
1

Abstract
We propose an hardware solution to several security

problems that are difficult to solve on classical processor
architectures, like licensing, electronic commerce, or
software privacy. The memory management unit which
provides multitasking and virtual memory support is
extended and given a third purpose: to supply strong
hardware security support for the software layer. The
principle of this enhanced device, that we call a Security
Management Unit (or SMU), is based on ciphered
program execution and access control. It is composed of a
pipelined block ciphering/deciphering unit, an internal
permanent memory and logic control, whose interaction
is explained in this paper.

1. Introduction

Most difficult security problems encountered in several
fields of computer science involve applications that must
be protected from the user. The solutions proposed
nowadays are far from acceptable, as they all summarize
in some complex piece of software protection that any
determined and skilled user can analyze and remove,
given enough time. As long as the assembly code is
available for analyze and modification, one cannot rely on
software-based protection.

Examples of such applications are software licensing,
know-how protection in commercial software and
software privacy for remotely executed programs
[29,30,31]. Among other fields for which additional
security support is needed are operating system
extensibility [1,2,3,4], authentication, subscription to
remote services and electronic money storage, electronic
commerce [25].

Two other important issues about software protection
are compatibility and transparency. A solution, however
perfect, is not acceptable if the user has to replace his
whole software library: the proposed mechanisms should
bring as less modifications as possible in the software
layer. However, the operating system kernel will

obviously have to be adapted. The same constraint holds
for the hardware layer: the proposed device will have to
fit into an existing scheme. Finally, the behavior of the
security device should be transparent for the applications

1.1. Contribution

The solution we propose in this paper is based on
additional hardware security support, inside the processor
chip. To add strong protection while keeping
compatibility and transparency, we enhance the
capabilities of the typical memory management unit. The
improved device, that we call the Security Management
Unit (abbreviated SMU), is composed of several parts:
− a pipelined block cipher unit, that allows the execution

of ciphered code and the processing of ciphered data;
− an internal permanent memory, to store the secret keys

needed by the cipher unit, and confidential or critical
data owned by the applications. The access to this
memory is controlled so that the user cannot steal the
keys, and the applications cannot tamper with each
other’s data;

− the traditional MMU parts like TLB, segment and
page registers, control logic that make up the virtual
address translation unit and the multitasking support.
The logic is extended to manage the protection of the
secured programs and to control the cipher unit and
the internal memory access;

− an internal L1 cache interface, to provide suitable
performance level when the processor is executing
ciphered code. This interface works together with the
cipher unit that behaves like a prefetch unit.

1.2. Paper outline

This paper is structured as follows: section 2 explains
the cipher unit principle, section 3 details the architecture
of the memory management and is divided into 3 parts.
The segmentation and pagination are explained in
subsection 3.1, the security enforcement is explained in
subsection 3.2 and the privilege inheritance policy is

Enhancing Security in the Memory Management Unit

Tanguy Gilmont, Jean-Didier Legat, Jean-Jacques Quisquater
Microelectronics Laboratory, Université Catholique de Louvain

Place du Levant 3, B-1348 Louvain-la-Neuve, Belgium
Phone: +32(10)472540, Fax: +32(10)472598

E-mail: {gilmont,legat,quisquater}@dice.ucl.ac.be

2

overviewed in subsection 3.3. Simulation results are given
in section 4. The paper concludes in section 5, and
references are given in section 6.

2. Cipher unit

The principle is the following one: the program P is
initially ciphered with a symmetrical key K, by blocks of
length L. We note gc,K(P) the ciphered program, and
gc,k(P[a..a+L-1]) the ciphered block at position a, where
gc,K() is the cipher function used with the key K; gd,K() is
the corresponding deciphering function. A symmetrical
cipher algorithm has been chosen mainly because of the
performance it can achieve with pipelining. The cipher
function takes the virtual address as a “salt”, to prevent
block substitution attacks.

When the processor fetches an instruction from the
ciphered program P, the block containing the instruction
is loaded from the external memory, deciphered by the
symmetrical cipher unit and stored in a cache line, inside
the processor. The needed instruction is then sent to the
prefetch queue of the CPU for decoding and execution
(figure 1).

asymmetrical
cipher unit

D

symmetrical
cipher unit

CPU

external RAM

cache

data
bus

adr
bus

physical address
virtual
address

ciphered
instruction

line

secure processor

fE(K)

K

gc,K(P[a .. a+L-1]) P[a .. a+L-1]

translation
unita .. a+L-1

permanent
memory

Figure 1 - Instruction block deciphering

The user must not directly access the key K, and for
licensing purposes, the key should only be valid for one
processor. Therefore, the key K is ciphered with the
public asymmetrical key E of the processor, which
correspond to its private key D. The private key is stored
in the processor and cannot be accessed in any way by the
user. It can only be used by the asymmetrical cipher unit,
to obtain the key K. We note fD() the asymmetrical cipher
function used with the key D. Another key pair (Dm, Em)
certifies the origin of the processor. The complete
procedure to execute a ciphered program is:
1) the ciphered key fE(K), given together with the

ciphered program gc,K(P), is loaded into the
asymmetrical cipher unit, which deciphers it and gives

the result fD(fE(K)) = K to the symmetrical cipher unit.
The key K may also be stored into the internal
memory for future references. The fact that an
asymmetrical cipher algorithm is slower is not
important in this case, since the processing has only to
be done once, before the first execution of the
program;

2) the processor puts the virtual address of the instruction
on the internal bus. The translation unit computes the
physical address a and, if there is no corresponding
cache hit, outputs it to the external RAM with a read
request for the whole block containing the instruction
(addresses [a..a+L-1]);

3) the read block gc,K(P[a..a+L-1]) is deciphered by the
symmetrical cipher unit, using the key K, which yields
gd,K(gc,K(P[a..a+L-1])) = P[a..a+L-1]. The plain
block is stored in the internal cache;

4) the instruction is read from the cache and put into the
prefetch queue of the CPU;

5) on following fetches in the same block, the data are
directly read from the cache.
This principle, explained for code execution, can also

be used for data processing. If a ciphered data is modified,
the corresponding cache line must be written in the
external memory when the cache is flushed (in the case of
a write-back cache policy). The symmetrical cipher unit
has to be bi-directional to cipher the block before storing
it to the external memory.

Because of the branches in the program code, there
must be a way to decipher the program P starting from
any address. The block nature of the DEA or triple-DEA
algorithms makes them ideal functions from this point of
view, when an instruction cache is present into the
processor. The cache line size may be a small multiple (1,
2 or 4) of the size of the blocks processed by the cipher
function (typically 64 bits). The processor behaves like
any ordinary processor that loads a whole cache line, then
fetches the instruction from the cache. The block size is a
trade-off between security and performance: if too short,
the encryption mechanism will be easily cracked, and if
the block is too long, branches will yield more penalty
(deciphering cost) and the cache will be less efficient (less
cache misses but more bus traffic for cache misses [22]).

The ability of executing ciphered programs, the keys
being out of user’s reach, has several advantages:
− with the help of a simple key exchange protocol, the

user can buy ciphered software and execute it only on
his computer. The licensing can be managed in
software, since the user cannot read the plain assembly
code, he cannot modify the program to remove the
protection;

− the program P can be ciphered before the user buy the
software, and many copies ciphered with the same
secret key K can be sent to different vendors before
being sold. The editor initially chooses one secret key
K, computes the ciphered program gc,K(P) and writes

3

it, probably with a plain trial version, onto a large
amount of media (like CD-ROM for instance) that are
sent to selling points. The end-user willing to buy the
full version send the ciphered public key fDm(E) of his
processor to the editor. The editor uses the public key
from the manufacturer to get the certified public key E
and gives the buyer fE(K). This way, the editor does
not have to cipher each software separately (Figure 2);

− no virus can infect the program, and no Trojan Horse
can be installed;

− the know-how contained in high-end software cannot
be reverse-engineered, since the assembly code (or
even any interpreted script) can be made unavailable
by ciphering it;

− the user can make any backup copy he needs, which is
not true with most of the software protections
nowadays.
More elaborate protocols can be implemented on this

basis, which protect the privacy of the buyer so that he
does not have to give a public key identifying him or his
computer.

E

Dm

D

CPU
I-CACHE

Dm Em

chip manufacturer

secure processor

fDm(E)

fE(K)

gc,K(P)
K

P

K

P

software editor

E

M fkey(M) : asymmetrical (de)ciphering

key

M g-,key(M) : symmetrical (de)ciphering

key

vendor

Figure 2 – key management example. Shaded
areas are secret.

3. Memory management

In our hypothesis, the malevolent user is skilled and
has physical access to the computer, he also is super-user
and can configure or modify the operating system to get
more privilege than he should have. For example, he can
use debugging tools to trace down the program execution.
We must also suppose that he has enough electronic
equipment to snoop the external buses and signals, or to
dump any external memory contents. We will not
consider deeper physical attacks [28], however, or attacks

based on time and/or electromagnetic observation (like
the timing attack and SPA/DPA attacks).

The cipher unit is not sufficient to secure the programs,
there are other problems to solve like how to manage the
keys and the internal permanent memory and how to
control the interaction between secured programs and
other software in a multitasking environment. Since the
operating system cannot be entirely trusted, the critical
security management tasks are performed by a trusted
kernel driver we will call the NVM manager (Non-
Volatile Memory manager). Besides, the segmentation
and pagination system is extended to provide a strong
protection for the programs to secure. This topic is
described in the following subsection (3.1 Segmentation
and pagination).

The NVM manager offers services to the secured
programs, like deciphering and storing a new key,
initializing a new external memory space for ciphered
code or data, storing and loading data in the internal
permanent memory (i.e. NVM). The NVM manager uses
a reserved program identifier (PID), that grants access to
the NVM. The SMU verifies that no other program uses
this PID, and that each NVM access is done by the NVM
manager.

Ideally, the NVM manager program should be stored
in ROM, inside the processor chip. This way, it could not
be modified by the user, and the PID test would be easy
for the SMU : it would only grant NVM access to code
executed from that ROM. However, the ciphered
programs stored externally must have the same protection
level than the NVM manager : they all are run as secured
tasks. So we use the same security mechanisms for both,
thus allowing an external RAM-located NVM manager.
The main advantages are the saving of silicon area (for
the ROM) and the flexibility. Several NVM managers,
responding to different needs and developed by third
parties, can be used with the same processor, and the code
upgrading is easier.

3.1. Segmentation and pagination

Our architecture uses a 32-bit virtual address, divided
into three parts:
1) the segment register number (the three most

significant bits 31-29);
2) the page number (bits 28-12);
3) the page offset (bits 11-0).

Segmentation helps to reduce the information
redundancy in the page descriptors. The segment number
is given indirectly by the segment register number. The
eight segment registers are loaded by the operating system
during the initialization and at each task switching. If a
task needs more than eight segment references, it can load
new segments number into the segment registers, or use a
specific prefix instruction. The base address in the
segment descriptor is added to the virtual page address to

4

yield the linear address (figure 3). The linear page address
is then translated into a physical page address by a 2-level
page table scheme. The 2nd level table may contain
descriptors for different page sizes (4k, 64k and 1M) to
match the different kinds of memory needed by the
applications. For 64k and 1M pages, the remaining bits of
the linear page address are used as an address offset, so
the total offset field may range from 12 to 20 bits,
depending on the page size.

To maintain an acceptable performance in spite of the
two memory accesses needed to translate the virtual
address, we use a typical fully-associative 64-entry
translation look-aside buffer. The virtual (pre-MMU)
cache and the MMU work in parallel and, provided the
page descriptor is in the TLB and the corresponding entry
is in the cache, both give their result at the same time, and
the cache tags can be compared with the physical address
of the page descriptor. To avoid synonyms, the page bits
never overlap with the cache line bits: in our architecture,
the page size is at least 4k (bits 12 and up) and the cache
line is determined by bits 11-3 (bits 2-0 select the byte in
the block).

3.2. Security management

The programs executed on the secure processor access
the memory by providing virtual addresses, like any
processor allowing basic protection [18]. Since each
memory reference is processed by the translation unit, it is
the ideal place to handle access control and key
management. The translation unit processes the virtual
addresses by using the following items:

1) the segment descriptor is the first item of the
translation procedure. It includes the task identifier of
the segment owner and its key identifier.

The classical processors have mainly two running
modes: the user and supervisor modes, whereas our
architecture use a more flexible, privilege
inheritance-based policy that we shall describe later.
This policy is the reason of the owner identifier in the
segment descriptor: it is used to compute the access
rights of a given page. As we shall see, the owner
identifier is also used to change the identity of the
current task in some operations.

The key identifier is only used with ciphered code
and data pages. When a reference to such a page
occurs, the key is automatically fetched from the
NVM key table and given to the cipher unit. Thus,
any task that reads, writes or jumps to a ciphered
memory location does not need to worry about the
key management which is transparently handled by
the hardware;

2) the second item of the translation is the page
directory descriptor, obtained from the page
directory table with bits 31-20 of the linear address.
This descriptor includes the following information:

− the second-level table address;
− the type of data it contains: empty table, regular

4k/64k/1M page descriptors, or trap descriptors;
− two flags: the first states the descriptors are

certified and the second indicates whether the table
is in memory or not;

virtual address
 31 29 28 12 11 0

segment page offset

segment registers

base addresstype owner key id size

+

page offset
 11 0 19 12

page directory
 31 20

linear address

20916162

type
3

segment descriptor

flags
2

1

table address
252

page directory register

page directory descriptor

1

access
6

flags
2

page address
20

page descriptor (4k page)

page offset
 11 0 31 12

physical address
in external memory (RAM)

page directory table

page table

bits 28-12bits 31-12

Figure 3 – Virtual address translation

5

3) the last item is the page descriptor. The regular page
descriptors are the same than the one used in standard
MMU, they contain:

− the physical page address, which is merged to the
offset to yield the physical address to be put onto
the address bus;

− the access rights (read/write/execute) for the
segment owner and for other tasks;

− one flag to denote the presence of the page in
memory, for memory swapping;

− one flag to signal whether the page is ciphered or
not. If this flag is set, instruction and data fetching
are done with the help of the cipher unit. The key,
whose identifier is given by the segment register,
is automatically loaded into the cipher unit key
register.
The trap descriptors will be described in the next

subsection (3.3 Privilege inheritance policy). They
provide support for task switching, system call with
identity change, interrupt and exception handling.

The page descriptors (regular and trap) can be
certified. In this case, they contain a certificate and
are wider:128 bits instead of 32 bits. The certificate
can only be created by the NVM manager task, it is
computed by hashing and ciphering the three
descriptors (segment, page directory and page) using
the owner key. The certified descriptors are always
checked when they are loaded from memory, to
prevent descriptor forging attacks.

Entries of the TLB and cache that correspond to
certified and/or ciphered pages are marked with a
dedicated flag. When a “ciphered” cache hit occurs,
the SMU verifies the ownership of the block before
revealing its contents, to prevent cache attacks. In a
similar way, certified TLB descriptors are flushed
when the task identity changes.

The certified descriptors, or secured descriptors, are
the second part in the enhanced security support given by
the SMU, next to the cipher unit. Together, those two
features allow the hosting of secured tasks that even the
OS cannot attack. The only influence it can have is to stop
the task execution and remove it from memory.

The obvious weak point is the interaction between a
secured task and the other tasks. Basically, there are two
classes of interaction:
− between two secured tasks: for example, an electronic

purse driver and a transaction agent, which are coming
from two different parties and are running on the same
computer to provide some electronic commerce
capability. The transaction agent may, at some point,
call the electronic purse driver to proceed to a
withdrawal. The electronic purse driver needs to check
the clearance of the caller (here, the transaction agent),
and to verify if it is an authorized client. Typically, the
two tasks will engage in a zero-knowledge protocol to
certify themselves to each other. There is no security

hazard from the OS, since the whole communication
can be ciphered and secured. The only event to foresee
is a communication cut-off if one task is halted;

− between a secure task and an unknown task. The
secured task may depend on other tasks, the most
common case being OS support. The secure task
should be aware that a call to another task may result
in a failure (for example, an exception), or a erroneous
result, intentional or not. While hardware security
support is provided to allow safe hosting of
applications, the secured task should of course be
designed to recover from other task’s errors. Another
part of the solution is to certify critical parts of the
operating system.
At system initialization, a bootstrap mechanism is

provided for the NVM manager installation, since no
other task is able to build the certified descriptors of this
ciphered driver. The code and data segments are
embodied in an image file, which also includes a header
and a certificate. The key used to decipher the driver is
loaded into the processor chip when it is issued by the
manufacturer or by the NVM manager provider. This key
is only used for the driver, as it grants access to the
internal permanent memory of the SMU.

The bootstrap procedure is started once the image file
is loaded into memory. The image certificate is verified,
then a system call at the initialization address of the
header is executed. The task identity is changed to the
owner of the image (i.e. the NVM manager) which can
certify its own descriptors and make them available to
other tasks [33].

3.3. Privilege inheritance policy

The modern OS concept consists of several module
layers, each being confined to one defined purpose and
accessing limited resources. Data used within a module
should be hidden from other modules and from the user
programs if the OS design is clean. In real
implementations, some data are shared between several
modules for efficiency [18,19,21].

The problem with classical processors is the
availability of only one supervisor mode for the whole OS
software. The OS modules have no identity and the
organization in layers and modules are an abstract
concept, since the hardware only supports user and
supervisor modes. Once in supervisor mode, an OS
module is granted total control of the processor, and has
access to all its resources, so no protection mechanism
can prevent the whole system corruption if the module
does not behave correctly.

This awkward situation makes difficult the
implementation of features like OS extensibility.
Additional modules, from other sources than the OS
vendor, are prone to bring holes into the OS security and
stability. The only secure way to allow extensions is to

6

run them as user programs, and to check their interaction
with the OS routines. This control must be done in
software for the most part, and is not efficient.

memory manager

NVM manager
OS module OS module

OS interface
NVM interface

secure client
agent

itinerant agent

secure client
agent

electronic
purse

word
processor

OS module

OS interface

NVM

address
translation

unit

application
level

OS
level

hardware
level

memory manager interface

secured task

normal task

Figure 4 - Software and hardware structure of
the secure processor.

In our architecture, the supervisor mode is replaced
with privilege inheritance, which is based on the concept
of minimal privilege grant and task identification
[9,10,11]. When a task needs the service of another
module, it executes a special call instruction (the system
call) which is the equivalent of the software interrupt or
trap instruction used on classical processors. The system
call is a controlled branch to the interface of the module
with task identity change. This means that the privileges
of the called module are linked with the privileges of the
caller task, when the module routine is executed.
However, additional constraints exist for secured tasks:
the called module will not be able to access ciphered
pages of the caller, nor will it be recognized by the NVM
manager as the caller task.

The inheritance and task identity are managed by the
SMU, with the help of trap descriptors. There are several
kinds of trap descriptors:
− the system call, as described before, it is very similar

to the trap mechanism of standard processors. Special
care is taken when restoring identity, to prevent
identity substitution attacks of secured tasks;

− the task switch: a reference to this descriptor cause the
switching of the task context;

− the slow and fast interrupt are used to treat hardware
interrupts. The slow interrupt saves the task context,
whereas the fast interrupt is executed under the
identity of the interrupted task if authorized by the
current policy;

− the exception is used to treat software and hardware
failures. The invoked routine is given information
about the context of the fault and inherits the
privileges of the interrupted task if authorized by the
current policy. To stop secret information leakage, the

context of a secured task is cleared before calling the
exception routine, and no inheritance is permitted in
this case.
In many cases, it is useful to have access inheritance,

especially when the supervisor mode is no longer present.
For instance, when a task calls a service of another task,
the called task may need access to the caller’s data. When
such a call occurs, the descriptor table lists of the two
tasks are linked and given to the called one during its
execution. Classical processors need no similar
mechanism, since the called OS service is executed in a
more privileged mode, and is automatically granted the
caller’s access rights. On the other hand, the caller also
has access to the segment of the other unrelated user
tasks, and this unnecessary privilege makes the system
less secure.

4. Results

An architecture based on the 32-bit ARM 7 TDMI core
has been developed, which is composed of the CPU core,
an Harvard cache of two 8-kByte units (256 lines of 4-
way sets, 8-byte blocks) using the near-LRU Deville’s
replacement algorithm [34], the security management unit
logic with the virtual translation unit (segmentation and
pagination, 64-entry fully-associative TLB), a 2-kByte
permanent memory and an 12-stage triple-DEA cipher
unit (4-stage for the simple DEA).

To evaluate the overhead introduced by the code
deciphering process, this architecture has been simulated
at the system level, for several cache sizes (2, 4, 8 and 16
kB for each cache: instruction and data) and several
pipeline depths of the cipher unit (4, 8, 12 and 16 stages).
The external memory was characterized by 3-1-1-1
read/write cycles, the internal instruction and data caches
had no delay cycles.

The benefit of a fetch prediction unit, which would
feed the cipher pipeline, was also studied in those
simulations. The motivation of this prediction unit is to
reduce the cost of pipeline flushes, due to branch hazards
in the code flow. To obtain the lower bound of the
improved overhead, we used a perfect prediction scheme
(based on the instruction trace).

The worst case figures have been obtained with the
SPECint95 go benchmark, the results of which are given
in figure 5. The graph legend specifies the depth of the
pipeline (dn stands for a depth of n stages) and whether
fetch prediction was used or not (p denotes the use of
perfect prediction). The deciphering cost can be kept
under 2,5 %, with 8 kB I-cache for the deepest pipeline
and with 2 kB I-cache for the 4-stage pipeline (12-stage if
prediction is used).

When we compare the results obtained without fetch
prediction (the plain curves) and those obtained with
perfect fetch prediction (the dotted curves), we can

7

observe that the overhead of the latter are reduced,
especially for small cache sizes.

0%

1%

2%

3%

4%

5%

6%

93,5% 94,0% 94,5% 95,0% 95,5% 96,0% 96,5% 97,0% 97,5% 98,0% 98,5%

I cache hit

cy
cl

e
ov

er
he

ad

d4
d8
d12
d16
d4 p
d8 p
d12 p
d16 p

2 kByte
I cache

4 kByte

8 kByte

16 kByte

Figure 5 – Deciphering cost

5. Conclusion and future work

The security management unit presented in this paper
offers several advantages over the existing devices.

The first advantage is the possibility to run ciphered
code and to process ciphered data, with the corresponding
keys stored into an internal permanent memory located
inside the chip. This allows a stronger protection of know-
how and software licensing. A software vendor can, with
an easy key exchange protocol, give a ciphered form of
his program. The software only runs on the right
processor, cannot be illegally distributed and the
protection is not accessible (and not removable) by the
user.

The second advantage is that the processor is able to
host several secured programs, which can manipulate and
store critical data safely from any user tampering. It
means that the system equipped with this secure processor
takes profit of both smart card security and large
resources availability (CPU, memory, storage devices),
which makes it an ideal complement of the smart card.

Finally, the privilege inheritance mechanism provides
a better hardware support for extensible OS design, and
makes possible the coexistence of secured tasks and
unstable tasks in the processor environment.

The security management unit and the internal
permanent memory can be added to an existing CPU core
without significant loss of performance (under 2,5 % for
common cache sizes). Thus, it is not necessary to design a
special CPU core for this device, the software library can
be preserved and the security management unit can be
adapted to several CPU technologies (RISC, CISC,
VLIW, DSP).

Future work will investigate existing OS kernel
modification to support the SMU, and other processor
core adaptation. The fetch prediction unit will be
examined in more details, to compare its die area cost

versus an instruction cache at the same performance level.
Finally, when an AES candidate will be chosen for ASIC
design, it will probably replace the older DEA in the
architecture, providing a safer key length and the
opportunity for 128-bit bus.

6. References

1. R.Grimm, B.Bershad, “Access Control in Extensible
Systems,” Technical Report, Dept. of Computer Science
and Engineering, University of Washington, Seattle, UW-
CSE-97-11-01, May 1997.

2. R.Grimm, B.Bershad. Security for Extensible Systems,
“The 6th Workshop on Hot Topics in Operating Systems
(HotOS-VI),” Cape Cod, Massachusetts, pp. 62-66, May
1997.

3. D.R.Engler, M.F.Kaashoek, J.O’Toole Jr., “Exokernel : an
Operating System Architecture for Application-Level
Resource Management,” Proceedings of the Fifteenth
Symposium on Operating Systems Principles, December
1995.

4. S.J. Tanenbaum, R.van Renesse, H.van Staveren,
“Amoeba : a Distributed Operating System for the 1990s,”
IEEE Computer, pp. 44-53, May 1990.

5. D.Bell, L.Lapadula, ”Secure Computer Systems :
Mathematical Foundations,” Technical Report, Mitre
Corporation, Vol.1, ESD-TR-73-278, 1973.

6. L.Lapadula, D.Bell. Secure, “Computer Systems : A
Mathematical Model,” Technical Report, Mitre
Corporation, Vol.2, ESD-TR-73-278, 1973.

7. D.Bell, L.Lapadula, “Secure Computer Systems : Unified
Exposition and Multics Interpretation,” Technical Report,
Mitre Corporation, ESD-TR-75-306, 1975.

8. K.Biba, “Integrity Considerations for Secure Computer
Systems,” Technical Report, Mitre Corporation, MTR-
3153, 1975.

9. R.S.Sandhu, “Lattice-Based Access Control Models,” IEEE
Computer, Vol.26, No.11, pp. 9-19, Nov. 1993.

10. R.S.Sandhu, P.Samarati, “Access Control : Principles and
Practice,” IEEE Communication Magazine, pp. 40-48, Sep.
1994.

11. R.S.Sandhu, E.J.Coyne, H.L.Feinstein, C.E.Youman,
“Role-Based Access Control Models,” IEEE Computer,
Vol.29, No.2, pp. 38-47, Feb. 1996.

12. L.C.Guillou, M.Ugon, J.J.Quisquater, “A Standardized
Security Device Dedicated to Public Cryptology,”
Contemporary Cryptology : The Science of Information
Integrity, edited by Gustavus J.Simmons, IEEE Press, pp.
561-613, 1992.

13. B.W.Lampson, “A Note on the Confinement Problem,”
Communications of the ACM, Vol.10, No.16, pp. 613-615,
Oct. 1973.

14. S.Lipner, “A Comment on the Confinement Problem,”
Operating System Review, Vol.9, No.5, pp. 192-196, Nov.
1975.

15. E.Amoroso (AT&T Bell Laboratories), Fundamentals of
Computer Security Technology, Prentice Hall, 1994.

16. X.N.Zhang, “Secure Code Distribution,” IEEE Computer,
pp. 76-79, Jun. 1997.

17. A.Pfitzmann, B.Pfitzmann, M.Schunter, M.Waidner,
“Trusting Mobile User Devices and Security Modules,”
IEEE Computer, pp. 61-68, Feb. 1997.

8

18. A.Silberschatz, P.B.Galvin, Operating System Concepts,
Addison-Wesley, 1994.

19. U.Vahalia, UNIX Internals : the New Frontiers, Prentice
Hall, 1996.

20. S.Furber, ARM System Architecture, Addison-Wesley,
1996.

21. R.B.K.Dewar, M.Smosna, Microprocessors : a
Programmer’s View, Mc Graw Hill, 1990.

22. Hennessy, Patterson, Computer Architecture : a
Quantitative Approach, Morgan Kaufmann Publishers,
1996.

23. Department of Defense Computer Security Center,
“Department of Defense Trusted Computer System
Evaluation Criteria,” Departement of Defense Standard
DoD, Dec. 1985.

24. IBM, “IBM 4758 PCI Cryptographic Coprocessor General
Information Manual,” IBM Documentation, GC31-8608-
00, June 1997.

25. B.S.Yee, J.D.Tygar, “Secure Coprocessors in Electronic
Commerce Applications,” Proceedings of the 1st USENIX
Workshop on Electronic Commerce, July 1995.

26. B.S.Yee, “Using Secure Coprocessor,” Ph.D. Thesis,
Carnegie Mellon University, 1994.

27. E.Palmer, “An Introduction to Citadel – a Secure
Coprocessor for Workstations,” IFIP SEC’94 Conference,
Curacao, Dutch Antilles, May 1994.

28. R.Anderson, M.Kuhn, “Tamper Resistance – a Cautionary
Note,” Proceedings of the 2nd USENIX Workshop on
Electronic Commerce, Oakland, California, pp. 1-11, Nov.
1996.

29. D.Chess, B.Grosof, C.Harrison, D.Levine, C.Parris, and
G.Tsudik, “Itinerant agents for mobile computing,” IEEE
Personal Communication Systems, 2(5), pp. 34-49, Oct.
1995.

30. G.Karjoth, D.B.Lange, and M.Oshima, “A security model
for aglets,” IEEE Internet Computing, 1(4) pp.68-77,
July/August 1997.

31. D.B.Lange, M.Oshima, G.Karjoth, and K.Kosaka, “Aglets:
Programming mobile agents in java,” 1st Int'l Conf. on
Worldwide Computing and Its Applications '97 (WWCA97),
Lecture Notes in Computer Science. Springer-Verlag,
Berlin Germany, March 1997.

32. T.Gilmont, J-D.Legat, J-J.Quisquater, “An Architecture of
Security Management Unit for Safe Hosting of Multiple
Agents,” International Workshop on Intelligent
Communications and Multimedia Terminals (COST254),
Ljubljana, pp 79-82, Nov. 1998.

33. T. Gilmont, J-D.Legat, J-J.Quisquater, “An Architecture of
Security Management Unit,”Proceedings of SPIE: Security
and Watermarking of Multimedia Contents, San Jose,
Vol.3657, pp. 472-483, Jan. 1999.

34. Y.Deville and J.Gobert, “A Class of Replacement Policies
for Medium and High-Associativity Structures,” Computer
Architecture News, Vol.20, No.1, pp. 55-61, 1992.

