
Designing an Embedded Firewall/VPN Gateway1

Vassilis Prevelakis
vp@drexel.edu

 Drexel University

Angelos Keromytis
angelos@cs.columbia.edu

Columbia University

Abstract
The widespread use of mobile computing and telecommuting has increased the need for effec-
tive protection of computing platforms. Traditional schemes that involve strengthening the se-
curity of individual systems, or the use of firewalls at network entry points have difficulty ac-
commodating the special requirements of remote and mobile users. We propose the use of a
special purpose drop-in firewall/VPN gateway called Sieve, that can be inserted between the
mobile workstation and the network to provide individualized security services for that par-
ticular station. Sieve is meant to be used like an external modem: the user only needs to plug it
in. Its existence is transparent to the user, requiring no modification to the workstation con-
figuration. To function in this role, Sieve has been designed to be compact, low-cost, requiring
little administration or maintenance. In this paper, we discuss the features and advantages of
our system. We demonstrate how Sieve was used in various application areas (home, university
environment, etc.) and describe our future plans.

Keywords:. IPsec, VPN, credentials, embedded systems, OpenBSD.

1. Introduction
The recent advances in networking have created a situation where computers are practically
always connected to the Internet. Cable modems and DSL lines for the SOHO environment
and wireless networking for laptop and handheld computers ensure that the resources of the
Internet are always accessible. Against the convenience of “always on” connections we must
balance increased exposure to attacks.

1 This work was supported by DARPA under Contract F39502-99-1-0512-MOD P0001.

user

workstation

computation server

storage server

attacker

mail server

Figure 1: By accessing network resources, the user workstation runs the risk of having
its communications intercepted, or being attacked by malicious third parties.

Traditional approaches for countering threats involve the use of firewalls [Ches94]. Un-
fortunately firewalls are better suited to organizations that can afford to pay for the configu-
ration and maintenance of such systems. Moreover, firewalls provide a hard shell protecting
the soft core of the internal networks. This architecture does not protect against internal
threats, nor does it protect mobile users, telecommuters, or users of wireless connections (see
Figure 1).

Ioannidis et al [Ioan00] propose the use of a “distributed firewall,” i.e. the integration of
firewall functionality in every machine in the network. However, this approach requires that
all computers in the network run appropriately modified operating systems and applications
which, for the time being, is not feasible on a large scale basis. On the other hand, existing
systems such as Windows NT (and its derivatives) and most Unix and Unix-like systems al-
ready provide security features that can be used to implement firewall functionality on every
machine. The difficulty of securing general purpose operating systems has impeded the wide-
spread use of this approach. Moreover, it is difficult to ensure that a secured system remains
secure after the user has had the opportunity to install software and perform reconfigurations
and upgrades.

Recognizing the futility of attempting to secure the user machines themselves, we propose
the use of a portable “shrink-wrapped” firewall (which we have called Sieve). This is a sepa-
rate machine running an embedded system that includes firewall capabilities and is normally
placed between the general purpose computer and the network (Figure 2). The problem of
securing the firewall becomes much simpler as the platform is a special-purpose one with a
highly controlled architecture.

To avoid the need for labor intensive reconfigurations and to provide flexibility, we allow
the security policy of this embedded platform to be downloaded from the network.

For a “shrink-wrapped” firewall to be effective, the following prerequisites must be satis-
fied:
• Low cost in terms of hardware, software, configuration and maintenance.
• While it may restrict some services, it must be totally transparent to authorized services.

user

workstation

computation server

storage server

attacker

mail server

Sieve

Figure 2: Sieve provides firewall services and creates secure links to
other servers in the network, establishing a secure overlay network that is
inaccessible by third parties.

• Offer secure connections to servers and other network assets, thus protecting the commu-
nications between the protected system and other resources.

• Be flexible: it should be able to accommodate various security policies and different types
of network attachments (serial, Ethernet, wireless).

• Be resistant to tampering. Furthermore, in cases where there are indications that a station
has been compromised, it must be easy to restore its original configuration.

• To simplify centralized management and troubleshooting, it must offer a standard plat-
form for the execution of common network management and monitoring tools. Worksta-
tion users should not have access to the management information.

• Finally, regardless of the profile of the end user, the “shrink-wrapped” firewall must be
able to be deployed with minimal overhead.
Existing commercial solutions do not offer the right mix of open standards and low price.

In fact many solutions have a per node pricing model that is based on the assumption that re-
mote locations are company branches. Thus, they have pricing structures that deal with tens
or hundreds of nodes. Scaling them to networks with thousands of nodes produces outrageous
prices. Thus, we decided to investigate an Open Source solution. The advantage of this ap-
proach is that it offers enormous potential for customization coupled with a low cost per
node. Another benefit of using Open Source software is that, unlike proprietary solutions, the
code can be freely audited thus providing security through openness.

3. System Architecture
Creating a system in-house has many pitfalls, mainly related to the fact that the platform

design, implementation and support all have hidden costs that must be brought out into the
open and accounted for. Just because a piece of software is free does not mean that its de-
ployment in a production environment is without cost.
 A lot of attention has to be given to the integration, large scale production, and maintenance
of the nodes, in order that a usable system be achieved within the project’s budget constraints.

The prime considerations in the design of Sieve have been simplicity and security. In this
section we will elaborate on these two issues and examine their impact on the design of the
operating environment. We will also present the major components of the Sieve platform and
discuss the various design decisions.

3.1 Simplicity - Reliability
There are several good reasons to maintain low platform complexity:
• A complex design is difficult to verify and control. This implies that maintaining the se-

curity posture of the platform after its original roll-out will be difficult.
• A non-standard platform such as Sieve will have to be easy to master, otherwise new staff

will not be able to support it.
• Sieve is intended for production use, thus the administrators must have confidence in the

platform.

3.2 Operating System
From the very beginning, we wanted a platform that could accommodate tools for remote
monitoring and management. The requirement that the station should operate in residential
environments, without a monitor, keyboard or mouse effectively disqualified all Windows
platforms. From the available UNIX or UNIX-like systems we eventually chose OpenBSD
2.9 for the following reasons:

• Built-in support for the transport layer security protocols (IPsec) that offer secure com-
munication channels between stations. Since these channels are created by the networking
code in the kernel, the encryption is transparent to applications. Thus, programs such as
rlogin(1) that have no encryption facilities can take advantage of the built-in security of-
fered by IPsec without any modifications to the application code.

• Like other free UNIX clones, a large number of programs such as tcpdump, snmpd, ssh,
etc. are either supported in the base release or are available through the ports system.

• Good security. The designers of OpenBSD have paid a lot of attention to the security pro-
file of the system, creating a robust environment.

3.3 IPsec
IPsec is a suite of protocols [RFC1825] that provide encryption, authentication and integrity
checking at the network layer. Sieve employs IPsec in tunnel mode with encryption (ESP)
[RFC1827] (Figure 3). Tunneling consists of encrypting and encapsulating a normal IP packet
within an IPsec packet. Since both the header and payload of the original packet are en-
crypted, the internal structure of the private network is concealed from intruders [Shah97].

The use of tunnel mode also allows us to use the Sieve nodes as routers sending packets
from the remote home LANs to the main corporate network [Scot98]. Under this scenario,
addresses from the internal corporate network may be allocated to workstations at the em-
ployees’ homes.

Another configuration (layer 2 VPN) utilizes bridging [Kero00] rather than routing so that
the remote node appears to be directly connected to the corporate network. This approach also
allows the use of non-IP protocols such as LAN-Manager and Novel IPX/SPX.

Two sets of IPsec connections are maintained for each Sieve node. One carries the VPN
data while the other is used for the management of the Sieve node itself. By using separate
IPsec connections we ensure that users cannot access the management information or be in a
position to contact other nodes through the VPN.

Remote NetworkApplication Servers

Encrypted Tunnel

Public
Network

Sieve

Network
Access
Device

Network
Access
Device

Sieve

Protected Network Protected Network

Figure 3: The IPsec tunnel provides a secure connection between
the two local area networks over the public Internet.

3.4 Key Management
Using IPsec with statically-defined Security Associations (SAs)2 as we did in [Prev99], is
equivalent to running the Internet with static routing tables. The resulting VPN is inflexible
and keys are not changed as often as prudent cryptographic practice suggests, because of the
effort and disruption to service. Moreover, since SAs contain source and destination IP ad-
dresses, they have to be changed each time the IP address of one of the endpoints changes.
Users that connect to the Internet via dial-up connections or even permanently connected us-
ers that are assigned IP addresses via dhcp cannot use statically assigned SAs. Workarounds
to these problems exist and are discussed in detail in [Prev99]. However, these solutions lack
elegance and are not suitable for large-scale VPNs.

Purchases via credit cards provide a good analogy to the problem of setting up flexible
SAs. When purchasing an item, the customer presents a credit card to the merchant. The mer-
chant does not need to keep a record of all the people that have a VISA card in order to com-
plete the transaction. Instead, the merchant contacts the credit card company and receives an
authorization. In essence the credit card company vouches for the customer.

In the same way, one of the endpoints (A) of a VPN tunnel presents a certificate that is
signed by a certification authority (CA) acceptable to the other side (B). There is no need for
B to have previous knowledge of A since the certification authority vouches for the authen-
ticity of (the certificate presented by) A.

There are two differences from the credit card example. The first is that there is no on-line
communication with the CA during the negotiation. Endpoint B has the public key of the CA
and can thus verify any certificate presented by A. The second difference is that A does not
trust B and so B must also present a certificate to A. The second certificate must be signed by
a CA acceptable to A. In our system all certificates are signed by the same CA, but this need
not always be the case.

A serious issue with certificates is revocation, i.e., what happens if, for example, a Sieve
node is lost or stolen. There are two mechanisms that can prevent compromised nodes from
linking to the VPN: (1) certificates have limited lifetimes and so, unless renewed, become
worthless after a specified interval, (2) by changing the policy file we can prevent nodes from
accepting connections from blacklisted nodes.

3.5 Firewall
Sieve nodes must be able to allow traffic from the interior network to flow through the

VPN to the other internal networks, while at the same time they should allow only a very re-
stricted set of incoming connections. On the other hand, connections from other Sieve nodes
must be accepted.

The VPN may be viewed as a transit network located between the end-user workstation
and the internal network.

In the Sieve design we have used the packet filtering functionality of the OpenBSD kernel
with a configuration that imposed three classes of restrictions:
• Public Internet.
 This refers to packets coming in from the interface that is connected to the public net-

work. These packets are generally blocked except IPsec packets, since IPsec has its own

2 Security Association is the set of parameters for one-way communication between two nodes (cryptographic
keys, choice of algorithm, etc.).

security mechanisms. Moreover, we also allow ICMP echo and reply messages for net-
work troubleshooting, but we block other ICMP messages.

• Transit packets flowing through the VPN.
 Packets received from the interface connected to the local (protected) network) and des-

tined for the remote end of the VPN connection fall within this category of restrictions.
While allowing the packets to be routed through the VPN, we generally do not allow con-
nections to the Sieve nodes themselves. Exceptions to this rule include services such as
dhcp that are required for the operation of the node. We also allow certain types of ICMP
packets for network troubleshooting.

• Traffic between the VPN nodes.
In this category we have packets that are exchanged between the VPN nodes themselves.
This kind of communication is mainly for management and node administration. Gener-
ally, no restrictions are placed to this type of traffic.
Given that we are enforcing no access restrictions within the VPN, we were extremely

concerned about allowing access to the Sieve from the user workstation. When considering
security mechanisms, there is always a need to strike a balance between security and conven-
ience. Making life difficult for the end users would only mean that they would avoid using the
VPN or find ways to disable or bypass various security mechanisms, thus compromising the
security posture of the entire network. At the same time we did not wish to allow unsophisti-
cated users access to the Sieve nodes.

In the end we decided that users may access their local Sieve node only from their own
protected network. In this way only users suitably authorized would be able to access the con-
figuration of their own Sieve nodes.

3.6 Sieve node configuration
Users are generally discouraged from making of modifications to the secure node, since

they may accidentally disable the security mechanisms of the system. However, some user
input is required in order to configure the system for the currently available connection to the
Internet. Since there are numerous ways for connecting to an ISP, we need different profiles
available to the user. These are implemented as sh(1) scripts and the user is expected to run
the appropriate one.

Another user accessible command allows the credentials used for the IPsec negotiation to
be updated.

3.7 RAM-based system
In order to produce a simple and reliable system we decided to dispense with the hard disk.
The reason behind this decision was twofold: reliability and support. Although disk drives
tend to be reliable, they would have to operate continuously throughout the life of the Sieve
nodes. In both home and mobile environments equipment tend to be subject to all kinds of
abuse (knocked about, powered down without shutting down the system, relocated while in
operation, etc.). Hard disks produce a fair amount of heat and noise and are also more prone
to failure in these conditions.

The second and more important reason is related to the way that these machines are in-
tended to be used. For our purposes, hard disks are already huge in terms of capacity and are
getting bigger all the time. This free space can cause all kinds of trouble; for example, it may
be tempting to fill it with data that should not be stored in the Sieve node in the first place.
This means that stations can no longer be redeployed easily because this information must be

backed up, or processed. Secondly, if a station is compromised, the intruders will be able to
use this space as a bridgehead, transferring and installing tools that will enable them to attack
other network assets.

On the other hand, diskless machines bring with them a whole collection of problems and
administrative headaches. They are also basically incompatible with our objective of using
standalone machines with encrypted tunnels for all communications over the public Internet.

Instead, we use a RAM-based system where the software is loaded once during boot and
then the system runs entirely on the system main memory (RAM). The boot medium may be
diskette, CDROM, or a solid state disk (e.g., Compact Flash). In our prototype system, we are
using Compact Flash as the boot medium, so in the following paragraphs we use the term CF.

In order to produce a RAM-based system, we adopted the techniques used by the
PICOBSD project which is a collection of FreeBSD configurations that can be accommodated
within a single boot floppy (http://www.freebsd.org/ ~picobsd). The PICOBSD project pro-
vides configurations for a dial-up router, dial-in router (ISP access server), general purpose
router and firewall. The PICOBSD technique links the code of all the executables that we
wish to be available at runtime in a single executable using the crunchgen utility [Silv98].
The single executable alters its behavior depending on the name under which it is run
(argv[0]). By linking this executable to the names of the individual utilities we can create a
fully functional /bin directory where all the system commands are accessible as apparently
distinct files.

The aggregation of the system executables in a single file and the compression of the en-
tire kernel allows a large number of facilities to be made available despite the small size of
the boot medium. For example, in the Sieve distribution we include the following commands:

Category Commands
Shell Commands
(Korn Shell)

cat, chgrp, chmod, chown, cp, echo, kill, ln, ls,
mkdir, more, pwd, rm, stty, telnet, test, w

Administration date, dmesg, hostname, passwd, ps, reboot, update,
vmstat

System Configuration dev_mkdb, mknod, pwd_mkdb, swapctl, swapon, sysctl
Daemons getty, inetd, init, login, snmpd, syslogd, tel-

netd, dhcpd
Networking ifconfig, ipf, ipnat, ipsecadm, netstat, ping,

route, traceroute, isakmpd, wicontrol, dhclient
Filesystem mount, (cd9660, fdesc, ffs, kernfs, mfs, msdos,

nfs, procfs), df, newfs, umount

The root of the runtime file system, together with the executable and associated links, are
placed in a ramdisk that is stored within the kernel binary. The kernel is then compressed
(using gzip) and placed on a bootable CF. This CF also contains the /etc directory of the run-
ning system in uncompressed form to allow easy configuration of the runtime parameters
(Figure 4).

At boot time, the kernel is copied from the CF disk to main memory, and is uncompressed
and executed. The file system root is then located in the ramdisk. The CF boot partition is
mounted and the /etc directory copied to the ramdisk. At this point the CF partition is un-
mounted and may be removed. The system is running entirely off the ramdisk and goes
through the regular initialization process. Once the boot process is complete, user logins from
the console or the network may occur. The CF is usually write-protected so changes in the
system configuration do not survive reboots. If, however, the CF is not write protected, there
exists a utility that can copy the contents of the
ramdisk /etc directory to the CF boot partition,
thus making the running configuration perma-
nent.

This organization places the files that are
unlikely to change between Sieve nodes in the
kernel where they are compressed, while leav-
ing the configuration files in the /etc directory
on the CF. Thus, these files can be easily ac-
cessed and modified. Moreover, a single image
may be produced and the configuration of each
station applied to it just before it is copied to
the CF.

4. Prototype
In this section, we describe the Sieve prototype and three examples of its use: office desktop,
wireless, and home gateway.

4.1 Office Desktop
Contrary to popular belief, internal networks in most organizations are not safe. Although
protected by firewalls, these networks are vulnerable to internal attacks (e.g., by coworkers,
worms and viruses from other infected machines, etc.). Our approach is to install Sieve sta-
tions between each sensitive desktop and the internal network. As it has been noted in
[Prev99], the ability to manage these stations via a centralized Network Management System
creates a safe and predictable platform from which user network problems can be diagnosed
remotely.

We use the Sieve in bridge mode so that the desktop appears to be directly connected to
the local area network.

4.2 Wireless network
Wireless networks, even with encryption activated [Stub02] are particularly vulnerable to in-
trusion attacks. A popular hacker pastime is to cruise around town with a laptop trying to
connect to wireless networks. Wireless networks should be considered unsafe and thus always
linked to the internal network via a firewall.

In [Bosc00] the authors describe the difficulties in managing a wireless network (handing
out addresses, opening connections through the firewall, etc.). They also include a number of
solutions, but they admit that these solutions have weaknesses and, thus, they use them to
provide access only to non-critical hosts in their network.

 Normally the system is used in bridging mode, although there were cases where the sys-
tem administrators want to know which machines are on the wireless segment. The main dif-

etc
kernel

RAMDISK

floppy root

Ramdisk root

etc stand var

. . .
mfs.rc executables

configuration

Figure 4. The organization of the Sieve dis-
tribution

ference with the desktop configuration is that in
the wireless configuration all communication is
carried over secure links. We use IPsec in tunnel
mode (Figure 3) to link the workstation to the
internal network. In this case, the public network
of Figure 3 is the wireless network.

4.3 Home Network Gateway
Internet connections at home are seldom used by
only one person or for only one task (e.g. work).
By placing a Sieve between the home network
and the ISP connection, we have the option of
forcing everybody to go through the company
network. This is not entirely without merit be-
cause it means that the home computers are
shielded behind the company firewall. However,
there may be cases where we wish to have access to sites or services that are blocked by the
company firewall. In such cases, the Sieve can be configured to allow only certain PCs or
network segments to be part of the VPN, while the rest work as if they were directly con-
nected to the ISP. In this scenario, the Sieve can also perform the task of a NAT router, al-
lowing the user to share a single ISP-provided IP address among multiple workstations.

4.4 Hardware Platform
The VPN software runs on standard PC hardware. While most of the development was car-
ried out on decommissioned PCs, the size, power requirements and, most importantly, the
noise from the power supply fan, make such machines totally unsuitable for deployment in
the field.

Single board computers (SBCs) allow the creation of small-factor convection-cooled sys-
tems. These designs are mostly compatible with the PC motherboards and cards so that there
is no need for software porting. Moreover, solid state storage in the form of Flash RAM may
be added. Compared to ordinary hard drives, this offers improved reliability.

After examining a number of products we chose the NetCARD system (see Figure 5).
This single board computer is about 14cm by 10cm and combines on board Ethernet inter-
face, Compact Flash and 2 PC-CARD slots along with the usual PC-style interfaces (floppy,
IDE disk, etc.). We used this system both with a floppy boot medium and with a Compact
Flash. The on-board Ethernet interface was used to connect the VPN node to the network ac-
cess device, while an Ethernet PC-CARD provided the inside-network connection. A wireless
Ethernet card may be attached to the system, eliminating the need for fixed wiring.

4.2 Operation
As soon as power is applied and the power-on tests are complete, the PC BIOS loads the sys-
tem from the boot medium and hands control over to the OpenBSD kernel. In order for the
outside interface to be configured, the VPN node must find out the IP address provided by the
ISP. If the IP address is always the same, then it can be included in the static configuration
that is read off the boot medium. Otherwise, the system uses dhcp to configure its interface.
The inside Ethernet interface uses a pre-assigned address from the private Internet range
(RFC1918). The system also runs dhcpd on the inside interface so that workstations on the

WaveLAN
PC Card

Compact Flash
(boot device)

10/100
Ethernet

64Mb RAM

Pentium Class
Processor

(convection cooled)

Figure 5. Wireless configuration.

private network can be auto-configured. The system then runs the isakmpd daemon that
creates the IPsec tunnels. The packet filtering software ensures that the VPN is isolated from
the outside world. The node may be powered down without the need for a shutdown proce-
dure (e.g., sync).

5. Conclusions - Future Plans
The work presented in this paper is a continuation of the work described in [Prev99]. In the
previous project, a number of VPN stations were deployed within the University of Piraeus,
in Greece, as part of a network of monitoring stations. The purpose of these Secure Network
Stations (SNS) was to allow the creation of a secure network that allows administrators to
manage and troubleshoot network elements such as routers, hubs, and switches deployed
throughout the University campus. The SNS system has been in operation for more than three
years.

The SNS nodes have different configurations from the VPN nodes discussed in this paper
because they serve different roles. For example, SNS nodes need to forward SNMP traffic
from the network elements and allow connections from inside the secure network to reach
network elements located outside the SNS perimeter. Moreover, the system uses static IPsec
configuration, which necessitates the production and distribution of updated configurations
on a regular basis.

Nevertheless, the experience gained from their use helped in refining the requirements for
the systems described in this paper. One notable decision that was directly influenced by the
previous design was to have a fully connected mesh of IPsec tunnels linking every node to all
the others. Most VPN solutions tend to link a central office with a number of remote locations
with the IPsec tunnels arranged in a star.

The many-to-many links allow the VPN to be resilient to failures of individual nodes and
in the case where there is significant traffic between the remote nodes there is better utiliza-
tion of the VPN resources as all packets go through at most one IPsec tunnel to their destina-
tion.

Another system that offers similar functionality to the one we have presented here is the
Moat from the AT&T Labs [Denk99]. Like our system, the Moat also utilizes small single
board computers running a lightweight version of Linux and create VPNs allowing AT&T
research personnel to telecommute. The Moat follows the one-to-many VPN layout probably
because it is not envisaged that there will be significant traffic between employees working at
home. Remote stations with floating IP addresses (as is the case of most dial-up Internet con-
nections) are treated by dynamically rewriting the IPsec configuration files. This requires that
a central cite is always operational so that the VPN nodes can get the information they need to
create their configuration files. In our system, the use of certificates, allows any two stations
to negotiate SAs and create IPsec tunnels. Additionally, the use of built-in facilities such as
the isakmpd daemon make the system easier to maintain and port across Operating System
releases.

As part of our future plans, we intend to improve the automatic configuration of our sys-
tem. The goal is a system that explores the network it is connected to (discovering default
routers, dhcp servers and so on) and configures itself accordingly.

References
[Bosc00] Boscia, Nichole K.and Derek G. Shaw, “Wireless Firewall Gateway White Paper,”

NASA Advanced Supercomputing Division, Moffett Field, CA 94035

[Ches94] Cheswick, William and Steven Bellovin, “Firewalls & Internet Security, Repelling the
Wily Hacker,” Addison-Wesley Professional Computing Series, 1994.

[Denk99] Denker, John S., Steven M. Bellovin, Hugh Daniel, Nancy L. Mintz, Tom Killian and
Mark A. Plotnick, “Moat: A Virtual Private Network Appliance and Services Platform,”
LISA’99: 13th Systems Administration Conference, Washington, November 1999.

[Ioan00] Ioannidis S., A.D. Keromytis, S.M. Bellovin and J.M. Smith, Implementing a Distributed
Firewall, Proceedings of Computer and Communications Security (CCS) 2000, pp. 190-
199.

[Kero00] Keromytis, Angelos D, Jason L. Wright, “Transparent Network Security Policy En-
forcement,” USENIX Annual 2000 Technical Conference - Freenix Refereed Track, San
Diego, California, June 18-23, 2000.

[Prev99] Prevelakis, Vassilis “A Secure Station for Network Monitoring and Control,” The 8th
USENIX Security Symposium, Washington, D.C., USA, August 1999.

[RFC1825] Atkinson, R. “Security Architecture for the Internet Protocol,” Internet Engineering Task
Force, August 1995.

[RFC1827] Atkinson, R. “IP Encapsulating Security Payload (ESP),” Internet Engineering Task
Force, August 1995.

 [Scot98] Scott, Charlie, Paul Wolfe and Mike Erwin, “Virtual Private Networks,” O’Reilly & As-
sociates, Inc. 1998.

[Shah97] Shah Deval and Helen Holzbaur, “Virtual Private Networks: Security With an Uncom-
mon Touch,” Data Communications, Sept. 97,

[Silv98] da Silva James, “Cruchgen,” OpenBSD User Manual, 1998.
[Stub02] Stubblefield, Adam, John Ioannidis and Aviel D. Rubin, “Using the Fluhrer, Mantin, and

Shamir Attack to Break WEP,” To appear at the NDSS'02 Conference.

