
Real Time Implementation of TETRA Speech Codec on TMS320C54x

B. Sheetal Kiran, Devendra Jalihal, R. Aravind
Department of Electrical Engineering,
Indian Institute of Technology Madras

Chennai 600 036
{sheetal, dj, aravind}@ee.iitm.ernet.in

ABSTRACT

This paper, partly tutorial in nature, describes an
approach to the implementation of the 4.567
kbps TETRA speech codec on the
TMS320C54x DSP family. The TETRA system
is introduced and its speech codec is described
in detail. The TETRA standard describes the
speech codec in bit-exact, fixed-point C-code.
Our paper compares the efficiency of
implementing this code by first writing it in C
and cross-compiling it and directly hand-coding
it in TMS320C54x assembly code.

1. INTRODUCTION

Speech signals are by far the most prevalent of
signals transported over telecommunication
networks. The ‘toll quality’ A-/ µ - law based
digital representation of analog speech results in
64 kbps bit stream. The 64 kbps of data when
transmitted on telecommunication networks
occupy considerable bandwidth, which is not
always available. A number of well-known
compression techniques such as ADPCM, Sub-
band Coding, etc., achieve lower bit rates in the
range of 32 kbps to 16 kbps. Using radio and
satellite links requires more efficient coding
methods and near-toll quality speech below 16
kbps rate. LPC based techniques such as Code
Excited Linear Prediction (CELP) coding, are
used at lower rates and can provide good quality
speech at bit rates of around 8 kbps and down to
4.8 kbps. These codecs perform very well in
noisy environments. Speech communication is
inherently real-time and to achieve this using a
CELP coder in real-time on a DSP is a
formidable task, as CELP coders are
computationally intensive.

A DSP implementation of Speech
Codec for a full-rate traffic channel defined in

the document ETS 300 395-2[1] on
TMS320C54x DSP chip is considered here.
Section 2 introduces the TETRA system and
describes the TETRA speech codec in detail.
Section 3 highlights the importance of using
fixed point DSP for speech codec
implementation; introduces the TMS320C54x
TI DSP and discusses our approach to
implementation. Section 4 presents the
conclusions.

2. The TETRA System

A number of organizations such as police, fire
fighters, taxi operators, etc. operate mobile
communications systems, which are
independent of the PSTN network system.
These vary in complexity from simple point to
point communication radios to trunked networks
requiring large infrastructures and supporting
point to point and point to multipoint
communications. Trunked radio networks are
preferred by the radio regulators because of their
high spectral efficiency (particularly where
relatively short messages are exchanged) and by
the users who benefit from the large number of
supplementary services that can be supported.
This proliferation of user requirements has
resulted in the evolution of many standards, out
of which TETRA (TErrestrial Trunked Radio)
has been the most important one [2]. TETRA
offers many features such as special safety
services, cellular operating modes and low-bit
rate data services.

TETRA Speech Codec

The TETRA speech codec is a CELP based
codec, as shown in Figure1. Further, it uses the
algebraic CELP (ACELP) where the innovation
codebook have an algebraic structure and this
has advantages in terms of storage, search
complexity and robustness [3].

The basic building blocks of the TETRA speech
coder are (i) LPC analysis, (ii) LPC to LSP
conversion and Quantization, (iii) Long-term
prediction and (iv) Codebook search.

LPC analysis is performed every 30 ms. The
different frames used by the codec are shown in
Figure 2. The LPC coefficients are converted to
the Line Spectral Pairs (LSP) for quantization
and interpolation. In the TETRA codec,
implementation, quantization and interpolation
of the LSPs are performed in the cosine domain,
and thus saving any trigonometric computations
necessary to convert to the frequency domain.
The computed LSPs are quantized with 26 bits
using a split-VQ.

The long term prediction analysis or
adaptive codebook search finds the delay and
the gain values of the pitch filter for each 7.5 ms
sub-frame. To simplify the pitch analysis
procedure, a two-stage approach is used,
comprising first an open loop pitch search
followed by a closed loop search. The open loop
pitch is computed once every speech frame (30
ms) using a weighted speech signal obtained
from a shaping filter which is constructed using
the unquantized LP parameters. The closed loop
pitch analysis is performed around the open
loop pitch delay on a sub-frame basis. The
closed loop pitch search is done by minimizing
the mean-square weighted error between the
original and the synthesized speech.

The TETRA codec uses a specific dynamic
algebraic excitation codebook whereby the fixed

excitation vectors are shaped by a dynamic
shaping matrix. The shaping matrix is a function
of the LP model, and its main role is to shape
the excitation vectors in the frequency domain
so that their energies are concentrated in the
important frequency bands. Here a 16-bit
algebraic codebook is used in the innovative
codebook search, which finds the best
innovation and gain parameters. The innovation
vector contains, at most, four non-zero pulses,
with amplitudes of 1.4142, -1, +1 and –1, and
result in fast codebook search [1]. The codebook
is searched by minimizing the mean squared
error between the weighted input speech and the
weighted synthesis speech. A focussed search
procedure is used so that a low percentage of
the codebook is searched. Obviously this is
where most of the complexity of the coder lies.

LPC Analysis,Quantization

Weighting & MSE
search

Adaptive
codebook

Algebraic
codebook

Short-term
Synthesis filter

Multiplex

Pitch,To

⊕

Gain VQ

⊕

Speech Input

_

LPC Info

past
excitation

k

T

Gains
Pitch Delay(T)

Codebox index(k)

LPC Info

Digital Output

pg

cg

Figure1: Block diagram of TETRA encoder The bit allocation for various codec
parameters is given in Table 1. Each 30 ms
frame is represented by 137 bits, resulting in a
bitrate of 4.567 kbps.

Table 1: Bit Allocation for the TETRA codec (SF: Sub-frame)

Parameter

SF1

SF2

SF3

SF4

Total

LP Parameter 26
Pitch Delay 8 5 5 5 23
Algebraic Code book 16 16 16 16 64
Gains(VQ) 6 6 6 6 24
Total Bits 137

3. IMPLEMENTATION DETAILS

3.1 Advantages of DSP

Digital Signal Processors can be divided into
two categories, fixed-point and floating-point.
Fixed-point DSPs usually represent each
number with a minimum of 16 bits. Floating-
point DSPs typically use a minimum of 32 bits
to store each value. Floating point numbers are
stored in ANSI/IEEE standard, dividing the 32
bits into 3 parts, one bit for sign, 8 bits for
exponent and the rest for magnitude (mantissa).
Fixed-point DSPs usually represent the data in
two’s complement with an assumed binary point
in a fixed place [5]. Fixed-point DSPs are
cheaper, consume less power but take longer
code development time. Floating point DSPs are
expensive, require more power but are easier to
code.

CELP coding is very computationally
intensive involving a large number of
multiplications and divisions of real numbers
and other operations. The most intensive part of
the TETRA codec is the codebook search. For a
complete implementation of the TETRA codec,
channel encoding and decoding as per the ETSI
document should also be included. All these
complex algorithms must be done in real time
i.e., the time lag between the speaker and the
listener should not exceed frame-length/N s.
Here frame-length is 30 ms, and N is the number
of simultaneous channels the DSP is processing.
Usually N=1 at the subscriber end. This calls for
the use of a dedicated signal processor. We
propose to use the TMS320C54x processor.
This fixed-point DSP meets the specific needs
of real-time embedded applications, such as
telecommunications. This DSP has a number of
advantages such as [4]:
• 2 accumulators of 40 bits.
• 8 auxiliary registers, simplifies indirect

addressing.
• A SP (Stack Pointer) register for stack

addressing.
• Circular Buffer.
• Instructions with 2 to 4 operands.
• Parallel instructions in one cycle.
• Arithmetic instructions with 32 bit operands

(DADD, …)
• Instruction to normalize and shift numbers

in one cycle.
• Conditional instructions as conditional

store.

These and other advantages of TMS320C54x
make this an ideal platform to implement real-
time speech codec applications. The DSP used
here is a TMS320VC5410, an evaluation
module. This is a 100 MIPS processor with 16K
words (16 bits) of on-chip Program ROM, 8K
words of dual-access RAM and 56K words of
single-access RAM.

3.2 Implementation Methodology

The TETRA codec is described in a fixed-point
C code. To generate highly optimized codes on
fixed-point DSP, it is still necessary to program
in assembly [6]. The visual debugger called the
Code Composer Studio tool from Texas
Instruments is very useful in this regard. Using
this tool it is possible to check the contents of
any registers, program memory contents and

data memory contents at any point of the code
and also possible to set break points.

Our methodology to implement this is
inspired from the fixed-point C code available
from the standard. An implementation example
of the C code on the ‘54x DSP is shown in the
Figure 3. The C code shown is a fixed-point
implementation to evaluate the LSP polynomial
from the LP filter coefficients (evaluation of
only one polynomial is shown for brevity). As
can be seen, all intermediate arithmetic is done
in double precision. Whenever there is a need to
operate on two 16-bit operands each operand is
scaled into a 32-bit temporary location and the
corresponding arithmetic is performed. As the
DSP used is a fixed-point one, the format of the
numbers should always be taken care of
depending on their possible dynamic range. For
example, Q15 numbers have a range between -1
and +1, in Q14 the decimal range increases from
–2 to +2 and so on. However, the increase in
range means a decrease in precision. In the case
of 32-bit representations, the decimal range is
still the same except for a better precision. In the
example, Q11 range has been chosen for LSP
polynomial.

The ANSI C code uses a lot of low-
level functions for basic arithmetic. The
advantage of this type of coding is most of the
function calls resemble low level general DSP
instructions. For example, a call to a MAC
function like ‘L_mac()’ can be replaced by a
MAC instruction. Not all functions can be
similarly replaced like the ones using double
precision multiplication, 16-bit by 32-bit
multiplications, single and double precision
division, etc. These functions have to be hand
coded in separate subroutines. The choice of a
function call or a macro depends on the
frequency of usage. If the subroutine is
frequently called, say a double precision
multiplication, the choice of a macro is
economical in terms of MIPS.

From the comparison in Table 2, the
advantage of hand coded assembly over cross-
compiled code is clear. The C code was
compiled using TMS320C5000 Code Composer
Studio (version 1.1) and optimized at the highest
level 3. The compile tools offer quick ways to
generate assembly code but at the cost of MIPS.
The table shows a 10-fold decrease in the
instruction cycles with hand coded assembly.
This may not be the case always, because the
ANSI C code is written in DSP friendly format

as previously mentioned. If instead the C code
were written with inline coding rather than using
function calls for basic arithmetic, the cycles
mentioned against cross-compiled coding may
come down, but still large by any account.

The use of macros simplifies the coding by
avoiding the PUSH and POP stack operations of
function calls, but the registers that are utilized
in the macro should be properly documented
and taken care of. Special macros were
developed for various DSP routines that were
called frequently. All the macros were archived
using the ar500.exe application. Memory
control was achieved by allocating data tables
and various sections of the code to Program or
Data memory locations on the chip accordingly.
At each step of the assembly coding results were
seen to be bit compatible to the corresponding
results from the C code. We can do away with
any pointer that has been declared, as we have a
set of eight 16-bit Auxiliary Registers (AR0-
AR7) which can be used as pointers to any array
in data memory.

4. CONCLUSIONS

In this paper we have proposed an approach to
the implementation of the TETRA speech coder
in real-time on TMS320C54x DSP. The basics
about TETRA system as a whole and the details
of the speech codec involved have been
discussed. We have highlighted the procedure
followed to implement the codec. The two
methods: cross compiling and hand coding have
been compared for efficiency of the code
generated, execution time, size of the code and
ease of implementation. Hand coding of
complex algorithms has been shown to generate
much more efficient code than cross-
compilation.

5. REFERENCES

[1] European Telecommunications Standards

Institute (ETSI), ETS 300 395-2: Terrestrial
Trunked Radio (TETRA); Speech codec for
full-rate traffic channel, Feb 1998.

[2] John Dunlop, Demessie Girma, James
Irvine, Digital Moblie Communications and
the TETRA System – John Wiley & Sons,
1999.

[3] Salami R. et.al.: “Speech coding”, Chapter 3
in Mobile Radio Communications, edited by
R. Steele, Pentech Press, London, 1992. Table 2: Comparison of the two coding

alternatives for LSP polynomial computation. [4] “TMS320C54x User’s Guide”, Texas
Instruments, 1997. Type of Coding No. of cycles (approx.)

Cross compiled code 570

Hand coded Assembly 60

[5] Junchen Du, George Warner, Erik Vallow
and Tom Hollenbach, “High-Performance
DSPs – Using DSP16000 for GSM EFR
Speech Coding”, IEEE Signal Processing
Magazine, March 2000.

[6] Jean-Pierre Petit, “Real-time
implementations of the recent ITU-T low bit
rate speech coders on the TI TMS320C54x
DSP: results, methodology and
applications”, France Telecom – CNET
publications, March 1999.

60 60 6010

SF1 SF2 SF3

Samples

Present-Frame (240 sam

Past samples

Total Speech vector (290 sam

LPC Analysis WindSF - Sub Frame

7.5 ms

 Figure 2: Frame structure used in the TE

The fixed-point C code of an LSP
 Polynomial evaluation from ETSI document
(code for only one polynomial is showed).

 f1[0] = 2048; /* f1[0] = 1.0 is in Q11 */

 for (i = 0; i< nc; i++)
 {
 t0 = Load_sh(a[i+1], (Word16)15);

/* a[i+1] in Q27 */
 t0 = add_sh(t0, a[pp-i], (Word16)15);

 /* +a[pp-i] in Q27 */
 t0 = sub_sh16(t0, f1[i]);

/* -f1[i] in Q27 */
 f1[I+1] = extract_h(t0);

/* f1[i+1] = a[i+1] + a[pp-i] - f1[i] */
/* results in Q11 */

 }

The corresponding TI DSP ‘54x implementation is:

 ST #2048,*(f1) ; f1[0]=2048 {1.0 is in Q11 }
 STM #A_t+1,AR1 ; AR1<-a[i+1]
 STM #A_t+10,AR2 ; AR2<-a[pp]
 STM #1,AR0
 STM #f1,AR3 ; AR3<-f1

 ST #-32768,*SP(0)
 LD *SP(0),T ; T <- -32768
 LD #5,B ; B <- nc(=5)

loop: SUB #1,B
 MPY *AR1,A ; A <- a[i+1]*T
 NEG A
 MAS *AR2,A ; A <- t0 - a[pp-i]*T
 DST A,*(t0) ; t0 is 2 word temporary variable
 MPY *AR3+,A ; A <- f1[i]*T
 SFTA A,1
 DADD *(t0),A ; A<-t0+A
 STH A,*AR3 ; f1[i+1]
 BC loop,BGT

Figure 3: An example implementation on the TMS320C54x DSP

	ABSTRACT
	INTRODUCTION
	The TETRA System
	TETRA Speech Codec
	IMPLEMENTATION DETAILS
	3.1 Advantages of DSP
	Implementation Methodology

	CONCLUSIONS
	REFERENCES

