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Abstract

We have conductedan empirical studyof a numberof computersecurityexploits and determinedhat the
ratesat which incidentsinvolving the exploit are reportedto the CERT canbe modeledusinga common
mathematicaframevork. Dataassociatedvith threesignificantexploits involving vulnerabilitiesin phf,

imap, andbind canall be modeledusingtheformulaC = I + S x v/M whereC is the cumulatve count
of reportedincidents, M is the time sincethe start of the exploit cycle, and I and S are the regression
coeficientsdeterminedoy analysisof theincidentreportdata. Furtheranalysisof two additionalexploits
involving vulnerabilitiesin mountdand statd confirm the model. We believe that the modelswill aid in

predictingthe severity of subsequentulnerability exploitations,basedon therateof earlyincidentreports.
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A Trend Analysis of Exploitations

Abstract

We have conductedan empirical study of a numberof computersecurityexploits and determined
thatthe ratesat which incidentsinvolving the exploit arereportedto the CERT canbe modeledusinga
commonmathematicaframework. Dataassociatedvith threesignificantexploits involving vulnerabil-
ities in phf, imap, andbind canall be modeledusingthe formulaC = I + S x v/M whereC is the
cumulative countof reportedincidents,M is thetime sincethe startof the exploit cycle, and I and.S
aretheregressiorcoeficientsdeterminedy analysisof theincidentreportdata. Furtheranalysisof two
additionalexploitsinvolving vulnerabilitiesin mountdandstatdconfirmthe model. We believe thatthe
modelswill aidin predictingthe severity of subsequentulnerability exploitations,basedon the rate of
earlyincidentreports.

1 Intr oduction

Flawsin systemsoftwarecreatevulnerabilitiesthatenablemost of thereportedsystemintrusions.Anecdo-
tal evidencesupportsa hypothesighat poor systemadministrationpracticesjncluding the failure to apply
available patchesn atimely fashion,resultsin anexcessie window of vulnerability for the affectedsys-
tems. As far aswe have beenableto determine no studiesexist that would either confirm or refute this
conjectureghoughis is widely believed andoftenrepeated.

Several previous studieshave attemptedo estimatethe numberof computersat risk for specificvul-
nerabilities[1, 2], but nonehave focusedon the temporaldistributions of intrusionsthat exploit a given
vulnerability To addressheseshort-comingsye examineddatacollectedby the CERT CoordinationCen-
ter for several incidentsinvolving specificvulnerabilities,and we have found that the evidencetendsto
supportthe hypothesisvenmorestronglythananecdotatvidencewouldtendto indicate[3]. Furthermore,
our evidencehasidentifiedatemporaldistribution of intrusive actvity with respecto thedefiningeventsin
exploit cyclesthatvariessubstantiallyffrom thathypothesizedby otherresearcherm thefield [4, 5].

In this paper we present statisticalmodelthatrelatesthe rateat which intrusionsaccumulateandwe
provide evidenceto supportit. Theresultis a modelthat assistan predictingthe severity of an exploita-
tion cycle. The existenceof a severity predictorallows incidenthandlingorganizationsto plan and staf
accordingly Additionally, the knowledgeof the severity of anincidentcanassistoperationabrganizations
in performingmore effective risk managementOur model, presentedn section4, indicatesthat eachof
the vulnerabilitiesthat we have studiedaccumulatén a similar, and nearlinear, fashion. Identifying and
validatingthe modelrequiresa regressioranalysison theintrusiondatafor eachvulnerability

To performour analysiswe extracteddatafrom theincidentreportrepositoryof the CERT Coordination
Center In section3, we will describehedataavailableat CERT andoutlinethe procedureshatwe usedto
selectthe specificvulnerabilitiesthat we examined. While the available datais far from ideal, we believe
thatit is usablefor our purposes. The datathat we extractedconfirmsthe hypothesisin which the vast
majority of exploits occurlong after patcheghatwould thwart themareavailable-demonstratinghatpoor
administratve proceduresre an enablingfactor The reasondor thesepracticesandthe developmentof
interventionsto alterthemareleft for future efforts.

The remainderof this paperis divided into several sections. First, we describethe eventsthat occur
during an exploit cycle- beginning with the preconditiondor exploitation and continuinguntil the exploit
is no longerviable. This is followed by a discussiorof the individual caseshat we studiedincluding a
discussiorof thedataavailableto us,andthe criteriawe usedto selectthereportedcasesNext, we provide
the stepsusedto generatehe model, and the resultsof applyingit to additionalsamplesfor validation.
Finally, we concludethe paperanddescribeour future work.

IMisconfigurationappearso accountor mary of theremainder



2 Vulnerabilities and Exploit Cycles

Systemsoftwareis lessthan perfect. As aresult, it is sometimegossibleto take advantageof flaws in a
privilegedprogramto forceit to take or supportactionsthatviolatetheletteror intentof the securitypolicy
of a systemin whichit is deplo/ed. In this section,we discussvulnerabilitiesandexploits in termsof the
eventsrelatingto the introductionof the flaw, its discovery andthe developmentof an exploit that takes
advantageof the flaw (now a vulnerability). We alsoconsiderthe patternsof actiity thatoccurwhenthe
vulnerabilitybecomesvell known, andits exploitationis wide spread.

2.1 The Defining Events

A securityrelevant flaw is a necessanpreconditionfor the exploitation of a piece of systemsoftware.
Usually flaws occurby “accident” or (more likely) dueto carelessnessn the part of a programmetror
designerNot every flaw leadsto a vulnerability however. First, theflaw mustbediscovered, andit mustbe
possibleto exploit theflaw in suchaway asto alusetheprivilegesgrantedheprogramor otherwisedamage
the systemon which the softwareis installed. In somecases|ong periodsof time may lapsebetweenthe
introductionof the flaw, its discovery, andthe developmentof an exploit that takes advantageof the flaw.
For example, The TCP/IPprotocolg[6, 7] weredefinedin theearly1980s.In 1989,Bellovin [8] announced
the discorery of a flaw that he conjecturedcould leadto an exploit thatwould allow anintruderto spoof
IP addressesExploitsdid not appeawuntil someyearslater[9]. Onthe otherhand,the creationof “Trojan
Horse”codemayresultin the nearsimultaneousntroductionof a flaw, its discovery, andthe creationof an
exploit to take adwvantageof it. In generalwe saythatthereis avulnerability only whensoftwareaffected
by aflaw is deployed andavailablefor widespreadise,the flaw hasbeendiscorered,andan exploit exists
thattakesadwantageof the flaw.

Given a vulnerability othereventsmay occur It is possiblefor a patch or otherremediation to be
createdhatremovestheflaw or compensate®r it in somemannerlt is alsopossiblethatthevulnerability
will be publicized sothatits existencebecomeswvidely known. In addition, exploits for the vulnerability
may be scripted (and the script publicized) so that the exploit can be carriedout as a rote exerciseby
attaclerswho might (andusuallydo) lack the skill to carryit outin detailby themseles. Thevulnerability
dies whenthereare no moreinstancesof the flaw that canbe exploited. This will occurwheneitherall
instance®f thevulnerablecodehave beenpatchedrwhenthey have beernretiredor replacedy aversionto
thesoftwarethatdoesnot containtheflaw in question it is alsopossiblefor avulnerabilityto becomepasse
beforeit dies. This happensvhenthe attentionof the exploitation communityis directedelsevhereand
exploits becoménfrequent-eventhougha substantiahumberof vulnerablesystemgemain.Occasionally
aresugenceof actiity involving a passevulnerabilityis seenasdiscussedn section3.2.3. And, in some
casesyulnerabilitiesarereincamated in thata previously eliminatedflaw is reintroducedn a subsequent
softwareversion.

Note that, while the introductionof theflaw, its discovery, andthe creationof an exploit mustoccurin
that order oncea vulnerability is recognizedthereis no uniqueorderingrequirementor the subsequent
events.Someorderings g.g. deathbeforescripting,may not occur

3 Vulnerability CaseStudies

Thequality of ary modelreliesuponthevalidity of the datausedto generatehe model. In this section,we
describethe approachwe usedin the collectionof our datasamplesaswell asshortdescriptionsof each
sample.



Theinitial datawe examinedcoversa periodfrom 1996through1999while thevalidationdataextends
the periodthroughOctober2000. Differentperiodswereselectedor two reasonsto increasesamplesize,
andto allow the examinationof morecurrentincidentsto ensurehe modelremainsvalid with morecurrent
samples.

The datacontainedin the databaserovidesa uniqueview of intrusionsthat cannotbe obtainedelse-
where.However, thereareseveralissueswith thedata,which we discussbelav. After this, we first present
theinitial threecasestudieshatwereusedin thegeneratiorof our model. Then,we presenthethreecases
usedto validatethe model.

3.1 Data Collection Approach

While the CERT/CC datais the bestavailablesourcefor ananalysisof thistype,thereareseveral problems
relatedto the data. The foremostis thatall of thereportsareself-selectingOnly a subsebf thosesitesthat
experiencesomesortof problem,eitheranintrusionor a probe,will reportit. As aresult,thedatacollected
by CERT/CC doesnot accuratelyreflectthe entirescopeof theintrusionactiity onthelnternet.

Anotherproblemwith the datarevolvesaroundthe humanelementof reporting. At somepoint, the hot
vulnerability becomegasseandfocusshifts to the vulnerability du jour, i.e. attaclersloseinterestin it,
administratordhiave alreadydealtwith it andeitherunderstand or aretired of it. This mayartificially lower
theincidencerateof thevulnerability While the effectsof theseproblemson the datasetaresignificant,we
believe thatthe datais sufficientto provide a window into the muchlarger problem.

Whenanincidentis closedby CERT/CC, a summarycontainingall of the pertinentinformationabout
theincidentis created.The summarycontainsboth formattedandfree formatdiscussiorsections.Oneof
the formattedfieldsis the vulnerability that was exploited. To collectthe initial data,the total numberof
incidentsfor every vulnerabilityknown to CERT/CCwascalculated Fromthislist, thethreevulnerabilities
with the highestincidenceratewereselectedor furtheranalysis.Next, eachincidentidentifiedasinvolving
the specificvulnerability was examinedby readingthe discussiorsectionto ensuretwo conditionsheld.
First, thattheincidentdid in factinvolve the specificvulnerability andsecondthattheincidentinvolved an
intrusion.In somecasestheincidentonly involvedunsuccessfybrobedor thevulnerability If theevidence
wasclearthatboth conditionsheld, thentheincidentwascountedasa successfuintrusion. Otherwise the
incidentwasnotcounted.Often,anincidentincludessereralandsometime$iundredgo thousandsf hosts.
Thesehostswerenotaddedo theintrusioncountunlesshey metthecriteriapreviously mentionedln some
of thesecasesgapturedogs clearly indicatedthat numeroushostswere successfullyexploited. However,
the actualdatesof the exploitation of the hostscontainedn thelogs could not be determinedln this case,
the datethat the logs were obtainedwas usedasthe incidentdate. The resultis that an occasionakpike
occurs.

3.2 Initial Vulnerability Samples

This sectionpresentsa brief descriptionof theinitial vulnerabilitiesstudied. The threevulnerabilitieswith
thehighestincidencerateduringourinitial studyyears(1996- 1999)wereselectedo provide asmary data
pointsaspossible.

3.2.1 Pnhf

Phfis the namefor acommongatavay interface(CGl) program.CGI programsaxtendthe functionality of
websenershy providing a sener-sidescriptingcapability The purposeof the phf programis to provide a
web basednterfaceto a databasef information-usually personneinformationsuchasnamesaddresses,
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Figurel: Phfintrusions

andtelephonenumbers.The vulnerability exploitedin phf wasanimplementatiorerror, andnot anunder
lying securityproblemwith CGI or theweb sener. Thevulnerablephf programwasdistributedwith both
theapacheandNCSAHTTPdseners.

The phf scriptworks by constructinga commandine string basedon input from the user While the
scriptattemptedo filter the users input to preventthe executionof arbitrarycommandsthe authorsfailed
to filter a new line character As a result,attaclers could executearbitrarycommandsn the web sener at
the privilege level of the http sener daemon-usuallyroot[10]. A plot of the countof phf incidentsover
timeis shavn in Figurel. In thisandall following plots,incidentsreportedby dayarebinnedby month,so
thatmultiple incidentsmayappeaiin thesamemonth.

3.2.2 BerkeleylInter net NameDomain (Bind)

Bind providesanimplementatiorof thedomainnamesystem(DNS) which mapsaninternethosthamesuch
asbozo.cs.umd.edto its InternetProtocol(IP) addressj.e. bozo.cs.umd.edmapsto 128.8.128.38.The
flaw in bind involved a buffer overflow in the inversequerydirective to bind which takesan IP addressaind
mapsit to thehosts fully qualifieddomainname(FQDN),i.e. 128.8.128.38napsto bozo.cs.umd.edii3].
A plot of the countof bindincidentsovertimeis shavn in Figure?2.

3.2.3 Internet MessageAccessProtocol (IMAP)

IMAP provides a methodto accesselectronicmail over a network using a senerbasedapproach. The
clientis ableto accessaand manipulatehe messageasif they werelocal. A client, onceconnectedo the
IMAP servicemay create delete andrenamemessageandmailboxes. A clientconnectdo the serviceby
contactingthe sener througha well-known port, 143. After connectingthe client mustauthenticatatself
— usuallythroughsendinga usernamandpasswerd. Unfortunately a buffer overflow existedin the source
codedistributed by the University of Washingtorin the login processsuchthatthe useof along username
would causea buffer overflow [11].
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Figure2: Bind intrusions

Unfortunately the IMAP sener containeda secondflaw that wasidentifiedalmosta yearlater This
flaw, alsoa buffer overflow, involved the sener level authenticatioomechanisnof IMAP [12].

Ratherthanseparateéhe two flaws into differentcasestudiesthe two werecombinedfor two reasons.
First, theincidentdata,in mostcasesdid not differentiatebetweerthetwo flaws. And secondsereral later
scriptscombinedthetwo flaws- makingit difficult to determinesxactly which flaw wasexploited. A plot of
the countof IMAP incidentsovertime is shavn in Figure3.

3.3 Validation Samples

This sectionpresentsa brief descriptionof threevulnerabilitiesusedas validation samplesor the model
we build in the next section. In the initial sampleswe combinedthe two differentIMAP vulnerabilities
becauseat wasdifficult to differentiateintrusions.In the newv samplesyve alsoconsidertwo vulnerabilities
with the sameprogram,statd Thistime, however, we candifferentiatebetweerthe vulnerabilitiesbecause
of changesn thereportingof theincidents.For severalyearsnow, vulnerabilitieshave beengivena unique
identifier by the CERT/CC. Previously, the vulnerability exploited in anincidentwould be reportedby it's
name.e.g.IMAP, only. Recently however, theincidentreportsnow alsoincludethevulnerabilityidentifier.
As aresult,we wereableto easilyseparateheincidentsrelatedto thetwo statdincidents.

3.3.1 mountd

Thenetworkedfile system(NFS)usesa privilegeddaemoron senersto permitclientsto mountremotefile
systemsandutilize themaslocal file systems.A buffer overflow existedin this daemorprogram,mountd
on Linux andSGI systemsvhich permittedanattacler to executearbitrarycodeon the sener [14].

3.3.2 statd bounce

Thestatdbouncevulnerabilityutilized two distinctvulnerabilities-statdandautomountdNFSuseghestatd

programto communicatehangedetweerNFSsenersandclients. Theautomountgrogramautomatically
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Figure3: IMAP intrusions

mountsfile systemsvhenthey arerequired.

Thevulnerability with statdacceptedtallsto servicesandforward themasif they originatedfrom the
statdprogram. Attackers utilized this to senda requestto automountdvhich containeda localhostbuffer
overflow. “Bouncing” therequesthroughstatdpermittedthe exploitationof alocalhostflaw remotely[15].

3.3.3 statd format

Thestatdformatvulnerabilityallows theremoteexecutionof arbitrarycodeattheprivilegelevel of rpc.statd
whichis usuallyroot astheresultof uncheckd userinput[16].

4 Modeling and Analysis

Whenwe startedour investigation,we were primarily interestedn confirmingthe “poor systemadminis-
tration” hypothesisasnotedin theintroduction,andwe hadaninitial intuitive ideaof the processvhereby
vulnerabilitiesare discavered, exploited, and re-mediated.In general,we expectedthe rate at which ex-
ploits occurto befairly smallin the periodfollowing the discovery of avulnerabilityandto increaseasthe
vulnerability and its associatedxploit becomemorewidely known. We expectedthe rateto decreases
the exploit becamepasseor asthe pool of vulnerablemachinesbecamesmallerdueto the availability and
applicationof patchesr thereplacemenof vulnerablesoftware.

Figure4 illustratesthe kind of behaior thatwe expectedto find. We werenot alonein makingthese
assumptionsKendall[5] givesa similar modelin his MastersThesis,and morerecently Bruce Schneier
put forth a similar modelin his online newsletter Cryptogram[4]. Whenwe analyzedhe CERT datafor
theincidentsdiscussedh the previous sectionwe discoreredthatwe werewrong. As thegraphsn Figures
1-3indicate,theincidentshave a decidedlypositive skew toward early monthsin the reporting,ratherthan
thenggative skew hypothesizedn figure4. Further almostall of theincidentsthatwereassociatedavith the
vulnerabilitieswe examinedwereavoidable.Patchesvereavailableprior to the startof significantreporting
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actiity, which occurredwhen a script for the exploit was madeavailable, ratherthan shortly following

disclosure.Thus,scriptingseemsdo be the majortrigger for incidents,andthe largestnumberof incidents
appeasoonafterthisevent. Thisis discussedh moredetailelsavhere[3] andwill notbeconsideredurther
here.

Having found similar shapesn the raw datafor all threeincidents,we thenexaminedthe cumulatve
graphsof theincidentsover time, andfoundthat eachcasecould be transformednto a nearlylinearform.
As aresult,we performedastatisticalanalysisof thedataandhave determinedhatdatafrom thethreecases
canbemodeledusinga singleframewnork. Datafrom the two largestvalidationexploit cyclesalsoseemnto
fit the framevork aswell?. Thus, it appearshatdatafrom the early stagesof anexploit cycle, particularly
therateatwhichincidentsarereportedollowing thereleasef a script,canbeusedto predictthemagnitude
of thecycle, but not, asyet, its duration.

In the remainderof this section,we describeour analyticaltechniquesand our results. The sectionis
illustratedwith graphicalresultsfrom a single exploit cycle, phf, asdescribedn section3.2.1,but similar
graphsfor the othercyclesaregivenin Appendix5.

4.1 Graphical Analysis

Our goalin studyingthreedifferentvulnerability incidentswasto determinef therewereary underlying
similaritiesor trendsthat wereindependenbf ary particularincident. Suchtrendscould then potentially
be usedto understané@ndrespondmoreeffectively to futureincidents.We plottedthe raw andcumulatve
datagroupedby monthfor thethreevulnerabilityincidents.We alsosplit the IMAP datainto two separate
incidentsbasedon the discovrery dateof the secondncidentsothatwe could alsoconsiderbothincidents
separatelyRav andcumulatve plotsfor the phfincidentareshavn in Figurel andFigure5. Raw plotsfor
theotherincidentsappeain Figures3 and2. Cumulatve plotsfor theotherincidentsarefoundin Appendix
5 (Figures10-13).All of theseplotsshav similar shapesindicatingthata commonmodelrelatingtime to

2Thethird validationsampledoesnot containenoughdatapointsasyet.
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Figure5: Cumulative phf intrusions

incidentsmight be applicableto all theincidents,andperhapsgo futureincidentsaswell. The shapeof the
cumulative plotsindicateshata standardinearregressiormodelcanbe appliedusingmonthasa predictor
for incidentcount,but only after satisfyingcertainassumptions.

First, the plots of the datashouldindicatea linear relationship. The cumulatve plots areall slightly
curved asaresultof fewer reportedncidentsin latermonths. This drop off violatesthefirst assumptionas
well asthe secondwhich requiresa relatvely normaldistribution of the raw datameasuredTheraw data
plotsall shav aslightly positive skew away from anormaldistribution asaresultof morereportedncidents
in earliermonths.

4.2 Transformation Analysis

To solwe theseproblems,a standardtechniquein regressionanalysisis to apply a transformationto the
independenbr dependenvariableor both. In [17], the authorssuggesthat applyingeithera squareroot
or logarithmictransformatiorio theindependenvariable(month)canhelpcorrectpositive skewnessin the
raw data.Suchtransformationslsoremore someof the curvaturefrom the cumulatve data.We performed
regressionaising both transformationsaswell asstandardnon-transformedegression,andobtainedthe
bestoverall results(criteria describedbelow) for all threeincidentsusingthe squareroot transformation.
Plots for the phf incidentare shavn in Figure 6 and Figure 7. Plots for the otherincidentsappearin

Appendix5 (Figures14-21). All of the transformedaw dataplots shav a morenormaldistribution, and
thetransformectumulatve plotsaremorelinear, asdesired.

4.3 ResidualAnalysis

In additionto the assumptiongboutlinearity andnormality of theraw data,linearregressioralsorequires
certainpropertiedbetrue of the errorsin the regressiomrmodel. While a goodregressiormodelwill explain
mostof the relationshipbetweenthe independenaind dependentariablesbeing studied,somedegreeof
erroralwaysremains.Regressiorseekgo reduceerrorby minimizing residualsthedifferencebetweerthe
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Phf Incident: Hormal Probability Plot
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measuredaluesof thedependentariableandthevaluespredictedby theregressiormodel. Theseresiduals
shouldbe normally distributed with meanO and constantvariance. To checkthe normality property one
plots the standardizedesidualsagainstthe correspondingpercentilein a normal probability plot. If the
residualsare normally distributed, the pointswill fall alonga straightline. To checkthe constantvariance
property(knovn ashomoscedasticityhneplotsthestandardizedesidualsagainstheindependentariable.
If theresidualshave constantvariancethey shouldfall in ahorizontalbandaborve andbelav thehorizontal
line Y=0.

The normalprobability plot (Figure 8) for the phf incidentshavs the resultsfor the squareroot trans-
formationandindicatesthatthe distribution of the residualss relatively, thoughnot perfectlynormal. The
standardizedesidualplot for the squareroot transformatioron the phf incident(Figure9) is not perfectly
scatteredbut doesnotindicateary particularpattern.Plotsfor the otherincidentsshav similar resultsand
appeaiin Appendix5 (Figures22-29). In [18], the authorsuggests numberof possibleremediesvhen
theseplotsdo notlook appropriate A logarithmictransformationratherthana squareroot transformation,
is suggestedor remaoving the S shapefrom the normal probability plots, but this transformatiordid not
improve theseplots over the squareroot transformation Weightedregressionmultiple regressionnonlin-
earregressionandremoval of outliersarealsosuggestedHowever, weightedregressionwhich involves
assigninga differentweight to eachpointin the data,is only usefulwhenthe residualsexhibit a pattern
indicative of a non-constantariance. Multiple regressionwhich usesmorethan one predictor may be
appropriate but we currently only have time asa known predictor Nonlinearregressionis usually only
appropriatewhenthereis a knowvn, underlyingrelationshipbetweenthe independenaind dependentari-
ables,suchasa biological or chemicalphenomenaWe did notidentify or remaove ary outliersbecausave
aggr@atedour databy month,soary dayto dayabnormalitiesvould likely be smoothedut.

4.4 RegressionAnalysis

Having identifiedthe squareroottransformatiorasthe bestcandidatdor meetingthe assumptionsequired
for regressionwe performedheregressioranalysis.Theresultsof theregression®nthetransformediata
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for all threeincidentsandthe two split IMAP incidentsarelistedin Tablel. Theseregressionsalculatea
slopeandinterceptsuchthat the relationshipbetweentime (in months)sincethe startof the exploit cycle
(M) andcumulatve incidentcount(C) satisfieghelinearequation:C' = I + S x v/M wherel andS are
theinterceptandslopeof theregressiorline, respectrely. Thequality of theregressions usuallymeasured
usingthecoeficientof determinationknown asR?, which describesheproportionof theobseredvariation
in the countthat canbe explainedby time. The closerthis valueis to 1, the betterthe regression. We
obtainedvalueslarger than .89 for all incidents,indicating that this regressionmodelis quite good. An
analysisof variance(ANOVA) testcomparingthe variationexplainedby R? to the variationexplainedby
errorsyieldedalmostnggligible P-values(P<.01) for all incidents,indicatinga strongprobability thatthe
modeladequatelyexplainsthe relationship. We also performedregressionausing the untransformediata
andthe logarithmically transformeddatafor comparison(seeTable2). The R? valuesfor the squareroot
transformatiorwere the bestfor all incidentsexceptfor the secondimap incident, wherethe logarithmic
transformatiorwas slightly better However, evenin this last case,we would still choosethe squareroot
transformatiorbecauseéhedifferencas sosmallandtheplotsfor thesquareroottransformatiorwerebetter

Theresultsfor thevaluesof theslopesandinterceptof thelinesin Tablel donotindicateary similarity
in line shapeacrosgheincidents.Theslopevaluefor the phfincidentis roughlydoublethatof thecombined
IMAP incidents,androughly quadruplehatof thebind incident. The bind incidenttook placeover amuch
shorterperiod of time thanthe othertwo incidents,andthe IMAP incidentincludestwo separatevents.
Thesedifferencesmay accountfor the lack of a commonslopeand/orinterceptsharedby the incidents,
thoughsucha commonmodel may not be realistic even with cleaner more uniform datagiven that the
natureof the incidentsmay be quite different. Nonethelesst-testson all the valuesof the slopesand
interceptsyieldedalmostnegligible P-values(P«.01) for all incidents,indicatinga strongprobability that
thesevaluescanbe usedto adequatelyexplain the relationshipbetweenmonth and cumulatve countfor
eachseparaténcident.
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R? P-Value | Slope| P-Value | Intercept| P-Value
bind 0.908| 3.70E-29 | 60 3.70E-29 | -50 1.40E-12
phf 0.939| 2.03E-130| 240 2.03E-30 | -378 1.75E-65
All IMAP | 0.981| 8.02E-182| 126 8.02E-182| -167 2.09E-96
1stIMAP 0.965| 1.22E-80 | 124 1.22E-80 | -160 1.79E-50
2nd IMAP | 0.896| 6.96E-50 | 86 6.96E-50 | -96 1.31E-23

Tablel: Regressiorresultsfor squareroot transformation

Square Root | Logarithmic | Untransformed
bind 0.908 0.903 0.884
phf 0.939 0.910 0.881
All IMAP | 0.981 0.952 0.971
1stIMAP | 0.965 0.942 0.943
2nd IMAP | 0.896 0.897 0.833

Table2: Comparisorof R? valuesfor threetypesof regressions

4.5 Testingthe Model

Totesttheaccurag of ourmodel,we appliedit to additionalsamplego seeif it wasrobustenoughto handle
morerecentincidents. Themountdandstatdbounceancidentsdescribedn sections3.3.1and3.3.2provided
dataover aboutl5 months lessthanthe approximately30 monthscoveredby the IMAP andphf incidents,
but still enoughto consider We did not considerthe statdformatincidentdescribedn section3.3.3asit
only coveredfour months-too few datapointsto provide anadequat¢estasof yet. We performedhesame
analysedescribedabore to seeif the modelheld. The resultsare quite encouraging.For both datasets,
we performedstandardregression,squareroot transformatiorregression,and logarithmic transformation
regressionFor bothdatasets bothtransformationgmprovedtheraw andcumulatve dataplotsascompared
to the untransformediata. For both datasets,both transformationslsoimproved the normal probability
andresidualplots. For brevity, we illustrate thesepointsin Appendix5 with the samesetof plots asthe
original analysis:theraw andcumulatve plotsfor the untransformedlataandthe squareroot transformed
data,andthe normalprobability andresidualplotsfor the squareroot transformediata(Figures30—41).

Thecoeficientsof determinatior(R?) for theregressionperformedon thetwo additionaldatasetsand
their squareroot andlogarithmictransformationsareshavn in Table4. For bothdatasets,boththe square
root andlogarithmictransformationproducebetterresultsthanthe untransformediata. All the R? values
for the transformeddataare .839 or better indicating a strongcorrelationbetweencumulatve countand
time, thoughnot asstrongasour original data.For bothdatasets the R? for thelogarithmictransformation
is betterthanthatfor thesquareroottransformationyhichdoesnotsupportouroriginal choiceof thesquare
root model.However, the smallersizeof thetwo new datasetsmay artificially skew the datain favor of the
logarithmicmodel. Given moredataover alongerperiodof time for thesetwo incidents,we would expect
to seethenumberof incidentsdecreaseThis in turn would favor the squareroot model,consistentvith our
analysison thelargerdatasets.We will obtainmoredatafor thesetwo incidentsto verify thesehypotheses
in thefuture.

The R?, slope,andinterceptvaluesandtheir respectie P valuesfor the regressionon the squareroot
transformeddataare shavn in Table3. Althoughthis wasnot the bestmodelfor thesenew datasets,the
P-valuesfor all but the interceptfor the statdincidentareall significant(P<.01), indicatingthatthe model
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R? P-Value | Slope| P-Value | Intercept | P-Value
mountd | 0.839| 7.25E-28| 72 7.25E-28| -84 3.91E-14
statd 0.857| 8.47E-20| 52 8.57E-20| -10 1.98E-01

Table3: Regressiorresultsfor squareroot transformation

Square Root | Logarithmic | Untransformed
mountd | 0.839 0.868 0.761
statd 0.857 0.935 0.707

Table4: Comparisorof R? valuesfor threetypesof regressions

remainsvalid. As with thethreeoriginal datasets theredoesnotappeato beary relationbetweertheslope
andinterceptvaluesfor thetwo incidents.

4.6 Model Selectionand Prediction

Giventheresultsof theregressioranalysesbove, alinearregressiormodelusinga squareoottransforma-
tion on time appeargo provide very goodpredictve power for the accumulatiorof securityvulnerability
incidentsfollowing thereleaseof a scriptfor the vulnerability More datais neededo authoritatvely select
the squareroot transformatiorover the logarithmicmodel, but we believe the squareroot modelwill pre-

vail. Theincidentsstudiedvary widely onthevaluesof the slopeandinterceptof theirrespectre regression
lines,indicatingthatthereis no oneformulafor aline applicableto all pastandfutureincidentswhichis as
expected However, givenafew monthsof datafor anew incident,we believe thataregressiorline fit using
thesquareoottransformatiorwill provide anaccuratesxtrapolationof theincidentreportingpatternin the

future. This informationprovidesa powerful tool for systemadministratorsAlthoughit cannotpredictthe

durationof avulnerability it canidentify themostseverevulnerabilities- thosewith the steepestegression
line slopes. Armedwith thisinformation,the securitycommunitycanbecomepro-actve ratherthanreactve

with respecto incidentresponse.

5 Conclusionsand Future Work

Intuitively, mary researcherhave felt thatthe availability of patcheseducethe severity of incidentsaftera
smalltime delay Unfortunately our evidencehasfoundthis is not the case andthatincidentsaccumulate
regardlesof the existenceof correctiongor the exploited vulnerabilities. Theincidents howvever, accumu-
latein anearlinearfashionwhich hasallowedusto developa statisticalmodelof theincidentaccumulation
rate. While the modeldoesnot yet determinewhenan incidentwill dissipatejt doesprovide a predictor
for therate of growth of incidents. The benefitsof sucha predictorare significant. For instance pncethe
first few monthsof incidentdatahave beencollected,anincidenthandlingorganizationcanuseour model
to forecastthe rateat which the incidentwill continue. Suchanalysispermitsthe organizationto planit’s
stafing requirementsatherthanreacting.Operationabrganizationscanbenefitirom the knowledgeof the
seserity of continuingincidents. For instance mostoperationabrganizationgestvendorsuppliedpatches
prior to deploymentto ensurethatthefix for the vulnerability doesnot produceunwantedside effects. In
thecaseof securityrelatedpatchesatime-baris usuallyestablishedsto whenthepatchmustbedeploed.
Thistime-baris setbasedn the severity of the vulnerabilityandweighstherisk of the vulnerabilityverses
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the risk of reducedtesting. By usingthe severity of the incidentin conjunctionwith the severity of the
vulnerability organizationcanestablishatime-barthatprovidessignificantlybetterrisk managemerthan
if they hadjust consideredhe severity of thevulnerability

In the future, we planto collectadditionaldatato continuevalidationour modelandto perform“real
time” testsby predictingthe severity of currentincidents. We alsoplanto examineadditionalmodelsthat
may assistin predictingthe durationof incidents-extendingour analysisfrom a linear regressioninto a
multi-variateregression.This will requirethe consideratiorof additionaldependenvariablessuchasthe
type of systemsnvolvedin theincidentaswell asthe eventsin the exploit cycle.

We alsoplan on investigatingnew methodsand practicesin an effort to reducethe large window of
vulnerability that exists becausef poor systemamanagementOne methodwe are currentlyinvestigating
is the secureautomationof the deploymentof patches.While sucha solutionappearsasyat first glance,
developingthe processandtheimplementatiorthatworks on awide scaleis not.
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Appendix: Supporting Graphs
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Mountd Incident: Raw Data Plot
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