
Detection of Denial-of-QoS Attacks Based On χ2 Statistic And

EWMA Control Charts

Vinay A. Mahadik∗, Xiaoyong Wu† and Douglas S. Reeves‡

January 31, 2002

Abstract

In this paper, we describe a method of detecting
denial of Quality of Service attacks on DiffServ net-
works. Our approach focusses on real time and
quick detection, scalability to large networks, and a
negligible false alarm generation rate. Sensors sam-
ple QoS parameters like bit rate, packet dropping
rate, and jitter of specific Virtual Leased Line (VLL)
flows at predefined strategic points in their paths.
We detect anomalies in sampled network flow statis-
tics using the EWMA Control Chart test for the
highly stationary measures and for the rest adapt
SRI’s χ2 statistic based NIDES approach. Our im-
plementation shows that the method has a 100%
detection rate for attacks above its threshold level
- those attacks that produce statistically significant
QoS degradation. The detection time is low and
less than about 15 minutes. The maximum inher-
ent false alarm generation rate for both the tests
and any of the monitored measures combined is of
the order of 1 false alarm in 1000 valid status alerts
of either normal or under attack. We believe that
given the results of the tests on our implementation
of the attacks and the detection system, the method
is a strong candidate for QoS intrusion detection for
a low-cost commercial deployment.

∗Vinay A. Mahadik is pursuing Master of Science in Com-
puter Networking at the NC State University, Raleigh. Email
: vamahadi@unity.ncsu.edu

†Xiaoyong Wu is with the Advanced Networking Re-
search Group, MCNC, Research Triangle Park. Email :
xwu@anr.mcnc.org

‡Douglas S. Reeves is with the Department of Com-
puter Science, NC State University, Raleigh. Email :
reeves@unity.ncsu.edu

1 Introduction

As quality of service (QoS) capabilities are added to
the Internet, our nation’s business and research in-
frastructure will increasingly depend on their fault
tolerance and survivability. Current frameworks
and protocols, such as Resource ReSerVation Proto-
col (RSVP)[10] / Integrated Services (IntServ) [36]
and Differentiated Services (DiffServ) [22, 4], that
provide quality of service to networks are vulnerable
to attacks of abuse and denial[4, 34, 10]. To date,
no public reports have been made of any denial of
QoS attack incidents. However, this absence of at-
tacks on QoS is an indication of the lack of a large
scale deployment of QoS networks on the Internet.
Once, QoS deployments become commonplace, the
potential for such attacks to maximize damages will
increase and so would an adversary’s malicious in-
tent behind launching them. It is necessary both to
make the mechanisms that provide QoS to networks
intrusion tolerant and detect any attacks on them
as efficiently as possible.

This work describes a real-time, scalable denial of
QoS attack detection system with a low false alarm
generation rate that can be deployed to protect Diff-
Serv based QoS domains from potential attacks. We
believe our detection system, named ArQoS, is the
first and the only public research attempt at detect-
ing intrusions on network QoS.

We describe the context of the problem in section 2
as a motivation for this work. Section 3 describes
the simple, though distributed, framework that is
used to monitor a DiffServ network. Sections 4 and
5 detail the mathematical background of the tests
used for anomaly detection in individual flows. Sec-
tions 6, 7, and 8 justify the validity of the approach
based on detection results for actual attacks on a
test network. Section 9 briefly describes an impor-
tant future direction we are exploring for going be-

1

yond just detection of attacks and trying to esti-
mate the type, point, and intensity of attack using
a Bayesian distributed event correlation approach.

2 Background

In the DiffServ architecture[4, 22], the entering
traffic is classified and possibly conditioned at the
boundary nodes, and assigned to different behav-
ior aggregates. Each behavior aggregate is mapped
into a single DiffServ CodePoint (DSCP), a field in
the IP packet header, through a one-one or many-
one mapping. At the interior nodes, packets are
forwarded according to the per-hop behavior asso-
ciated with their DSCPs. The architecture achieves
scalability by aggregating the traffic classification
state into the DSCP. Thus, the DiffServ nodes do
not have to maintain per flow states as is the case
with, say, IntServ. DiffServ are extended across a
domain boundary by establishing a Service Level
Agreement (SLA) between an upstream domain and
a downstream domain, and a derived Traffic Condi-
tioning Agreement (TCA) which may specify packet
classification and re-marking rules and may also
specify traffic profiles and actions to traffic streams
which are in- or out-of-profile.

Since the DiffServ architecture is based on the In-
ternet Protocols, in general, the DSCPs are not en-
crypted. The vulnerability then is that the archi-
tecture leaves scope for attackers who can modify
or use these service class code points to effect either
a denial or a theft of QoS which is an expensive and
critical network resource. With these attacks and
other non QoS-specific ones (that do not make use
of DSCPs), there is the possibility of disrupting the
entire QoS provisioning infrastructure of a company,
or a nation.

Following are the attacks we have identified, all
of which, we believe, can be detected or defended
against by a DiffServ network in combination with
our detection system. A malicious external host
could flood a boundary router congesting it. A Diff-
Serv core router itself can be compromised. It can
then be made to remark, drop, delay QoS flows. It
could also flood the network with extraneous traffic.

We focus only on attacks and anomalies that affect
the QoS parameters typically specified in SLAs such
as packet dropping rates, bit rates, end-to-end one-

way or two-way delays, and jitter. For example,
an Expedited Forwarding (EF)[13, 16] service class
SLA typically specifies low latency/delay and low
jitter. An EF flow sensor then monitors attacks on
delay and jitter only.

Statistical Anomaly Detection is based on the hy-
pothesis that a system being monitored for intru-
sions will behave anomalously when attacked and
that these anomalies can be detected. The approach
was first introduced in[7]. [9] compares it with
other intrusion detection approaches. The statisti-
cal anomaly detection algorithm we use, henceforth
referred to as STAT, is based on SRI’s NIDES[17]
algorithm. Statistical anomaly detection is, in gen-
eral, well suited for monitoring subjects that have a
sharply defined and restricted behavior with a sub-
stantial difference between intrusive and normal be-
havior. A QoS flow is an ideal candidate for such
a subject and justifies the use of anomaly detection
for monitoring it.

STAT uses the χ2 goodness-of-fit test[14, 24] that
makes no assumptions about the distribution of the
base process. Further, by using an exponentially
weighted estimation for linear equi-width bins’ fre-
quencies, STAT nullifies the statistical significance
of the correlation of the individual QoS parameter
measures or counts. In other words, the binning
categorizes events that become fairly uncorrelated
once estimated over a sufficiently large sample size
and over a period of time. The choice of exponen-
tially weighted estimation also reduces storage and
processing requirements as against when using equal
weight and fixed width moving windows.

The Exponentially Weighted Moving Average
(EWMA) Control Chart[27] is a popular Statistical
Process Control technique used in the manufactur-
ing industry for product quality control. In this,
a probability distribution curve for a statistic gives
the rarity of occurrence of a particular instance of it.
Outcomes that are rarer than a certain predefined
threshold level are considered as anomalies. As will
be explained here, the STAT algorithm is not suit-
able for a highly stationary measure, and it is for
only such measures that we use the EWMA Control
Charts to detect intrusions.

The statistical anomaly detection approach, as used
in both the above techniques, has faced severe crit-
icism from the security community due mostly to
its inherent higher false alarm generation rate than
the rule or signature-based detection approaches like

[15, 33, 12]. [20] explores the problems faced by
the statistical anomaly detection approach in gen-
eral. However, the anomaly detection approach is
preferred for detection of new or uninvestigated at-
tacks with undefined attack signatures - as is the
case with the attacks on QoS networks.

In view of this, we also use a simple rule based detec-
tion technique, henceforth referred to as RULE, that
works as the complement of the above two anomaly
detection techniques, to quickly detect some discom-
pliance of SLA or TCA or some known intrusions
against the DiffServ network architecture. Cur-
rently, there are few known attacks against the QoS
framework. The detection rules, that is, the attack
signatures we use are derived from the DiffServ ar-
chitecture documents [22, 4] and by heuristics [34].

3 Attack and Detection System
Framework

VLL

DiffServ Network Cloud

��

���
�����

��	
	
�� ��

�
��
����

���
�����

���
�����

!!
"#$%

&&
&&
''
''

((
((
(

))
)) **

**

++
++

,,
,,
--
--

..
..
//
//

00
00
11
11

22
22
33
33

Figure 1: A typical DiffServ cloud between QoS cus-
tomer networks

Figure 1 shows two QoS customer networks us-
ing a Virtual Leased Line (VLL) through a typical
DiffServ network cloud between them. The VLLs
can be achieved through traffic engineering on tag-
switched networks like MultiProtocol Label Switch-
ing (MPLS) networks [28]. The rationale behind
VLLs is that most QoS parameters are highly de-
pendent on the packet routes and the nodes in-
volved. A dynamic route reconfiguration affects
these parameters unpredictably and hence can not

guarantee QoS. VLLs also assist in predicting the
compromised route, in using IP Security Protocol
(IPSec) for data integrity and/or confidentiality,
and also in stealth probing the network as explained
later in this section.

We assume that the boundary routers are truly se-
cure and have not been compromised. We do not
trust any of the interior routers. We believe this
is a reasonable requirement. Instead of expending
security efforts on the entire domain, we need focus
our personnel and other host-based intrusion detec-
tion systems on the boundary routers only which
are typically much less in number than the core
and boundary routers combined. The Figure 1 indi-
cates interior or core routers as well as ingress/egress
boundary routers. The (red) crossed ones have been
compromised by the attacker and are being used to
launch denial or theft of QoS attacks. The uncrossed
ones are reliable DiffServ routers.

We use the following components for anomaly de-
tection :

Probes
STAT, RULE

{Pgen,Traf}Mon

PGen

��

��
�
��
����

��	
	
��

���
�����

���
�����

��
��
��
��

��
��
��
��

��
��
��
��

!!
!!

""
""
##
##

$$
$$
%%
%%

Figure 2: How the ArQoS components are placed
about a VLL

• STAT : The Statistical Anomaly Detection en-
gine, accepts inputs from sensors on local or
remote networks. STAT modules are placed on
one of the boundary routers of a VLL being
monitored. If that boundary router is shared
by more than one VLL, the STAT process can
be shared between them too.

• RULE : The Rule-based Detection engine, ac-
cepts inputs from local or remote sensors. It

is placed on either of the boundary routers of
a VLL. The attack signatures we use include
packet dropping rate being above a specified
threshold rate for the Assured Forwarding (AF)
probing traffic, EF packets being remarked to
BE although the SLA/TCA specify dropping
EF packets that are delayed significantly, etc.
The rules are heuristically derived, and a func-
tion of the SLA for the VLL. We recommend
the use of RULE mostly as a bounds and con-
formity checker for the SLA.

• DSMon : The DiffServ aggregated-flows
monitor monitors BE, EF or AF aggregate
flows (as against a specific VLL micro-flow that
TrafMon monitors) on a core router. In order
that DSMon finds that an upperbound exists
on the burstiness of the aggregate flow it mon-
itors, we suggest placing the monitor only on
routers that are congested or where the inci-
dent links saturate the outgoing one(s). Due to
the random nature of the flow it monitors, it
is found to generate an unacceptably high false
positive rate. Hence, we do not use the inputs
from DSMon for any of our tests in this work.
We expect to use it to get an estimate of the
general health of the DiffServ network and for
the Event-Correlation work to be taken up in
the future.

• PGen : The stealth Probe Packet Generation
module is placed on the boundary routers of
the VLL to be monitored. PGen periodically
makes a copy of a random packet from the VLL
inward-flow, marks the new copy with a stealth
cryptographic hash and reinjects both the pack-
ets into the VLL. The injection of probes is
done in a soft real time manner at a low spec-
ified rate. The idea is to generate a highly
stationary flow with a fixed and known packet
rate and zero jitter before entering the DiffServ
cloud. The QoS parameters that are monitored
for this flow then are highly deterministic. De-
viations from these stationary means are then
a function of the DiffServ cloud. PGen also
appends the hash with an encrypted sequence
number for the probe packet that is necessary
for jitter calculation at the egress router.

For our tests, we have used unencrypted hashs
and sequence numbers on the probes. In prac-
tice, we would use a secure hash to tag the
packets based on a shared secret key between
the boundary routers of the VLL and certain
field(s) in the IP packets. The idea being that,
then, the attacker would not be able to, with

a significant level of certainty, distinguish be-
tween probe packets and the normal data pack-
ets. The use of IPSec with data encryption over
the VLL clearly helps this requirement. The
probes are terminated at the egress router. In-
terior routers simply forward packets and do
not expend any processing effort on an encryp-
tion or decryption process.

Then, all attacks on the QoS of the VLL are
statistically spread over both the normal data
and the probe packets. For jitter and delay pa-
rameters, we need to monitor only the low vol-
ume probe flow. In this respect, the secrecy of
this mark should be considered as a single point
of failure for ArQoS security for that VLL. The
rate of probe generation can be considered neg-
ligible compared to the rate of the VLL flow.
Typical rates are 1 or 2 probe packets in a sec-
ond. Large rates would have flooded the net-
work unnecessarily while lower rates would re-
quire unacceptably longer time windows over
which to generate the short term profiles, that
is, a sluggish detection rate.

• TrafMon & PgenMon : TrafMon monitors arbi-
trary flows non-invasively and independently of
the probes. PgenMon monitors only the probes
sent by Pgen at the other end of the VLL. Both
are placed on one of the boundary routers of
VLLs that they monitor. PgenMon is on the
opposite end of the VLL as the corresponding
PGen. We use TrafMon to monitor only the
bit rates of (approximately) constant bit rate
(CBR) flows. We use PgenMon to monitor the
jitter and the packet rates of the probe flow
inside a VLL.

4 STAT - A Mathematical Back-
ground

4.1 The χ2 Test

For a random variable, let E1, E2, ..., Ek represent
some k arbitrarily defined, mutually exclusive and
exhaustive events associated with its outcome and
let S be the sample space. Let p1, p2, ..., pk be
the long-term or expected probabilities associated
with these events. That is, in N Bernoulli trials,
we expect the events to occur Np1, Np2, ..., Npk

times as N becomes infinitely large. For sufficiently

large N, let Y1, Y2, ..., Yk be the actual number
of outcomes of these events in a certain experiment.
Pearson[24, 14] has proved that the random variable
Q defined as

Q =
k∑

i=1

(Yi −Npi)2

Npi
(1)

has (approximately) a χ2 distributed Probability
Density Function with k -1 degrees of freedom if any
k -1 of the events are independent of each other. The
approximation is good if Npi ≥ 5, ∀i so that no one
event has so large a Qi component that it domi-
nates over the rest of the smaller ones. Rare events
that do not satisfy this criterion individually may
be combined so that their union may.

The pi are the long term probability distribution of
the events. Let p′i = Yi

N be the short term (meaning
the sample size, N, is relatively small) probability
distribution of the events.

Our test hypothesis, H0, is that the actual short
term distribution is the same as the expected long
term distribution of the events. Its complement, H1,
is that the short term distribution differs from the
long term one for at least one event. That is,

H0 : p′i = pi,∀i = 1, 2, ..., k & H1 : ∃i, p′i 6= pi

Since, even intuitively, Q is a measure of the anoma-
lous difference between the actual and the expected
distributions, we expect low Q values to favor H0

and high Q values to favor H1.

Figure 3: ArQoS χ2 Statistical Inference Test

As Figure 3 indicates, we define α as the desired
significance level of the hypothesis test. Also, let

χ2
α(k-1) be the corresponding value of Q, that is,

such that, Prob(Q ≥ χ2
α(k − 1)) = α. For an in-

stance of Q, say qk−1, we reject the hypothesis H0

and accept H1 if qk−1 ≥ χ2
α(k − 1).

As will soon be evident, α also serves as the False
Positive Rate (FPR) specification - fraction of the
total (Normal or Anomaly) alarms generated that
are False Positives. It is typically set at 0.01 for
yellow alarms and 0.001 for red alarms, meaning a
FPR of 1 red alarm in 1000 normal, yellow or red
alarms. In other words, with an inherent chance α
of error in our decision, we can flag an experiment
with qk−1 ≥ χ2

α(k− 1) as an anomaly. α can not be
arbitrarily low since it strikes a compromise between
detection and false positive rates.

4.2 χ2 Test applied to STAT

In the context of STAT, the random variable is the
measured count of a QoS parameter of the network
flow(s) being monitored. The parameters we use
presently are

• Byte Count is the number of bytes of the net-
work flow data that have flowed in a fixed given
time.

• Packet Count is the number of packets of the
network flow data that have flowed in a fixed
given time.

• Jitter is defined as the average difference be-
tween the interarrival times of consecutive
probe packet pairs arriving at the egress router
of a VLL. The calculation makes use of the se-
quence numbers that the probe packets carry
to identify the order in which the packets were
actually injected into the system.

STAT can be extended to use other measures that
matter to the SLA. STAT is trained with the max-
ima and the minima of every parameter. This range
is linearly divided into several equal-width bins into
which the count outcomes may fall. These are the
events used by the χ2 Test. The number of bins is
arbitrarily set at 32. Hence, any 31 events out of
the total 32 events are independent. Thus we ex-
pect a χ2 Distribution for Q the maximum degrees
of freedom of which are 31.

Sections 4.3 and 4.4 detail how the long term and
the short term distributions of the counts are ob-
tained.

STAT algorithm defines a variable S to normalize
the values of Q from different measures and/or flows
so that they may be compared against each other
for alarm intensities. This is done such that S has
a half-normal probability distribution satisfying

Prob(Sε[s,∞)) =
Prob(Q > q)

2

That is,

S = Φ−1(1− Prob(Q > q)
2

) (2)

where Φ is the cumulative probability distribution
of the Normal N(0, 1) variable. This ensures that
S varies from 0 to ∞, but we limit the maximum
value of S to 4 since that value is rare enough to be
considered a certain anomaly.

4.3 Obtaining Long Term Profile pi

To establish the long term distribution for a mea-
sure, STAT goes through the following sequence of
phases

1. Count Training : where STAT learns the
count maxima, minima, mean and the standard
deviation over a specified, sufficiently large,
number of training measures. The maxima and
the minima help in the linear equi-width bin-
ning used by the χ2 Test.

2. Long Term Training : At the end of a set
number of long-term training measures, STAT
initializes the pi and the p′i equal simply to the
bin frequencies as

pi = p′i =
CurrentCounti
CurrentTotal

(3)

where CurrentCounti is the current number of
ith-bin events and CurrentTotal is the current
total number of events from all the bins.

These are the initial long term and short term
distributions.

3. Normal/Update Phase : After every preset
Long Term Update Period, STAT learns about
any changes to the long term distribution itself.

By using exponentially weighted moving aver-
ages, the older components in the average get
exponentially decreasing significance with ev-
ery update. This is important since the flow pa-
rameters, though typically wide-sense station-
ary in a QoS network, may shift in mean over
the long update period and this shift needs to
be accounted for to avoid false positives. This
is done as

LastWTotal = WTotal (4)

WTotal = b× LastWTotal + CurrentTotal
(5)

and

pi =
b× pi × LastWTotal + CurrentCounti

WTotal
(6)

Here, b is defined as the weight decay rate
at which, at the end of a preset LTPeriod
period (long term profiling period) of time,
the present estimates of CurrentCounti and
CurrentTotal have just a 10% weight. Typ-
ically, LTPeriod is about 4 hours. Clearly,
equation (6) then gives the required long term
frequencies pi as the ratio of the EWMA of the
current bin count to the EWMA of the cur-
rent total count. Further, only the most recent
LTPeriod period has a (90%) significance to
the long term profile.

4.4 Obtaining Short Term Profile p′i

Unlike the long term frequencies pi, the short term
ones are updated with every count as

p′i = r × p′i + 1− r (7)

and

p′j = r × p′j , ∀j 6= i (8)

where i is the bin in which the present count falls.
r is the decay rate, defined in STAT as the rate at
which the current short term bin frequency estimate
has a weight of 1% at the end of a STPeriod period
(short term estimation period) of time. STPeriod
is about 15 minutes. The 1 − r in the equation
(7) satisfies

∑
p′i = 1 and also serves as the weight

for the present count of 1 for the bin to which the
present measure belongs. Further, only the most
recent STPeriod period has a (99%) significance to
the short term profile.

4.5 Generate Q Distribution

As each measure is received, STAT calculates the
Q value associated with the count as per the equa-
tion (1). STAT maintains a long term Q distribu-
tion curve, against which each new short term Q is
compared to calculate the anomaly score S. The
long term Q distribution generation is very similar
to the long term frequency pi distribution genera-
tion. The procedure parallels the one in section 4.3,
where equations (3) through (6) now become -

at the end of a specified long term training Q mea-
sures, we set

Qi =
CurrentQCounti
CurrentQTotal

(9)

where we arbitrarily use a 32 bin equi-width parti-
tioning.

Further, in the update/normal phase, after every
long term update Q measures, we use

LastWQTotal = WQTotal (10)

WQTotal = b× LastWQTotal + CurrentQTotal
(11)

and

Qi =
b×Qi × LastWQTotal + CurrentQCounti

WQTotal
(12)

to get the Q distribution.

4.6 Calculate Anomaly Score and Alert
Level

Equation (2) gives the degree of anomaly associated
with a new or short term generated value of Q, say
q. This S score also determines the level of alert
based on the following categories -

• Red Alarm Level - S falls in a range that cor-
responds to a Q tail probability of α = 0.001.
This means that Q’s and S’s chances of having
such high a value are 1 in a 1000.

• Yellow Alarm Level - S falls in a range that
corresponds to a Q tail probability of α = 0.01
and outside the Red Alarm Level range. Then,

Q’s and S’s chances of falling in this tail area
are roughly 1 in a 100.

• Normal Alarm Level - For all values of S below
the Yellow Alarm Level, we generate a Normal
Alarm that signifies an absence of attacks.

Certain parameters such as the drop rate associated
with an AF probe flow in an uncongested network
may be highly stationary. For such parameters, the
long term frequency distribution pi does not satisfy
the Npi > 5 rule for all expect possibly one or two
bins. The χ2 test does not gives good results for
such parameters. Hence, as a rule, whenever the
number of Qi components calculated satisfying the
above thumb-rule falls below 3, we use the EWMA
Control Chart mode for finding the anomaly score.
When it exceeds or equals 3, we switch back to the
χ2 mode.

If after an attack is detected, it is not eliminated
within the LTPeriod period of time, both STAT
and the EWMA chart learn this anomalous behav-
ior as normal and eventually stop generating the
attack alerts.

5 EWMA Charts - A Mathematical
Background

5.1 Statistical Process/Quality Control

Shewhart[30, 31, 32] first suggested the use of Con-
trol Charts in the manufacturing industry to de-
termine whether a manufacturing process or the
quality of a manufactured product is in statisti-
cal control. The EWMA Control Charts, an ex-
tension of the Shewhart Control Charts, are due to
Roberts[27].

In EWMA Control Charts, the general idea is to
plot the statistic εk given as

εk = λxk + (1− λ)εk−1 (13)

Here, a subgroup of samples consists of n indepen-
dent readings of the parameter of interest (from n
different manufactured products at any instant of
time). Samples are taken at regular intervals in
time. Then, xk is the average of the kth subgroup
sample. λ is the weight given to this subgroup av-
erage. εk is the estimator for this subgroup average

at kth sample. The iterations begin with ε0 = x. x
is the (estimate of the) actual process mean, while
σ̂ is the (estimate of the) actual process standard
deviation.

If λ ≥ 0.02, as is typical, once k ≥ 5, the process
Control Limits can be defined as

x± 3
σ̂√
n

√
λ

2− λ
(14)

Let UCL denote the upper control limit and LCL
denote the lower control limit, STE denote the
short term estimate and LTE denote the long term
estimate. For a base process that is Normally dis-
tributed, the STE estimator then falls outside the
control limits less than 1% of times.

Ignoring the first few estimates then, when the it-
erations stabilize, we consider any estimate outside
the control limits as an anomaly. The cause of the
anomaly is then looked for and if possible elimi-
nated. If the fault(s) is not corrected, the control
chart eventually accepts it as an internal agent.

165

170

175

180

185

190

195

05001000150020002500300035004000

E
W

M
A

 S
ta

tis
tic

 V
al

ue
s

Log Number (tens of seconds before present)

LCL
STE
UCL
LTE

Figure 4: ArQoS EWMA SQC chart for a QoS mea-
sure recorded for over 10 hours

In case of samples that do not involve subgroups,
that is, where n = 1, the equations (13) and (14)
become

εk = λxk + (1− λ)εk−1 (15)

and

x± 3σ

√
λ

2− λ
(16)

where we begin with ε0 = x.

It is important to note that the X chart (based on
subgrouping) is more sensitive in detecting mean
shifts than the X chart[29] (based on individual

measures). Hence, wherever possible the X chart
should be preferred.

The value of the EWMA weight parameter λ is cho-
sen as a tradeoff between the required sensitivity
of the chart towards fault detection and the false
positive rate statistically inherent in the method. A
low λ favors a low false positive rate, whereas a large
value favors high sensitivity. Typically, in industrial
process control, it is set at 0.3.

5.2 Application to Network Flows

In ArQoS, we consider the QoS flows as quality con-
trolled processes where the quality parameters of
interest are the bit rates, packet drop rates, end-
to-end one-way or two-way delays, and jitter of the
flows.

In statistical process control, the EWMA control
chart is used to detect small shifts in the mean of a
process to indicate an out-of-control condition. In
contrast, in ArQoS, we monitor flow processes that
are only weakly stationary, and hence have to allow
for a gradual shift in their means over sufficiently
long periods of time. However, a swift shift will be
detected as an anomaly and flagged.

In view of the above, an actual process mean x,
which we represent as LTE, is found as an expo-
nentially weighted moving average as

LTEk = (1− rLT)LTEk−1 + rLT xk (17)

where the decay parameter rLT makes LTE signifi-
cant only for the past LTPeriod period in time, just
as with STAT. The flow processes are chosen such
that the mean does not shift significantly over this
period of time. Any small shift is reflected in a shift
in LTE.

Similarly, the long term count square, LTCntSq is
found as

LTCntSqk = (1− rLT)LTCntSqk−1 + rLT x2
k (18)

and the long term standard deviation, σ̂ or
LTStdDev is found as

LTStdDev =
√

LTCntSq − LTE2 (19)

The EWMA statistic εk, which we represent by our

short term estimate parameter STEk, is given by

STEk = rSTEk−1 + (1− r)xk (20)

where the decay rate r is the same as the short term
decay parameter used in STAT. The STE estimate
has STPeriod as the moving window of significance.

Then, the equation (14) gives the EWMA control
limits as

LTE ± 3
LTStdDev√

n

√
1− r

1 + r
(21)

where n equals 1 for byte and packet counts, but is
greater than 1 for parameters like jitter and end-to-
end delay measures that are averaged over several
packets.

STEk, LTEk, LTCntSqk and the control limits
UCLk and LCLk are calculated for every received
measure and an alarm is raised whenever STEk falls
beyond either of the control limits.

Although the QoS parameters of interest to us
are strictly not Normally distributed, nevertheless,
our results indicate that the stationary and low-
deviation parameters we study too fall beyond the
control limits only under anomalous conditions, that
is, when under attack.

6 Tests

6.1 Simulation Tests for Algorithm Val-
idation

To verify the correctness of the STAT and the
EWMA Control Chart algorithms, we use simulated
normal network traffic and simulated attacks. We
generate counts or measures of a particular QoS pa-
rameter, such as jitter say, such that it has an ar-
bitrary but fixed distribution, such as Normal, Uni-
form or an arbitrary bell-shaped distribution, with
known means and standard deviations. Once the
STAT, RULE and EWMA Charts are trained and
configured for the normal (unattacked) distribu-
tions, we gradually or incrementally vary or switch
the mean or standard deviation of the distribution
to effect simulated attacks.

The simulations help in studying the sensitivity of
the detection system, measuring the false alarm gen-
eration rate, and to compare the performance of the

three approaches in a fairly controlled environment.
We also find the simulations immensely useful for
empirical selection of the algorithm parameters.

6.2 Test Bed Setup and WAN Emula-
tion

VLL

RealPlayer
RTSP/TCP

Probes

TCP/UDP(BE)

PGenArQoS IDS

RealServer

��
�
��

����

��
�
��
�	
�

��
�

����

��
�
��
����

��
��

��
��

Figure 5: ArQoS network setup for tests

Figure 5 shows a condensed topology for our isolated
DiffServ capable network test bed. All the routers
we use are Linux kernels configured with DiffServ
capabilities. For this, we use the traffic conditioning
configuration utility tc that comes with iproute2[19]
to configure the queueing disciplines, classes, filters
and policers attached to the kernel network devices.

We setup a VLL between an ingress and an egress
router. It is setup using only IP address based rout-
ing entries and DSCP based service class mappings.
The VLL carries an audio-video stream that uses
Real Time Streaming Protocol (RTSP) with TCP
as the transport protocol, and either EF or AF (in
separate tests) as the DiffServ class type for mini-
mal delay or minimal drop rates in forwarding. The
VLL is sourced and sinked by a RealVideo[1] client-
server pair as shown.

We use MGEN/DREC[2] to generate a Poisson dis-
tributed UDP BE background traffic. thttp[8] gen-
erates a HTTP/TCP BE background traffic based
on an empirical HTTP traffic model[21]. The idea
is that it is easier to observe the relatively differenti-
ated forwarding services in a moderately or heavily
flooded network. Further, it is more interesting to
attempt to distinguish effects on the QoS due to at-
tacks from those due to random fluctuations in the
background traffic. The combination of the Pois-
son and the HTTP models attempts to capture the

burstiness, and the randomness typical to the aggre-
gate Internet traffic. To emulate a Wide Area Net-
work (WAN), we introduce end-to-end delays and
jitter in each of the routers using NISTNet[6]. We
use round-trip delays with means of the order of
tens of milliseconds and standard deviations of the
order of a few milliseconds to emulate a moderate
sized DiffServ WAN with low congestion.

Probes are generated at the ingress side of the
RTSP/TCP (data) flow and the PgenMon and Traf-
Mon sensors, along with the detection engine com-
ponents are placed on the egress router. We con-
figure the RTSP/TCP stream server to stream a
Constant Bit Rate traffic (CBR) within the conges-
tion that the VLL normally experiences. PgenMon
monitors the jitter and the packet rate of the probes,
whereas TrafMon monitors the bit rate of the CBR
(data, that is, one-way) flow.

For the attacking agents, we again use NISTNet
to significantly increase the end-to-end delays (al-
though we do not test for these presently) and the
jitter in the QoS flows. We also use Linux kernel
modules, we call ipt drop and ipt setTOS, as the
packet dropping and packet remarking modules re-
spectively. These are based on the IPTables’[11]
packet capturing and mangling framework. The
modules are written as IPTables’ kernel extensions
to be called whenever a predefined filter indepen-
dently captures a packet.

Thus, based on a specified filter, a selected flow can
be subjected to any combination of packet dropping,
packet DSCP-field remarking, and introducing ex-
tra jitter & end-to-end delay variation attacks. The
attack intensities are user configurable.

STAT and the EWMA chart module are trained
with the VLL and the probe flows in the absence
of any attacks, and RULE is configured for check-
ing conformity with the SLA. Then the individual
attacks are launched to check the detection capabil-
ities of the modules. It is important to note that
the attacks can not differentiate between the probe
and the RTSP/TCP flow in the VLL.

Thus we monitor the VLL’s QoS amidst a moderate
background traffic and occasional attacks.

7 Test Results and Discussion

Figure 6 is a screen capture of a summary of alerts
generated in real time for about just over an hour
by the detection system. The anomaly detection
results from our tests are provided in Table 1.

0

0.5

1

1.5

2

2.5

3

3.5

4

50100150200250300350400450500
S

 V
al

ue
s

Log Number (tens of secs before present)

Statistical-Alerts Summary for Measure ID = 3

Normal
Yellow

Red

Figure 6: Screen capture of an Alerts Summary gen-
erated for over an hour. Shows an attack detection
Red ”alert-cluster”. The rightmost end is the most
recent alerts’ end.

Attack
Type

Detected? By? Time
Taken

Dropping Yes PgenMon,
EWMA, pps

<1 min

Dropping Yes TrafMon,
STAT, bps

<15
min

Jitter+ Yes PgenMon,
STAT, jitter

<15
min

Remarking
EF to BE

Yes PgenMon,
STAT, jitter

<1 min

Remarking
BE to EF

Yes PgenMon,
STAT, jitter

<1 min

Table 1: ArQoS Anomaly Detection Test Results

We have been able to achieve a 100% detection rate
for each of the attack types. For each type, there is a
certain threshold level of intensity of the attack be-
low which the detection takes more than 15 minutes
- too slow detections that we have ignored. These
intensity thresholds depend mainly on the statistical
significance of the attack on the present distribution
of the traffic parameter being monitored. For ex-
ample, a sub-1% packet dropping rate attack does
not produces a quickly detectable effect on a flow
that normally experiences dropping rates upwards

of 5%, whereas the same attack is quickly detected
when the dropping rate has been close to 0%. As
expected, the anomaly detection techniques fail to
detect a slow and progressive attack in which the
QoS of the flow is degraded over a long period of
time.

RULE, a bounds-checker for the QoS measures, de-
tects even these slow attacks once they eventually
degrade the QoS beyond the threshold levels.

The detection rate of RULE is much higher than
that of the anomaly detection methods for any at-
tack that is detected by all the methods. This is
due to the EWMA estimation delay associated with
the short term profiling in the anomaly detection
methods.

The selection of parameters used in the short term
EWMA estimation process is made under the fol-
lowing constraints.

• The STPeriod should be minimized for quicker
detection. We suggest that it should not be
greater than about 20 minutes.

• The num-
ber of short term estimate-components (, that
are averaged in the short term EWMA process
as given by the Equations (7) and (8),) which
have more than 1% weight in the EWMA es-
timator at any given instance is the effective
short term EWMA sample size, Ns. The FPR
increases with decreasing Ns, since, even intu-
itively, a small window of significance implies
a short term profile that is highly sensitive to
a present profile fluctuation. Thus Ns should
be maximized to reduce the FPR. We suggest
that the Ns should always be set above about
15.

• The period between two consecutive logs from
a given sensor is the sensor’s Inter-Logging Pe-
riod ILPeriod. Although not necessary, for ad-
ministrative convenience, we recommend using
the same value for ILPeriod for all sensors and
for all measures. Jitter involves an average over
a subgroup of probe packets received between
the times the receiving sensor makes two con-
secutive logs. Clearly then, this time between
two consecutive logs should be large enough to
allow the sensor to receive enough probe pack-
ets to average over. The probes are themselves
generated at a low rate (recommended max-

imum of 2 packets per second). As a func-
tion of these constraints then, we recommend a
ILPeriod of at least 10 seconds, that guaran-
tees at least 10 probe packets in that period at
a 1 probe packet per second and a 0% packet
dropping rate.

From Equations (7) and (8), it is straight forward to
note that for a STPeriod period to have a window
of 99% significance translates to

r
ST P eriod
ILP eriod = 0.01 (22)

while Ns is obtained (approximately) as a geometric
progression sum as

Ns ≈ 1− r
ST P eriod
ILP eriod

1− r
≈ 1

1− r
(23)

Then, eliminating r from the above two equalities
gives

STPeriod =
−2× ILPeriod

log10(1− 1
Ns

)
(24)

Figure 7 is based on Equation (24). Considering
the above mentioned constraints, we settled on a
STPeriod (short term estimation period) of 15 min-
utes, that corresponds to a Ns of about 20 at a log-
ging or sampling frequency of the sensors of once
in 10 seconds. We recommend a probe generation
rate of 1 or 2 packets per second, to ensure a good
subgroup sample size for jitter and a low network
flooding (8 to 16 kbps in typically more than sev-
eral hundreds of kbps of VLL normal/data traffic).

The long term period should be long enough to pro-
file a (weakly) stationary distribution and should be
short enough to capture a (slow) shift in the distri-
bution mean typical to QoS flows. We suggest a
LTPeriod of about 4 hours.

Attacks that involve targeting only the packet
bursts in a VLL while not significantly affecting
the bit rates can not be detected in general. This
is so because, the attacks appear to the detection
system as normal policing by a router. Since the
probes are spread uniformly in the VLL flow, the
attacks on bursts statistically affect the actual data

0

5

10

15

20

25

30

0 5 10 15 20 25 30

S
T

P
er

io
d

(m
in

s)

Effective Sample Size Ns

ILP = 5s
ILP = 10s
ILP = 15s

Figure 7: Curves illustrating the tradeoff between
Detection Rate (from STPeriod) and False Positive
Rate (from Ns)

flow more than the probe flow. This renders the
PgenMon probe flow sensors insensitive to the at-
tack, since they monitor the jitter and packet rates
of only the probes. The only defense against such
attacks, we believe, is that the VLL flow should be
policed at boundary and some core routers to mini-
mize its burstiness. Further, it is important to note
that a dropping attack in particular that targets the
bursts while maintaining the packet and bit rates is
difficult to effect in a real world. This is because
the end processes and their TCP transport proto-
col interpret the attack as a network congestion and
adaptively vary the bit and packet rates of the flow
between them.

We define the False Positive Rate (FPR) as

FPR =
Total Y or R Alarms

Total N, Y, or R Alarms
(25)

measured over (say) a 24 hour period, given that
the network has been isolated from any attacks or
externally induced anomalies.

Both the STAT and the EWMA Chart methods
have inherent FPRs that arise due to the tail prob-
abilities of the corresponding χ2 and the Normal
distributions on which they are based. The χ2 tail
probability α and the 3σ Normal limits are chosen
such that each leave a 1% chance for an error in de-
tection. Indeed, the FPR that the modules produce
together is about 0.01.

The FPR due only to STAT is even lower. The
short term profile p′i are obtained as EWMA esti-

mates (Equation (7)). Thus they have a standard

deviation reduced by a factor of 1√
n

√
1−r
1+r (Equa-

tion (14)). Hence the FPR is lower than if the p′i
were based on individual measure values.

Further, due again to the EWMA estimation pro-
cess, STAT continues to generate anomaly alarms
for a period of the same order as the short term
estimation period, before returning to normal. Sim-
ilarly, a definite shift in the short term QoS distri-
bution results in a series of alarms from the EWMA
Chart as against occasional individual false alarms
that occur even in the absence of an anomalous
mean shift. Hence, we recommend that only when
a cluster or series of red alarms are detected (that
thus last for at least a few minutes), do we declare
the event as an anomaly detection. Else, the event
is ignored as a false alarm. We find that this elim-
ination by inspection procedure invariably reduces
the overall FPR rate by upto an order of magnitude
to 0.001. The inspection itself could be automated
by an algorithm that looks for a certain rate or num-
ber of alarms to alert the Security Officer. Figure 6
illustrates an alerts-cluster.

A VLL which is terminated and re-initiated fre-
quently (say more frequently than once in 24 hours)
poses a problem for TrafMon which flags the events
as anomalies. This is not a problem with PgenMon
as it monitors only probes that are terminated only
administratively. For such VLLs, then, we observe
lower false positives with probe based detection.

Since the probe packets have sequence numbers, and
since the jitter calculation takes these into consid-
eration, the calculation is not skewed by attacks
like packet dropping that indirectly vary the probe
packet inter-arrival periods. Hence jitter and packet
rates are fairly independently measured.

8 Conclusions

The ArQoS anomaly detection system detects QoS
degradation quickly and in real time. All the iden-
tified attacks can always be detected. The DiffServ
framework itself does not require any modifications.
The possibility of generating a false alarm is very
low and we believe the rate can be tolerated in most
deployments. The sensors and the detection engine
are all light weight threads that can monitor sev-
eral VLLs at a time. Each VLL is profiled indepen-

dently, plus each VLL has a separate anomaly score.
Thus, the order of complexity or effort, as far as pro-
cessing or attending to the alarms is concerned, is
equal to the number of VLLs in the network cloud.
Further, the profile updates do not require any hu-
man intervention. We thus believe that the detec-
tion system is highly scalable and can be used in
moderately (typical) sized QoS networks. The sys-
tem itself can be extended to other QoS parame-
ters. For example, end to end delays can be mon-
itored once boundary router components are time
synchronized. RULE’s attack signature database
may be expanded as more attacks as investigated
and defined.

9 Future Research Directions

With anomaly detection, typically, the number of
false positives exceed the number of true positives.
Hence, considerable effort has to be expended by
security officers in investigating the causes of an at-
tack alert before deciding whether they are either
false alarms or actual attacks that need further look-
ing into. Moreover, we find that a single point at-
tack in the network may generate attack alerts at
multiple other points in the QoS network. Plus, we
may need to monitor multiple points of the network
just to detect a single instance of an attack.

In view of this, we are exploring ways to allow us
to generate audit reports that would aid a security
officer to know the type of attack that occurred,
the intensity of the attack and the exact node(s) or
path(s) in the network that was attacked.

Presently, we are investigating the use of the Ab-
ductive Inference Model proposed in [23] for event
management and correlation in a Bayes belief net-
work. With this model, each alarm Ai would be
associated with the probability of it being lost (li),
the probability of it being generated spuriously (si),
and a list of all possible attacks which would have
caused it. The event correlation engine would then
take alerts as input events from sensors distributed
over the network and generate an audit report de-
scribing the most likely explanation for those alerts.

10 Acknowledgements

We would like to thank a number of co-researchers
who have contributed to several components of this
work. These include Daniel Stevenson at Advanced
Networking Research, MCNC, Dr. Fengmin Gong
at Intruvert Networks, Dr. Frank Jou at IBM, and
Dr. Felix Wu of the University of California, Davis.
This work is funded by a grant from the Defense
Advanced Research Projects Agency (DARPA), ad-
ministered by the Air Force Research Labs (AFRL),
Rome under contract F30602-99-1-0540. We grate-
fully acknowledge this support.

References

[1] RealPlayer and RealServer from RealNetworks
http://www.realnetworks.com/.

[2] B. Adamson. Multi Generator MGEN Toolset
from Naval Research Laboratory, Available at
http://manimac.itd.nrl.navy.mil/MGEN/.

[3] D. Anderson, T. Lunt, H. Javits, A. Tamaru,
and A. Valdes. Detecting unusual program
behavior using the statistical components of
NIDES. Technical Report SRI-CSL-95-06, SRI
International, Computer Science Laboratory,
May 1995.

[4] S. Blake, D. Black, M. Carlson, E. Davies,
Z. Wang, and W. Weiss. An architecture for
differentiated services. Technical Report RFC
2475, IETF DiffServ Network Working Group,
December 1998.

[5] R. B. Blazek, H. Kim, B. Rozovskii, and
A. Tartakovsky. New adaptive batch and se-
quential methods for rapid detection of network
traffic changes with emphasis on detection of
”denial-of-service” attacks. Technical report,
University of Southern California, Center For
Applied Mathematical Sciences, 2001.

[6] Mark Carson. NIST Net from National Insti-
tute of Standards and Technology, Available at
http://snad.ncsl.nist.gov/itg/nistnet/.

[7] Dorothy E. Denning. An intrusion detection
model. IEEE Transactions on Software Engi-
neering, SE-13(2):222–232, Feb 1987.

[8] Don Smith et al. thttp from University of North
Carolina, Chapel Hill.

[9] Herv Debar et al. Towards a taxonomy of in-
trusion detection systems. Computer Networks,
31:805–822, 1999.

[10] R. Braden et al. Resource ReSerVation Pro-
tocol (RSVP) - Version 1 Functional Specifica-
tion. Technical Report RFC 2205, IETF Net-
work Working Group, September 1997.

[11] Rusty Russell et al. IPTables from the Net-
filter/IPTables Project. Available at
http://netfilter.samba.org/.

[12] T. D. Garvey and T. F. Lunt. Model based
Intrusion Detection. In Proceedings of the 14th
National Computer Security Conference, pages
372–385, 1991.

[13] J. Heinanen, F. Baker, W. Weiss, and J. Wro-
clawski. Assured Forwarding PHB group. Tech-
nical Report RFC 2597, IETF DiffServ Net-
work Working Group, June 1999.

[14] Robert V. Hogg and Elliot A. Tanis. Probability
and Statistical Inference. Prentice Hall, 1997.
385-399.

[15] Koral Ilgun, Richard A. Kemmerer, and
Phillip A. Porras. State transition analy-
sis: A rule-based intrusion detection approach.
IEEE Transactions on Software Engineering,
21(3):181–199, 1995.

[16] V. Jacobson, K. Nichols, and K. Poduri. An
Expedited Forwarding PHB. Technical Report
RFC 2598, IETF DiffServ Network Working
Group, June 1999.

[17] H. Javits and A. Valdes. The NIDES statis-
tical component: Description and justification.
Technical report, SRI International, Computer
Science Laboratory, March 1993.

[18] Y. F. Jou, F. Gong, C. Sargor, X. Wu, S. F.
Wu, H. Y. Chang, and F. Wang. Design and
implementation of a scalable intrusion detec-
tion system for the protection of network in-
frastructure. DARPA Information Survivabil-
ity Conference and Exposition(DISCEX) 2000,
2:69–83, January 2000.

[19] Alexey Kuznetsov. iproute2 Available at
http://diffserv.sourceforge.net/.

[20] Emilie Lundin and Erland Jonsson. Some prac-
tical and fundamental problems with anomaly
detection. In Proceedings of the Fourth Nordic
Workshop on Secure IT systems, Kista, Swe-
den, November 1999.

[21] Bruce A. Mah. An empirical model of HTTP
network traffic. In INFOCOM (2), pages 592–
600, 1997.

[22] K. Nichols, S. Blake, F. Baker, and D. Black.
Definition of differentiated services field (ds
field) in the ipv4 and ipv6 headers. Techni-
cal Report RFC 2474, IETF DiffServ Network
Working Group, Dec 1998.

[23] David Alan Ohsie. Modeled Abductive Inference
for Event Management and Correlation. PhD
dissertation, Columbia University, 1998.

[24] K. Pearson. On the criterion that a given sys-
tem of deviations from the probable in the case
of a correlated system of variables is such that
it can be reasonably supposed to have arisen
from random sampling. Philosophical Maga-
zine, 5(50):157, 1900.

[25] Diheng Qu. Statistical anomaly detection for
link-state routing protocols. Master’s thesis,
North Carolina State University, Computer
Science, 1998.

[26] Diheng Qu, B. M. Vetter, R. Narayan, S. F.
Wu, F. Wang, Y. Frank Jou, F. Gong, and
C. Sargor. Statistical anomaly detection for
link-state routing protocols. Proceedings of
the 1998 International Conference on Network
Protocols, pages 62–70, October 1998.

[27] S. W. Roberts. Control chart tests based
on geometric moving averages. Techometrics,
1(3):239–250, 1959.

[28] E. Rosen, A. Viswanathan, and R. Callon. Mul-
tiprotocol label switching architecture. Techni-
cal Report RFC 3031, IETF Network Working
Group, January 2001.

[29] Thomas P. Ryan. Statistical Methods for Qual-
ity Improvement. Wiley Series, 2000. 133-134.

[30] W. Shewhart. The applications of statistics as
an aid in maintaining quality of a manufactured
product. 1925.

[31] W. Shewhart. Economic control of quality of
manufactured product, 1931.

[32] W. Shewhart. Statistical method from the
viewpoint of quality control, 1939.

[33] Shiuh-Pyng Shieh and Virgil D. Gligor. On a
pattern-oriented model for intrusion detection.
Knowledge and Data Engineering, 9(4):661–
667, 1997.

[34] Aaron Striegel. Security issues in a differenti-
ated services internet.

[35] Christina Warrender, Stephanie Forrest, and
Barak A. Pearlmutter. Detecting intrusions
using system calls: Alternative data models.
In IEEE Symposium on Security and Privacy,
pages 133–145, 1999.

[36] J. Wroclawski. The Use of RSVP with IETF
Integrated Services. Technical Report RFC
2210, IETF Network Working Group, Septem-
ber 1997.

