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INTRODUCTION

About Security Explorations

■ Security start-up company from Poland

■ Provides various services in the area of security and vulnerability 

research

■ Commercial and Pro Bono research projects

■ Came to life in a result of a true passion of its founder for breaking 

security of things and analyzing software for security defects

■ Our ambition is to conduct quality, unbiased, vendor-free and 

independent security and vulnerability research
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INTRODUCTION

Presentation Goal

■ Disclosure of the details of our SE-2012-01 security research project

■ Pro Bono work as part of our contribution to the field

■ Educate about security risks associated with certain Java APIs

■ Show that breaking Java security is both challenging and demanding

■ Show that Java security can be very tricky
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INTRODUCTION

Disclaimer

■ In 2005, 20+ security vulnerabilities were reported to Sun 

Microsystems that demonstrated how certain Java VM design / 

implementation choices can influence its security

■ Multiple full sandbox bypass exploits for Java SE 5

■ As a courtesy to Sun Microsystems, no information / Proof of 

Concept codes have been ever published about them

■ This work builds on the work from 2005 and extends it with respect 

to new features of Java SE 7, new vulnerabilities and exploitation 

techniques
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PROJECT SE-2012-01

Motivation

■ One of the missions of our company is to increase general 

awareness of users and vendors in the area of computer and 

Internet security

■ Java has been within our interest for nearly a decade

■ We've been breaking it with successes since 2002

■ It's hard to ignore Java when it comes to the security of PC 

computers these days

■ Java runs on 1.1 billion desktops

■ 930 million Java Runtime Environment downloads each year
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PROJECT SE-2012-01

Basic Data

■ Pro Bono security research project verifying security of Java SE

■ Project conducted for 3 months

■ Multiple security vulnerabilities found in Java SE implementations 

coming from Oracle, IBM and Apple

VENDOR # ISSUES REPORTED # FULL SANDBOX BYPASS EXPLOITS

ORACLE 31 17

IBM 17 10

APPLE 2 1
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JAVA SECURITY ARCHITECTURE

Designed 20+ years ago, but with a security in mind!

■ Access control at classes, methods and fields level

■ private, protected, public, default (package)

■ Strict type checking

■ Type safety

■ Garbage collection

■ No memory pointers

■ No free() operation

■ Immutable, safe strings representation

■ Runtime checks for arrays



9

JAVA SECURITY ARCHITECTURE

Components

■ Class Loaders

■ Bytecode Verifier

■ Security Manager

■ JVM Runtime

■ Execution engine

■ Classes definition (Java / native code)

■ OSR compiler

■ Garbage Collector
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JAVA SECURITY ARCHITECTURE

Components (cont.)
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JAVA SECURITY ARCHITECTURE

Bytecode Verifier

■ The primary gatekeeper of Java VM security

■ Verification of Class file format

■ Integrity and safety of bytecode instruction streams

■ Complex operation, thus very challenging implementation

■ All constraints defined in Java Virtual Machine specification need 

to be verified

■ Rewritten Bytecode Verifier in Java SE 6 and above

■ Split bytecode verification upon Eva Rose’s Lightweight Bytecode

Verification thesis
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JAVA SECURITY ARCHITECTURE

Class Loaders (CLs)

■ Instances of java.lang.ClassLoader class or its subclass

■ Provide class definitions to the VM

■ findClass(), loadClass(), defineClass() methods

■ Assign permissions to loaded classes

■ Dynamically resolve unknown classes

■ Their role in JVM is similar to dynamic linkers role in Unix

■ Load native libraries

■ NULL CL value designates a trusted, bootstrap class loader

■ All system classes are defined in this namespace (rt.jar)
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JAVA SECURITY ARCHITECTURE

Class Loaders namespaces

■ Classes defined by a given class loader instance denote its 

namespace

■ Multiple class loader instances can coexist in one Java VM

■ Multiple namespaces

■ Class Loader constraints to detect conflicts (spoofed classes) 

between classes defined in two different namespaces

■ Package (default) based access to classes, fields and methods 

guarded at the class loader namespace level

■ Strong protection (compromise through CL / CL constraints)
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JAVA SECURITY ARCHITECTURE

Protection Domains

■ Each class loaded into VM is defined in a specific Protection Domain 
(instance of java.security.ProtectionDomain class)

■ Same Protection Domain (PD) is assigned to classes that come from 

the same location (CodeSource) and that share:

■ Class loader

■ Permissions set (permissions assigned to classes by this PD)

■ NULL PD value usually designates a privileged, system code
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JAVA SECURITY ARCHITECTURE

Protection Domains (sample)
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JAVA SECURITY ARCHITECTURE

Permissions

■ Denote, which security sensitive operations a class can conduct

■ AllPermission permission is a synonym of ROOT in Java VM

■ Dedicated permissions for specific operations

■ Network access, file system access, native library loading, 

specific API access, restricted package access, program 

execution, …

■ Many permissions can be easily elevated to AllPermission

■ createClassLoader, accessClassInPackage.sun, 

setSecurityManager, suppressAccessChecks, …
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JAVA SECURITY ARCHITECTURE

Security Manager

■ An instance of java.lang.SecurityManager class or its 

subclass

■ Implements security checks verifying for the permissions required 

prior to conducting a security sensitive operation
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JAVA SECURITY ARCHITECTURE

Security Manager (cont.)

■ One Security Manager for the whole Java VM environment

■ Reference stored in a private static field of java.lang.System

class (security)

■ NULL value denotes no Security Manager (no security checks)

■ java.security.AccessController class implementing actual 

security model
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JAVA SECURITY ARCHITECTURE

Privileged operations

■ Granted permissions are not in effect till proper construct is used that 

actually enables them

■ AccessController.doPrivileged()

■ The call takes one argument implementing PrivilegedAction or 

PrivilegedExceptionAction interface
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JAVA SECURITY MODEL

Stack inspection

■ A mechanism that allows for

■ Enabling of granted permissions only for a given code scope

■ Verification of the permissions held

■ The goal of the mechanism is to make it impossible to abuse target 

system’s security by the means of an untrusted code sequence 

injection inside a privileged code block (scope)

■ Its first implementation was introduced in Netscape 4.0 

■ Although Netscape code was completely broken, the idea still 

deserves a credit as being extremely clever and powerful
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JAVA SECURITY MODEL

Stack inspection (the algorithm)

■ Implementation requires that during runtime, it is possible to identify 

permissions of a given stack frame

■ Class object and its permissions set

■ Special stack frame denotes a start of the privileged code scope

■ AccessController.doPrivileged()

■ Security Manager’s check methods verify permissions of all the 

classes from a current scope (call stack)

■ Stack frames are inspected until either the end of a call stack or 

a special (privileged) frame is reached
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JAVA SECURITY MODEL

Stack inspection in action



23

JAVA SECURITY MODEL

Package access restrictions

■ Access to certain Java SE packages requires proper privileges

■ They contain security sensitive classes (reflection, deployment, 

instrumentation, …)

■ The list of restricted packages defined in java.security file

■ package.access=sun.,com.sun.xml.internal.ws.,com.s

un.xml.internal.bind.,com.sun.imageio., …

■ Many of these entries were added as a result of our research
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REFLECTION API

Core API

■ Implemented by java.lang.Class and java.lang.reflect.*

package

■ Allows to examine or modify the runtime behavior of applications 

running in Java VM

■ Obtaining Class objects

■ Examining properties of a class (fields, methods, constructors)

■ Setting and getting field values

■ Invoking methods

■ Creating new instances of objects
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REFLECTION API

Core API (2)

■ Allows to perform operations on Class members regardless of their 

Java security protections (access)
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REFLECTION API

Core API (3)

■ Reflection API provides means for easy breaking of Java type / 

memory safety
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REFLECTION API

Implementation

■ All Reflection API calls take the immediate caller’s class loader into 

account prior to dispatching a given call



REFLECTION API

Implementation (cont.)

■ Security check verifying if a caller’s class loader comes from a 

permitted class loader namespace
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REFLECTION API ABUSES

The problem

■ Many Reflection API invocations implemented in Java SE classes

■ trusted caller by default (NULL CL)

■ It’s risky to assume that a caller class of the Reflection API call would 

be always trusted

■ Direct user input

■ Indirect user input by the means of Java trickery (inheritance / 

overloading)

■ Indirection through…Reflection API calls (Method.invoke)
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REFLECTION API ABUSES

The idea

■ By controlling the arguments to Reflection API calls used by system 

classes, one can actually impersonate the caller (system class) of 

these invocations

■ Access to restricted classes, fields and methods can be gained

■ Restricted objects can be created

■ Restricted methods can be invoked

■ The requirement

■ The result of a target API call needs to be available in some way

■ A leak without extra type cast
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REFLECTION API ABUSES

The idea (cont.)
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REFLECTION API ABUSES

Obtaining class objects

■ Class.forName(String)

■ The most desired form, direct access to restricted classes

■ Class.forName(String,boolean,ClassLoader)

■ Class Loader usually designates current Thread’s context CL

■ The call can be still abused

■ ClassLoader argument is NULL

■ ClassLoader is not NULL, but it does not verify for package 
access in its loadClass method
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REFLECTION API ABUSES

Obtaining class objects (2)

■ Class.getSuperclass() / Object.getClass()

■ Some objects available to untrusted Java code are already 

instances of or inherit from restricted classes
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REFLECTION API ABUSES

Obtaining class objects (3)

■ Field.getType()

■ Some field objects in use by system classes are instances of 
restricted classes such as sun.misc.Unsafe

■ java.nio.Bits

■ java.util.concurrent.atomic.AtomicBoolean
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REFLECTION API ABUSES

Obtaining class objects (4)

■ Class.getComponentType()

■ Past Class Loader implementations didn’t take into account 

internal, Java VM representation of class names and the 

possibility to request loading of an array of classes
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REFLECTION API ABUSES

Accessing fields

■ Obtaining references to public fields only

■ getField(), getFields()

■ Interesting public fields can be found in…restricted classes

■ com.sun.xml.internal.bind.v2.model.nav.Navigator

■ Obtaining references to protected fields

■ getDeclaredField(), getDeclaredFields()

■ Protected fields can be accessed only with a combination of 

some other issue

■ AccessibleObject.setAccessible(true)



37

REFLECTION API ABUSES

Invoking methods

■ The creme of the creme when it comes to Reflection API bugs

■ Method.invoke(target,args)

■ Arbitrary method invocation from a system class allows virtually 

anything

■ No security check prior to the invocation for public methods

■ Restricted method object sufficient to actually invoke it

■ Unsafe getMethod() call can be a security risk

■ The assumption is that proper security check had been already 

made at the time of acquiring the method object
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REFLECTION API ABUSES

Invoking methods (2)

■ If target object is not under control, static invocations still possible



39

REFLECTION API ABUSES

Invoking methods (3)

■ Private methods can be accessed only with a combination of some 

other issue

■ AccessibleObject.setAccessible(true)

■ Interesting virtual methods

■ Class.getFields(), Class.getMethods(), etc.

■ Interesting static methods

■ Class.forName()
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REFLECTION API ABUSES

Creating object instances

■ Combination of two issues

■ Class.forName() / Class.getConstructor()

■ Class.forName() / Class.getDeclaredConstructor()

■ Class.forName() / Class.newInstance()

■ One argument (String) constructor still useful!

■ PrivilegedAction objects

■ In some circumstances, single Class.newInstance() can 

facilitate the attack

■ Security checks in class initializer (<clinit> method)
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NEW REFLECTION API

Java 7 features

■ Support for dynamic code execution / scripting was added to Java 7

■ New invokedynamic Java VM bytecode instruction

■ MethodHandle class for method invocation and field access

■ MethodType class for generic type descriptor

■ All reflective accesses done with respect to the special lookup object

■ By default, a caller of MethodHandles.Lookup()

■ Less security by design than in the old Reflection API ?

■ „Method handles do not perform access checks when they are 

called, but rather when they are created”
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NEW REFLECTION API

API comparison – Class.forName()
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NEW REFLECTION API

Possible abuses

■ The idea behind a lookup object is to have it act as the class on 

behalf of which reflective access is made

■ System class used as a lookup class is sufficient for reflective 

access to restricted classes (same class loader namespace)
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NEW REFLECTION API

Possible abuses (cont.)

■ All one needs to do is to create a MethodHandles.Lookup object 

with a system lookup class via Method.invoke()
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EXPLOITATION TECHNIQUES

Generic approach

■ Use existing Reflection API calls in system code for

■ Loading of restricted classes

■ Obtaining references to constructors, methods or fields of a 

restricted class

■ Creation of new object instances, methods invocation, getting or 

setting field values of a restricted class

■ The goal

■ Access security sensitive objects / functionality in a way that 

would compromise VM security
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EXPLOITATION TECHNIQUES

Full sandbox bypass attack scenario #1

■ The precondition is a combination of vulnerabilities that allow to 

obtain restricted classes and their methods

■ The goal is to use reflective access to define a custom class in a 

privileged class loader namespace



47

EXPLOITATION TECHNIQUES

Full sandbox bypass attack scenario #2

■ The precondition is a vulnerability allowing to change the accessible 

state of a private Method object

■ Insecure call to AccessibleObject.setAccessible(true)

■ The goal is to use the accessible (usually private) methods in a way 

that would result in scenario #1

■ Class.forName0()

■ Class.privateGetPublicMethods()

■ …
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EXPLOITATION TECHNIQUES

Partial sandbox bypass attack scenario

■ The precondition is a vulnerability allowing to create instances of 
PrivilegedAction / PrivilegedExceptionAction classes 

from a restricted sun.security.action.* package

■ OpenFileInputStreamAction and GetPropertyAction

■ The goal is to use a valid system action object as an argument to 
AccessController.doPrivilegedWithCombiner() method

■ The call asserts one extra trusted stack frame on a call stack

■ LoadLibraryAction useless

■ Library name cannot denote a path (such as UNC share)
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EXPLOITATION TECHNIQUES

An attack scenario to keep in mind

■ Reflection API risks are not only about accessing classes and 
objects from restricted packages (sun.*, etc.)

■ Many implementations of PrivilegedAction interface in 

unrestricted packages

■ The default (package) access of PrivilegedAction class / 

constructor

■ One can abuse reflection API to create instances of such objects

■ A combination of getConstructor() / newInstance()

■ We found one instance of this attack in the past
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EXPLOITATION TECHNIQUES

An attack scenario to keep in mind (cont.)
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EXPLOITATION TECHNIQUES

Countermeasure #1

■ Helper classes from sun.reflect.misc.* package as a secure 

replacement of standard Reflection API calls
API CALL REPLACEMENT

Class.forName(String s) ReflectUtil. forName(String s)

Class.newInstance() ReflectUtil. newInstance(Class clazz)

Method.invoke(Object obj, Object args[]) MethotUtil.invoke(Method m, Object obj, Object args[])

Class.getMethod(String s, Class aclass[]) MethotUtil.getMethod(Class clazz, String s, Class aclass[]) 

Class.getMethods() MethotUtil.getMethods(Class clazz)

Class.getField(String s) FieldUtil. getField(Class clazz, String s)

Class.getFields() FieldUtil. getFields(Class clazz)

Class.getDeclaredFields() FieldUtil. getDeclaredFields(Class clazz)

Class.getConstructor(Class aclass[]) ConstructorUtil.getConstructor(Class clazz, Class aclass[])
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EXPLOITATION TECHNIQUES

Countermeasure #1 (operation)
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EXPLOITATION TECHNIQUES

Countermeasure #2

■ Reflection API Filter guarding access to security sensitive members 

■ sun.reflect.Reflection class

■ Integrated with Reflection API Field and Method lookup 

operations

■ The goal was to address certain popular exploitation vectors

■ getUnsafe() method of sun.misc.Unsafe class

■ security field of java.lang.System class
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EXPLOITATION TECHNIQUES

Countermeasure #2 (deficiencies)

■ Reflection API filter can be easily bypassed

■ Access to sun.misc.Unsafe instance by the means of 

reflective field access (theUnsafe field)

■ Disabling SM by the means of setSecurityManager method 

invocation

■ Many other exploit vectors not taken into account

■ No filtering implemented for new Reflection API
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EXPLOIT VECTORS

sun.plugin.liveconnect.SecureInvocation

■ The initial exploit vector from 2004 / 2005

■ CallMethod provided a functionality to invoke arbitrary methods 

inside AccessController.doPrivileged() block

■ Exploit vector calling into System.setSecurityManager() with a 

NULL argument

■ Not working anymore

■ Fix changed access of this and other SecureInvocation

methods to private
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EXPLOIT VECTORS

sun.misc.Unsafe

■ The „official backdoor” class with a functionality to break Java 

memory safety

■ int getInt(long memAddr)

■ void putInt(long memAddr,int val)

■ Native defineClass() method that allows to inject arbitrary, fully 

privileged class into a system class loader namespace

■ private static field holding Unsafe object instance

■ Probably difficult for Oracle to get rid of

■ Some big SW vendors use it in their code (!)
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EXPLOIT VECTORS

sun.awt.SunToolkit

■ Two exploit vectors, one used by the 0-day code from Aug 2012

■ Public static methods to obtain privileged instances of declared class 

members

■ getMethod() for method access

■ getField() for field access

■ Java 7 specific exploit vector

■ Access to methods was private in Java 6, why make it public in 

Java 7 ?

■ Fixed by the out-of-band patch from Aug 30, 2012
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EXPLOIT VECTORS

java.lang.invoke.MethodHandles.Lookup

■ One insecure static Method.invoke() sufficient to create a lookup 

object with a system class

■ No check for access to members from restricted packages prior to 

method handle lookup and invocation

■ Same class loader namespace

■ Members lookup and access on behalf of the lookup class



59

EXPLOIT VECTORS

sun.org.mozilla.javascript.internal.DefiningClassLoader

■ Relatively good replacement for sun.misc.Unsafe exploit vector

■ Two step exploitation process

■ Obtaining DefiningClassLoader (DCL) instance

1. Getting Context instance with the use of enter() method of 

sun.org.mozilla.javascript.internal.Context

class

2. Calling createClassLoader() method on Context instance

■ Privilege elevation via defineClass() method of DCL instance
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EXPLOIT VECTORS

com.ibm.oti.util.PriviAction (IBM Java)

■ PrivilegeAction object enabling access to fields and methods
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EXPLOIT VECTORS

Remote, server-side code execution

■ RMI protocol supports the concept of user provided codebases

■ URL value where remote server should look for classes 

(Codebase can be provided by the client as part of the RMI call)

■ RMI server creates RMIClassLoader with user provided URL

■ MarshalInputStream / MarshallOutputStream work

■ RMI implementation does not verify whether a deserialized object is 

type compatible with a target argument for a call

■ RMI server reads and instantiates object provided as an 

argument to the remote call from a user provided source
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EXPLOIT VECTORS

Remote, server-side code execution (cont.)

■ RMI issue is less known vector for exploiting Java SE vulnerabilities

■ Originally found in Aug 2005

■ Metasploit added it to its exploit database in 2011

■ Last time we checked, the following servers were still affected:

■ RMIRegistry from JDK version 1.7.0_06-b24

■ GlassFish Server Open Source Edition 3.1.2 (build 23) (with 

security manager enabled)

■ Not vulnerable if java.rmi.server.useCodebaseOnly property 

is set to true
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EXPLOIT VECTORS

Potential remote, server-side code execution ?
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VULNERABILITES

Bug hunting methodology

■ Old school, manual code analysis

■ Working with decompiled class files, not source code

■ Easier pattern matching

■ Tools only for bigger, more complex projects

■ Primary focus on Reflection API

■ Additional focus on Class Loaders

■ The value of Thread’s context class loader
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VULNERABILITES

Issues #1-7

■ Multiple insecure Method.invoke() in glassfish related package
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VULNERABILITES

Issue #8

■ Exploit for Class.forName() instance relying on current Thread’s 

context Class Loader value
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VULNERABILITES

Issue #10

■ New Bytecode Verifier violates key Java VM constraint

■ Instance initialization method must call a method in the current 

class or a method in a superclass of the current class
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VULNERABILITES

Issues #11, #16, #17 and #28

■ Issues in Beans decoder support classes

■ ClassFinder

■ MethodFinder

■ ConstructorFinder

■ FieldFinder

■ 0-day attack from Aug 2012 relied on two first issues

■ New, buggy implementation of Beans decoder introduced in Java 7

■ Java 6 not vulnerable (different implementation)
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VULNERABILITES

Issues #13, #21 and #26

■ New Reflection API Issues

■ no security check in the in() method 

■ Free to set lookup object to any system class

■ public lookup based on a system class available to any caller

■ MethodHandles.publicLookup()

■ access to inner classes to which a caller of the lookup object has 

no access

■ Everything indicates that new Reflection API from Java 7 didn’t go 

through a security review…
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VULNERABILITES

Issue #32

■ Found shortly after Oracle’s out-of-band patch was released on Aug 

30, 2012

■ Blocked SunToolkit exploitation vector triggered yet another 

look into Java to see if remaining bugs still important
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VULNERABILITES

Issue #33 and #34 (IBM Java)

■ Arbitrary method invocation inside AccessController's

doPrivileged block

■ Most of IBM Java issues are simple instances of Reflection API flaws
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VULNERABILITES

Issue #15 and QuickTime for Java

■ Access to security sensitive classes guarded by a security check in 

static class initializer

■ <clinit> called only once, during class loading / linking
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VULNERABILITES

Issue #22 (QuickTime for Java)

■ Problems with quicktime.util.QTByteObject

■ R/W access to process heap memory

■ Security check preventing instantiation by unprivileged code

■ Two past bugs not addressed correctly by Apple

■ Instantiation with the use of finalize()

■ Instantiation by the means of readObject()

■ Fix not taking into account the possibility to combine the bugs 

together

■ http://www.security-explorations.com/materials/se-2012-01-22.pdf
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VULNERABILITES

Issue #50

■ Not-yet patched vulnerability affecting all Java SE versions released 

over the last 10 years

■ We empirically verified that a fix can be implemented in < 30 minutes

■ 25 characters in total, no need for integration tests

■ „We’ll respond as soon as possible” response never received 

from Oracle

■ The existence of Issue #50 tells a lot about the quality of Oracle’s 

vulnerability evaluation / patch testing processes

■ A bug in the code addressed not so long ago



75

VULNERABILITES

Overview (complete sandbox bypass Oracle issues)
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SUMMARY

Security implications of Reflection API

■ Reflection API should be perceived in terms of a security risk

■ potential violation of Java security constraints

■ Member access override

■ Type safety attack

■ Insecure implementation can easily break Java security model

■ Vulnerabilities nature make it hard to detect by AV / IDS systems

■ The issues can be combined in a different way

■ Actually that’s true for all Java bugs (the power of invoke)
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SUMMARY

Vulnerabilities impact

■ Most serious vulnerabilities specific to Java 7 environment

■ Issue 50 for Java 1.4.x, 5, 6, 7 and 8 affecting estimate number of 
1.1 billion users (java.com data)

■ Multiple complete Java security sandbox bypass issues

■ remote code execution with the privileges of a logged-on user

■ Java level vulnerabilities mean reliable, multiplatform exploit codes

■ Users of web browsers with Java Plugin enabled at most risk

■ RMI / XML based deserialization creates some potential for server 

side code execution
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SUMMARY

Vendors response (Oracle)

■ Fixed 29 out of 31 reported issues

■ 2-6 months time from report to fix

■ Started to act faster when POC for two issues (#11 and #16) was 

discovered in the wild

■ Out-of-band Java Update from Aug 30, 2012

■ Decided to leave critical security Issue #50 unpatched till Feb 2013

■ Security Alerts / OOB patches only in case of urgent (i.e. publicly 

disclosed) issues

■ Monthly status update reports
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SUMMARY

Vendors response (Apple)

■ Addressed all 2 reported issues

■ 2-5 months time from report to fix 

■ „Silent fix / no credit” approach

■ HT5319 with no vulnerability info / credit section, HT5473 bulletin 

had both added a month after its initial release

■ Treats issues that need to be combined / rely on other vendors bugs 

as „security hardening” issues rather than security bugs in their code

■ Removed Java from all MacOS web browsers

■ No status update information (needed to be queried for it)
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SUMMARY

Vendors response (IBM)

■ Addressed all 17 reported issues

■ 2 months time from report to fix

■ Somewhat strange initial contact

■ lots of legal language in a response (resolved)

■ Status update information

■ Fulfilled the initial plan to address all reported issues in Nov 2012

■ IBM Java 7 SR3 and IBM Java 6 SR12 from Nov 8, 2012
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SUMMARY

What other software vendors think (quotes from the Inbox)

■ It looks software vendors do not have an easy life with Oracle

■ They are no help (even when "alleged security vulnerabilities" are 

being exploited by malware kits/etc.)

■ We'd like to be able to protect our customers…You're the only 

guys that can help on this (Oracle certainly won't)

■ There's a lot of politics. Hint: "Oracle unbreakable Linux"

■ I know others have pushed Oracle, nothing has or will happened
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SUMMARY

Final Words

■ Java secure by design, but not necessarily by implementation

■ Implementation inherently complex to make it secure

■ Java security can be extremely tricky

■ Overloading, inheritance, reflection, stack inspection, bytecode

verification, members access, serialization, class loaders, etc.

■ Certain design / implementation choices can affect security of a 

technology for years and lead to dozens of bugs

■ 50+ security fixes related to Reflection API in Java SE so far

■ Small, potentially unimportant security bugs do matter in Java
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SUMMARY

Final Words (cont.)

■ Not much knowledge about the tricks/techniques used to attack Java

■ In longer term, publication of vulnerabilities / attack techniques 

details can make the technology more secure

■ Breaking technologies such as Java should focus on advantages / 

specifics of the technology in the first place

■ Memory corruption vulnerabilities only if everything else fails

■ Vendors not following their own Secure Coding Guidelines / not 

learning from past mistakes do not give a bright prospect for the 

future
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