
 1

The Case for SE Android

Stephen Smalley
sds@tycho.nsa.gov

Trust Mechanisms (R2X)
National Security Agency

 2

Android: What is it?

● Linux-based software stack for mobile devices.
● Very divergent from typical Linux.

● Almost everything above the kernel is different.
– Dalvik VM, application frameworks
– bionic C library, system daemons
– init, ueventd

● Even the kernel is different.
– Unique subsystems/drivers: Binder, Ashmem, ...
– Hardcoded security checks.

 3

Binder & Ashmem

● Android-specific mechanisms for IPC and
shared memory.

● Binder
● Primary IPC mechanism.
● Inspired by BeOS/Palm OpenBinder.

● Ashmem
● Shared memory mechanism.
● Designed to overcome limitations of existing shared

memory mechanisms in Linux (debatable).

 4

Android Security Model

● Application-level permissions model.
● Controls access to app components.
● Controls access to system resources.
● Specified by the app writers and seen by the users.

● Kernel-level sandboxing and isolation.
● Isolate apps from each other and the system.
● Prevent bypass of application-level controls.
● Relies on Linux discretionary access control (DAC).
● Normally invisible to the users and app writers.

 5

Discretionary Access Control (DAC)

● Typical form of access control in Linux.
● Access to data is entirely at the discretion of the

owner/creator of the data.
● Some processes (e.g. uid 0) can override and

some objects (e.g. sockets) are unchecked.
● Based on user & group identity.
● Limited granularity, coarse-grained privilege.

 6

Android & DAC

● Restrict use of system facilities by apps.
● e.g. bluetooth, network, storage access
● requires kernel modifications, “special” group IDs

● Isolate apps from each other.
● unique user and group ID per installed app
● assigned to app processes and files

● Hardcoded, scattered “policy”.

 7

SELinux: What is it?

● Mandatory Access Control (MAC) for Linux.
● Defines and enforces a system-wide security policy.
● Over all processes, objects, and operations.
● Based on security labels.

● Can confine flawed and malicious applications.
● Even ones that run as “root” / uid 0.

● Can prevent privilege escalation.

 8

How can SELinux help Android?

● Confine privileged daemons.
● Protect them from misuse.
● Limit the damage that can be done via them.

● Sandbox and isolate apps.
● Strongly separate apps from each other and from

the system.
● Prevent privilege escalation by apps.

● Provide centralized, analyzable policy.

 9

What can't SELinux protect against?

● Kernel vulnerabilities, in general.
● Although it may block exploitation of specific

vulnerabilities. We'll see an example later.
● Other kernel hardening measures (e.g. grsecurity)

can be used in combination with SELinux.

● Anything allowed by the security policy.
● Good policy is important.
● Application architecture matters.

– Decomposition, least privilege.

 10

SE Android: Goals

● Improve our understanding of Android security.
● Integrate SELinux into Android in a

comprehensive and coherent manner.
● Demonstrate useful security functionality in

Android using SELinux.
● Improve the suitability of SELinux for Android.
● Identify other security gaps in Android that need

to be addressed.

 11

Enabling SELinux in Android:
Challenges

● Kernel
● No support for per-file security labeling (yaffs2).
● Unique kernel subsystems lack SELinux support.

● Userspace
● No existing SELinux support.
● All apps forked from the same process (zygote).
● Sharing through framework services.

● Policy
● Existing policies unsuited to Android.

 12

Enabling SELinux in Android: Kernel

● Implemented per-file security labeling for yaffs2.
● Using recent support for extended attributes (xattr).
● Enhanced to label new inodes at creation.

● Analyzed and instrumented Binder for SELinux.
● Permission checks on IPC operations.
● Sender security label information.

● To Do:
● Study and (if needed) instrument other Android-

specific kernel subsystems (e.g. ashmem).

 13

Enabling SELinux in Android:
SELinux Libraries/Tools

● Ported minimal subset of libselinux to Android.
● Added xattr syscalls to bionic.
● Removed glibc-isms from libselinux.

● Other libraries not required on the device.
● Policy can be built offline.

● Specific tools ported as needed.
● init built-in commands for use by init.rc
● toolbox extensions for use from shell

 14

Enabling SELinux in Android: Build
Tools

● Filesystem images generated using special
purpose tools.
● mkyaffs2image, make_ext4fs
● no support for extended attributes / security labels

● Modified tools to label files in images.
● required understanding on-disk format
● used to generate labeled /system, /data partitions

 15

Enabling SELinux in Android: init

● init / ueventd
● load policy, set enforcing mode, set context
● label sockets, devices, runtime files

● init.rc
● setcon, restorecon commands
● seclabel option

 16

Enabling SELinux in Android:
Zygote & Installd

● zygote
● Modified to set SELinux security context for apps.
● Maps DAC credentials to a security context.

● installd
● Modified to label app data directories.

● To Do:
● Generalize assignment of security contexts.
● Augment existing policy checks with SELinux

permission checks.

 17

Enabling SELinux in Android: Policy

● Confined domains for system daemons.
● Only kernel and init are unconfined.

● Parallel existing Android DAC model for apps.
● Use domains to represent system permissions.
● Use categories to isolate apps.

● Benefits:
● Small, fixed policy.
● No policy writing for app writers.
● Normally invisible to users.

 18

Enabling SELinux in Android:
Current State

● Basic working prototype
● on the Android emulator
● on the Nexus S

● Kernel, userspace, and policy support
● Capable of enforcing (some) security goals.
● Still a long way from a complete solution.

● But let's see how well it does...

 19

Case Study: vold

● vold - Android volume daemon
● Runs as root.
● Manages mounting of disk volumes.
● Receives netlink messages from the kernel.

● CVE-2011-1823
● Does not verify that message came from kernel.
● Uses signed integer from message as array index

without checking for < 0.

● Demonstrated by the Gingerbreak exploit.

 20

GingerBreak: Overview

● Collect information needed for exploitation.
● Identify the vold process.
● Identify addresses and values of interest.

● Send carefully crafted netlink message to vold.
● Trigger execution of exploit binary.
● Create a setuid-root shell.

● Execute setuid-root shell.
● Got root!

 21

GingerBreak: Collecting Information

● Identify the vold process.
● /proc/net/netlink to find netlink socket users.
● /proc/pid/cmdline to find vold PID.

● Identify addresses and values of interest.
● /system/bin/vold to obtain GOT address range.
● /system/lib/libc.so to find “system” address.
● /etc/vold.fstab to find valid device name
● logcat to obtain fault address in vold.

 22

GingerBreak: Would SELinux help?

● Let's walk through it again with our SELinux-
enabled Android.

● Using the initial example policy we developed.
● Before we read about this vulnerability and exploit.
● Just based on normal Android operation and policy

development.

 23

GingerBreak vs SELinux #1

● Identify the vold process.
● /proc/net/netlink allowed by policy
● /proc/pid/cmdline of other domains denied by policy

● Existing exploit would fail here.
● Let's assume exploit writer recodes it based on

prior knowledge of target or some other means.

 24

GingerBreak vs SELinux #2

● Identify addresses and values of interest.
● /system/bin/vold denied by policy.
● /system/lib/libc.so allowed by policy.
● /etc/vold.fstab allowed by policy
● /dev/log/main denied by policy.

● Existing exploit would fail here.
● Let's assume that exploit writer recodes exploit

based on prior knowledge of target.

 25

GingerBreak vs SELinux #3

● Send netlink message to vold process.
● netlink socket create denied by policy

● Existing exploit would fail here.
● No way around this one - vulnerability can't be

reached.
● Let's give the exploit writer a fighting chance

and allow this permission.

 26

GingerBreak vs SELinux #4

● Trigger execution of exploit code by vold.
● execute of non-system binary denied by policy

● Existing exploit would fail here.
● Let's assume exploit writer recodes exploit to

directly inject code or use ROP to avoid
executing a separate binary.

 27

GingerBreak vs SELinux #5

● Create a setuid-root shell.
● remount of /data denied by policy
● chown/chmod of file denied by policy

● Existing exploit would fail here.
● Let's give the exploit writer a fighting chance

and allow these permissions.

 28

GingerBreak vs SELinux #6

● Execute setuid-root shell.
● SELinux security context doesn't change.
● Still limited to same set of permissions.
● No superuser capabilities allowed.

● Exploit “succeeded”, but didn't gain anything.

 29

GingerBreak vs SELinux:
Conclusion

● SELinux would have stopped the exploit six
different ways.

● SELinux would have forced the exploit writer to
tailor the exploit to the target.

● SELinux made the underlying vulnerability
completely unreachable.
● And all vulnerabilities of the same type.
● Other vulnerabilities of the same type have been

found, e.g. ueventd.

 30

Case Study: ueventd

● ueventd - Android udev equivalent
● Runs as root
● Manages /dev directory
● Receives netlink messages from the kernel

● Same vulnerability as CVE-2009-1185 for udev.
● Does not verify message came from kernel.

● Demonstrated by the Exploid exploit.

 31

Exploid vs SELinux

● Similar to GingerBreak scenario.
● Exploit would be completely blocked in at least

two ways by SELinux:
● creation/use of netlink socket by exploit
● write to /proc/sys/kernel/hotplug by ueventd

● Vulnerability can't be reached.
● Exploit code can't be invoked with privilege.

 32

Case Study: adbd

● adbd - Android debug bridge daemon
● Runs as root
● Provides debug interface
● Switches to shell UID and executes shell.

● Does not check/handle setuid() failure.
● Can lead to a shell running as root.

● Demonstrated by RageAgainstTheCage.

 33

RageAgainstTheCage: Overview

● Look up adbd process in /proc.
● Fork self repeatedly to reach RLIMIT_NPROC

for shell identity.
● Re-start adbd.
● adbd setuid() call fails.
● shell runs as root.

 34

RageAgainstTheCage vs SELinux

● Look up and restart of adbd.
● read /proc/pid/cmdline denied by policy
● signal adbd denied by policy

● adbd setuid() would still fail.
● Security context changes upon exec of shell.
● Shell runs in unprivileged security context.

● No superuser capabilities.
● No privilege escalation achieved.

 35

Case Study: zygote

● zygote - Android app spawner
● Runs as root.
● Receives requests to spawn apps over a socket.
● Uses setuid() to switch to app UID.

● Does not check/handle setuid() failure.
● Can lead to app running as root.

● Demonstrated by Zimperlich exploit.

 36

Zimperlich: Overview

● Fork self repeatedly to reach RLIMIT_NPROC
for app UID.

● Spawn app component via zygote.
● Zygote setuid() call fails.
● App runs with root UID.

● Re-mounts /system read-write.
● Creates setuid-root shell in /system.

 37

Zimperlich vs SELinux

● Similar to RageAgainstTheCage scenario.
● zygote setuid() would still fail.
● Security context changes upon setcon().

● Not affected by RLIMIT_NPROC.

● App runs in unprivileged security context.
● No superuser capabilities.
● No privilege escalation.

 38

Case Study: ashmem

● ashmem - anonymous shared memory
● Android-specific kernel subsystem
● Used by init to implement shared mapping for

system property space.

● CVE-2011-1149
● Does not restrict changes to memory protections.
● Actually two separate vulnerabilities in ashmem.

● Demonstrated by KillingInTheNameOf and
psneuter exploits.

 39

KillingInTheNameOf: Overview

● Change protections of system property space to
allow writing.

● Modify ro.secure property value.
● Re-start adbd.
● Root shell via adb.

 40

KillingInTheNameOf vs SELinux

● Changing memory protections of system
property space.
● performed via mprotect, already controlled by

SELinux.
● denied write to tmpfs by policy

● Exploit blocked.
● Before it can do any harm.

 41

psneuter: Overview

● Set protection mask to 0 (no access) on
property space.

● Re-start adbd.
● adbd cannot read property space.
● Defaults to non-secure operation.
● Root shell via adb.

 42

psneuter vs SELinux

● Set protection mask to 0 on property space.
● ashmem-specific ioctl, not specifically controlled

(yet) by SELinux
● therefore allowed

● Re-start adbd.
● read of /proc/pid/cmdline denied by policy.
● signal to adbd denied by policy.

● Exploit blocked, but protection mask modified.
● Points to need to instrument ashmem for SELinux.

 43

Case Study: Skype for Android

● Skype app for Android.
● CVE-2011-1717

● Stores sensitive user data without encryption with
world readable permissions.
– account balance, DOB, home address, contacts, chat

logs, ...

● Any other app on the phone could read the user
data.

 44

SELinux vs Skype vulnerability

● Classic example of DAC vs. MAC.
● DAC: Permissions are left to the discretion of each

application.
● MAC: Permissions are defined by the administrator

and enforced for all applications.

● All apps denied read to files created by other
apps.
● Each app and its files have a unique SELinux

category set.
● App has no control over the categories on its files.

 45

Was the Skype vulnerability an
isolated incident?

● Lookout Mobile Security
● Symantec Norton Mobile Security
● Wells Fargo Mobile app
● Bank of America app
● USAA banking app

 46

Application Layer Security

● So far we're only dealing with the kernel level
access controls.

● To fully control the apps, we need SELinux
integration with the application layer access
controls.

● Requires further study of the existing Android
security model.

● Requires SELinux instrumentation of the
application frameworks.

 47

SELinux & App Layer Security

● SELinux provides interfaces for application
layer access control enforcement.
● Extends security model to higher level objects and

operations.
● Provides same benefits of centralized, analyzable

policy for system.
● Provides infrastructure for caching, revocation, etc.

● Already leveraged by a number of applications,
including Xorg, D-BUS, Postgres.

 48

Conclusion

● Android security would benefit from SELinux.
● In general, Android needs MAC.
● In practice, SELinux would have stopped a number

of published exploits for Android.

● There is still a lot of work to do to bring full
SELinux enablement to Android.

● Get Involved!

 49

Questions?

● Email: sds@tycho.nsa.gov

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

