access Control (DAC)

● Typical form of access control in Linux.
● Access to data is entirely at the discretion of the 

owner/creator of the data.
● Some processes (e.g. uid 0) can override and 

some objects (e.g. sockets) are unchecked.
● Based on user & group identity.
● Limited granularity, coarse-grained privilege.
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Android & DAC

● Restrict use of system facilities by apps.
● e.g. bluetooth, network, storage access
● requires kernel modifications, “special” group IDs

● Isolate apps from each other.
● unique user and group ID per installed app
● assigned to app processes and files

● Hardcoded, scattered “policy”.
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SELinux:  What is it?

● Mandatory Access Control (MAC) for Linux.
● Defines and enforces a system-wide security policy.
● Over all processes, objects, and operations.
● Based on security labels.

● Can confine flawed and malicious applications.
● Even ones that run as “root” / uid 0.

● Can prevent privilege escalation.
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How can SELinux help Android?

● Confine privileged daemons.
● Protect them from misuse.
● Limit the damage that can be done via them.

● Sandbox and isolate apps.
● Strongly separate apps from each other and from 

the system.
● Prevent privilege escalation by apps.

● Provide centralized, analyzable policy.
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What can't SELinux protect against?

● Kernel vulnerabilities, in general.
● Although it may block exploitation of specific 

vulnerabilities.  We'll see an example later.
● Other kernel hardening measures (e.g. grsecurity) 

can be used in combination with SELinux.

● Anything allowed by the security policy.
● Good policy is important.
● Application architecture matters.

– Decomposition, least privilege.
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SE Android: Goals

● Improve our understanding of Android security.
● Integrate SELinux into Android in a 

comprehensive and coherent manner.
● Demonstrate useful security functionality in 

Android using SELinux.
● Improve the suitability of SELinux for Android.
● Identify other security gaps in Android that need 

to be addressed.
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Enabling SELinux in Android: 
Challenges

● Kernel
● No support for per-file security labeling (yaffs2).
● Unique kernel subsystems lack SELinux support.

● Userspace
● No existing SELinux support.
● All apps forked from the same process (zygote).
● Sharing through framework services.

● Policy
● Existing policies unsuited to Android.
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Enabling SELinux in Android: Kernel

● Implemented per-file security labeling for yaffs2.
● Using recent support for extended attributes (xattr).
● Enhanced to label new inodes at creation.

● Analyzed and instrumented Binder for SELinux.
● Permission checks on IPC operations.
● Sender security label information.

● To Do:
● Study and (if needed) instrument other Android-

specific kernel subsystems (e.g. ashmem).
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Enabling SELinux in Android: 
SELinux Libraries/Tools

● Ported minimal subset of libselinux to Android.
● Added xattr syscalls to bionic.
● Removed glibc-isms from libselinux.

● Other libraries not required on the device.
● Policy can be built offline.

● Specific tools ported as needed.
● init built-in commands for use by init.rc
● toolbox extensions for use from shell
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Enabling SELinux in Android: Build 
Tools

● Filesystem images generated using special 
purpose tools.
● mkyaffs2image, make_ext4fs
● no support for extended attributes / security labels

● Modified tools to label files in images.
● required understanding on-disk format
● used to generate labeled /system, /data partitions 
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Enabling SELinux in Android: init

● init / ueventd
● load policy, set enforcing mode, set context
● label sockets, devices, runtime files

● init.rc
● setcon, restorecon commands
● seclabel option
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Enabling SELinux in Android: 
Zygote & Installd

● zygote
● Modified to set SELinux security context for apps.
● Maps DAC credentials to a security context.

● installd
● Modified to label app data directories. 

● To Do:
● Generalize assignment of security contexts.
● Augment existing policy checks with SELinux 

permission checks. 
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Enabling SELinux in Android: Policy

● Confined domains for system daemons.
● Only kernel and init are unconfined.

● Parallel existing Android DAC model for apps.
● Use domains to represent system permissions.
● Use categories to isolate apps.

● Benefits:
● Small, fixed policy.
● No policy writing for app writers.
● Normally invisible to users.
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Enabling SELinux in Android: 
Current State

● Basic working prototype
● on the Android emulator
● on the Nexus S

● Kernel, userspace, and policy support
● Capable of enforcing (some) security goals.
● Still a long way from a complete solution.

● But let's see how well it does...
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Case Study: vold

● vold - Android volume daemon
● Runs as root.
● Manages mounting of disk volumes.
● Receives netlink messages from the kernel.

● CVE-2011-1823
● Does not verify that message came from kernel.
● Uses signed integer from message as array index 

without checking for < 0.

● Demonstrated by the Gingerbreak exploit.
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GingerBreak: Overview

● Collect information needed for exploitation.
● Identify the vold process.
● Identify addresses and values of interest.

● Send carefully crafted netlink message to vold.
● Trigger execution of exploit binary.
● Create a setuid-root shell.

● Execute setuid-root shell.
● Got root!
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GingerBreak: Collecting Information

● Identify the vold process.
● /proc/net/netlink to find netlink socket users.
● /proc/pid/cmdline to find vold PID.

● Identify addresses and values of interest.
● /system/bin/vold to obtain GOT address range.
● /system/lib/libc.so to find “system” address.
● /etc/vold.fstab to find valid device name
● logcat to obtain fault address in vold.
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GingerBreak: Would SELinux help?

● Let's walk through it again with our SELinux-
enabled Android.

● Using the initial example policy we developed.
● Before we read about this vulnerability and exploit.
● Just based on normal Android operation and policy 

development.
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GingerBreak vs SELinux #1

● Identify the vold process.
● /proc/net/netlink allowed by policy
● /proc/pid/cmdline of other domains denied by policy

● Existing exploit would fail here.
● Let's assume exploit writer recodes it based on 

prior knowledge of target or some other means.
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GingerBreak vs SELinux #2

● Identify addresses and values of interest.
● /system/bin/vold denied by policy.
● /system/lib/libc.so allowed by policy.
● /etc/vold.fstab allowed by policy
● /dev/log/main denied by policy.

● Existing exploit would fail here.
● Let's assume that exploit writer recodes exploit 

based on prior knowledge of target.  
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GingerBreak vs SELinux #3

● Send netlink message to vold process.
● netlink socket create denied by policy

● Existing exploit would fail here.
● No way around this one - vulnerability can't be 

reached.
● Let's give the exploit writer a fighting chance 

and allow this permission.
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GingerBreak vs SELinux #4

● Trigger execution of exploit code by vold.
● execute of non-system binary denied by policy

● Existing exploit would fail here.
● Let's assume exploit writer recodes exploit to 

directly inject code or use ROP to avoid 
executing a separate binary.
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GingerBreak vs SELinux #5

● Create a setuid-root shell.
● remount of /data denied by policy
● chown/chmod of file denied by policy

● Existing exploit would fail here.
● Let's give the exploit writer a fighting chance 

and allow these permissions. 
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GingerBreak vs SELinux #6

● Execute setuid-root shell.
● SELinux security context doesn't change.
● Still limited to same set of permissions.
● No superuser capabilities allowed.

● Exploit “succeeded”, but didn't gain anything.
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GingerBreak vs SELinux:  
Conclusion

● SELinux would have stopped the exploit six 
different ways.

● SELinux would have forced the exploit writer to 
tailor the exploit to the target.

● SELinux made the underlying vulnerability 
completely unreachable.
● And all vulnerabilities of the same type.
● Other vulnerabilities of the same type have been 

found, e.g. ueventd.



  30

Case Study: ueventd

● ueventd - Android udev equivalent
● Runs as root
● Manages /dev directory
● Receives netlink messages from the kernel

● Same vulnerability as CVE-2009-1185 for udev.
● Does not verify message came from kernel.

● Demonstrated by the Exploid exploit.
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Exploid vs SELinux

● Similar to GingerBreak scenario.
● Exploit would be completely blocked in at least 

two ways by SELinux:
● creation/use of netlink socket by exploit
● write to /proc/sys/kernel/hotplug by ueventd

● Vulnerability can't be reached.
● Exploit code can't be invoked with privilege.
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Case Study: adbd

● adbd - Android debug bridge daemon
● Runs as root
● Provides debug interface
● Switches to shell UID and executes shell.

● Does not check/handle setuid() failure.
● Can lead to a shell running as root.

● Demonstrated by RageAgainstTheCage.
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RageAgainstTheCage: Overview

● Look up adbd process in /proc.
● Fork self repeatedly to reach RLIMIT_NPROC 

for shell identity.
● Re-start adbd.
● adbd setuid() call fails.
● shell runs as root.
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RageAgainstTheCage vs SELinux

● Look up and restart of adbd.
● read /proc/pid/cmdline denied by policy
● signal adbd denied by policy

● adbd setuid() would still fail.
● Security context changes upon exec of shell.
● Shell runs in unprivileged security context.

● No superuser capabilities.
● No privilege escalation achieved.
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Case Study: zygote

● zygote - Android app spawner
● Runs as root.
● Receives requests to spawn apps over a socket.
● Uses setuid() to switch to app UID.

● Does not check/handle setuid() failure.
● Can lead to app running as root.

● Demonstrated by Zimperlich exploit.
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Zimperlich: Overview

● Fork self repeatedly to reach RLIMIT_NPROC 
for app UID.

● Spawn app component via zygote. 
● Zygote setuid() call fails.
● App runs with root UID.

● Re-mounts /system read-write.
● Creates setuid-root shell in /system.
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Zimperlich vs SELinux

● Similar to RageAgainstTheCage scenario.
● zygote setuid() would still fail.
● Security context changes upon setcon().

● Not affected by RLIMIT_NPROC. 

● App runs in unprivileged security context.
● No superuser capabilities.
● No privilege escalation.



  38

Case Study: ashmem

● ashmem - anonymous shared memory
● Android-specific kernel subsystem
● Used by init to implement shared mapping for 

system property space.

● CVE-2011-1149
● Does not restrict changes to memory protections.
● Actually two separate vulnerabilities in ashmem.

● Demonstrated by KillingInTheNameOf and 
psneuter exploits.
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KillingInTheNameOf: Overview

● Change protections of system property space to 
allow writing.

● Modify ro.secure property value.
● Re-start adbd.
● Root shell via adb.
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KillingInTheNameOf vs SELinux

● Changing memory protections of system 
property space.
● performed via mprotect, already controlled by 

SELinux.
● denied write to tmpfs by policy

● Exploit blocked.
● Before it can do any harm.
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psneuter: Overview

● Set protection mask to 0 (no access) on 
property space.

● Re-start adbd.
● adbd cannot read property space.
● Defaults to non-secure operation.
● Root shell via adb.
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psneuter vs SELinux

● Set protection mask to 0 on property space.
● ashmem-specific ioctl, not specifically controlled 

(yet) by SELinux
● therefore allowed

● Re-start adbd.
● read of /proc/pid/cmdline denied by policy. 
● signal to adbd denied by policy.

● Exploit blocked, but protection mask modified.
● Points to need to instrument ashmem for SELinux.
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Case Study: Skype for Android

● Skype app for Android.
● CVE-2011-1717

● Stores sensitive user data without encryption with 
world readable permissions.
– account balance, DOB, home address, contacts, chat 

logs, ...

● Any other app on the phone could read the user 
data.
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SELinux vs Skype vulnerability

● Classic example of DAC vs. MAC.
● DAC: Permissions are left to the discretion of each 

application.
● MAC: Permissions are defined by the administrator 

and enforced for all applications.

● All apps denied read to files created by other 
apps.
● Each app and its files have a unique SELinux 

category set.
● App has no control over the categories on its files.
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Was the Skype vulnerability an 
isolated incident?

● Lookout Mobile Security
● Symantec Norton Mobile Security
● Wells Fargo Mobile app
● Bank of America app
● USAA banking app
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Application Layer Security

● So far we're only dealing with the kernel level 
access controls.

● To fully control the apps, we need SELinux 
integration with the application layer access 
controls.

● Requires further study of the existing Android 
security model.

● Requires SELinux instrumentation of the 
application frameworks.
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SELinux & App Layer Security

● SELinux provides interfaces for application 
layer access control enforcement.
● Extends security model to higher level objects and 

operations.
● Provides same benefits of centralized, analyzable 

policy for system.
● Provides infrastructure for caching, revocation, etc.

● Already leveraged by a number of applications, 
including Xorg, D-BUS, Postgres.
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Conclusion

● Android security would benefit from SELinux.
● In general, Android needs MAC.
● In practice, SELinux would have stopped a number 

of published exploits for Android.

● There is still a lot of work to do to bring full 
SELinux enablement to Android.

● Get Involved!
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Questions?

● Email: sds@tycho.nsa.gov
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