
Information Security Bulletin May 2002, Page 29

Copyright ©2002 - All Rights Reserved - Do Not Copy Without Written Permission

COMPONENT SECURITY

Component Security Design
Considerations for J2EE and
.Net - An Architectural View

Part 1
Gunnar Peterson

“An architect’s first work is apt to be spare and clean.
He knows he doesn’t know what he’s doing so he does
it carefully and with great restraint... The second is
the most dangerous system a man ever designs.”

- Fred Brooks

Introduction
This article describes the security issues and con-
siderations for the two most prominent middle-
ware frameworks: Sun’s Java 2 Enterprise Edition
(J2EE) and Microsoft’s .Net.

The series has three parts. The first two parts
give an overview of the major security compo-
nents for J2EE and .Net, respectively. Part three
compares the two and details security issues re-
garding common interoperability scenarios.

This paper focuses on security issues for J2EE. It
is written from an architectural viewpoint. We
will examine design considerations and chal-
lenges facing enterprise component level devel-
opers.

J2EE in brief
J2EE is is based on the Java language, but it is
different from Java. J2EE requires that Java is
used as the programming language (this is a key
difference from .Net which allows for many dif-
ferent languages to be used). J2EE itself is much
more than just a programming language. J2EE is
a standards-based platform which enables devel-
opers to solve enterprise problems in an efficient
manner.

J2EE defines solutions to common enterprise is-
sues. J2EE has classes to handle messaging, data-
base access, clustering, and most of the tasks an
enterprise developer deals with on a regular ba-
sis. The J2EE specification is very broad, for the
purposes of this article the focus will be primar-
ily on the J2EE component model Enterprise
JavaBeans (EJB).

EJB Overview
EJBs are designed to insulate the enterprise de-
veloper from common low level problems like
transaction monitoring, networking, clustering,
and authentication. EJBs run inside of an appli-
cation server. The application server vendor de-

velops and packages the solution that enable
these low level details to be hidden from the de-
veloper and dealt with at an administrative level.

Application servers are developed by 3rd parties.
not directly by Sun. Sun’s role in J2EE is to de-
fine the specification (although Sun does have
an application server: iPlanet). Examples of ap-
plication servers include BEA’s Weblogic and
IBM Websphere. Competitive advantage is
gained by the application server vender based
on how well their implementation scales, clus-
ters and performs based on their implementation
of the J2EE standard.

For a detailed look at EJBs, read Richard
Monson-Haefel’s Enterprise JavaBeans published
by O’Reilly.

Tiers
A current trend in software architecture is to de-
couple the system into three or more tiers. Some
examples of these modular designs are “3 Tier”,
N Tier" and “Model-View-Controller.”

In a standard Model-View-Controller (MVC) pat-
tern (see Figure 1), EJBs typically comprise the
Controller and Model layers. EJBs do not handle
any GUI tasks so these must be implemented
elsewhere, typically these View operations
would be handled by servlets, JSPs, or an applet.

It is often said that any problem in computer sci-
ence can be solved by adding a layer of indirec-
tion. The controller layer (also known as “the
middle tier”) enables this indirection. The con-

29

AppletsServlet ServletJSP EJB

EJBJMS JDBC

Model

View Controller

Figure 1 - The MVC Architecture



May 2002, Page 30 Information Security Bulletin

Copyright ©2002 - All Rights Reserved - Do Not Copy Without Written Permission

troller layer is the area where the business logic
and behavioral elements are stored in MVC pat-
tern. The model layer is responsible for the
data-centric operations. Since the controller layer
does not have to be concerned with either data
or view centric operations, it is free to call out to
other subsystems, “glue” together disparate data
sources, execute logical algorithms, and enfore
enterprise policies and rules.

EJBs, then, are strategically located from a secu-
rity standpoint. The logical, behavioral and data
elements encapsulated in EJBs are a critical part
of the security picture. These are the prized as-
sets that the security system must protect.

Many organizations focus on security at a net-
work level (firewall, IDS). If they deal with appli-
cation security in depth at all, it is frequently at
the front door level (View Layer) only. While it
is vital to secure the front door, it is just as nec-
essary to carry the security policy throughout
the other tiers of the application.

In a bank, the front door is secure to be sure, but
the safe (where the assets are) is even more for-
midable. In practice today, many systems have
no safe. To take the bank analogy one step fur-
ther, application level real time monitoring could
be considered the bank’s camera system. How-
ever, J2EE does not define a standard for moni-
toring. A custom solution can be cobbled to-
gether using logging and/or Java Management
Extension (JMX).

Secure Components
Secure applications must have support for au-
thentication, authorization, and privacy. There
are many other factors to deal with regarding
application security, but these elements gener-

ally comprise the building blocks for a
secure structure.

At a Controller and Model level, the cli-
ent application that is calling the EJBs
has hopefully already been authenti-
cated and authorized by a trusted
source. This trusted source can be the
application server as most J2EE server
support the common clients in the
View layer (JSP, Servlets). The most
straightforward paradigm is if the call
to the EJB is coming from a trusted re-

source in the same application server. If this is
the case, the security context is propagated to
the application server and the security principal
(the security credentials) can be understood by
the application server. The EJB layer then uses
lazy authentication (see Figure 2).

If the call does not come from a resource that
can be trusted or if the resource does not
interoperate at an authentication level with your
application server, then it may be necessary to
implement a trusted resource between the call-
ing client application and the EJB layer. This ad-
ditional trusted resource, for example a servlet,
can handle the authentication issues. The EJB is
then configured to only accept requests from this
servlet. The security context is then propagated
from the servlet as in the above diagram. If your
organization’s architecture has multiple vendor’s
application servers, then the interoperability on
a EJB to EJB call from disparate servers may re-
quire this additional authentication scenario (see
Figure 3).

Portability
One of the primary goals of Java as well as J2EE
is to be portable across different operating sys-
tems. Some cynics describe Java’s “Write once,
run anywhere” claim with the statement, “Write
once, debug anywhere”, however, in large part
the promise has been fulfilled. Nevertheless, por-
tability of an EJB application presents a different
set of issues than porting a Java application. Por-
tability with EJB applications is more of an issue
with porting to different application servers than
to different operating systems.

Since the J2EE specification leaves security and
other low level plumbing up to the application

COMPONENT SECURITY

EJB

Application Server
Authentication

J2EE Application Server

Trusted Resource
(Examples: Servlet, JSP) Context Propagation

Figure 2 - Call by a Trusted Resource

EJB

Application Server
Authentication

J2EE Application Server

Unrusted Resource
(i.e. Disparate

Application Server)
Context Propagation

Servlet

Application Server
Authentication

Figure 3 - Call by an Untrusted Resource



Information Security Bulletin May 2002, Page 31

Copyright ©2002 - All Rights Reserved - Do Not Copy Without Written Permission

COMPONENT SECURITY
server vendor, when you develop security for
your EJBs you can inadvertently tie your appli-
cation to that specific application server vendor.
Your application will usually port successfully
from one operating system to another as long as
it is still run within the same application server
If you decide to port from Websphere to Web-
logic, for example, you will need to closely in-
spect the security aspects of your EJBs to ensure
a clean migration.

Note also that the issues regarding vendor-spe-
cific security plumbing also impact interoperabi-
lity between disparate application servers. Due
to the different implementations, communicating
the security context from one vendor’s applica-
tion server to another can create interoperability
issues. Some or all of the context may not be
communicated correctly.

Added to the EJB 2.0 specification, the Java Au-
thentication Authorization Service (JAAS) is de-
signed to remedy many of the above problems.

Authentication
JAAS is a big step forward for EJB security. One
important feature is that JAAS provides a facade
that hides the low level authentication data
stores from the client programmer. JAAS can be
configured to authenticate against a variety of
LDAP servers, RDBMS or other stores (like file
systems). The client programmer only has to
communicate with the interface and does not
have to deal with connecting directly to LDAP.

This feature can also streamlines the develop-
ment life-cycle. A team can quickly begin devel-
opment against one type of user data store and
switch the user data store out for a more “pro-
duction ready” one later in the life cycle. This
change should not require recoding from the cli-
ent programmer’s point of view.

For web clients, J2EE provides four different
methods to authenticate: Basic, Form-based (can
be encrypted), Digest (encrypted username and
password), and Certificate. These types of au-
thentication are implemented differently de-
pending upon your application server vendor.
Since this is the front door to the web, it is criti-
cal to understand what the choices are and how
they are configured in your particular applica-
tion server. The flexibility to choose different
methods of authentication helps support more
sophisticated security policies at an administra-
tive rather than programmatic level.

Once the client is authenticated by the applica-
tion server the context can be propagated to the
EJB tier. Validating the propagated context can
be handled in a variety of ways, as described in
the next section.

In keeping with the overall design spirit of J2EE,
JAAS insulates the client developer from authen-
tication details. Splitting the roles of develop-
ment and administration is a good idea for a

number of reasons and security is high on this
list. Since, J2EE supports a strict separation of
duties it is possible to have one team do devel-
opment, another team configure security and yet
another team handle deployment and adminis-
tration.

The overall design of J2EE supports a better bal-
anced approach to software development. The
key security components are componentized so
they can be architected by a representative from
the enterprise security team who does not neces-
sarily have to have a developer level under-
standing of the entire J2EE platform. The enter-
prise security representative should, however,
have a far deeper understanding of the letter
and the spirit of the information security policy
and related issues than a typical developer.

The power of this model has yet to be fully real-
ized, because many organizations still leave all
J2EE responsibilities up to developers who have
to balance all of these concerns.

Authorization
J2EE and EJBs support the notion of Roles. Roles
should map to logical and behavioral elements.
In the bank example, a bank may have different
roles defined for opening a new account and de-
positing money into an account. The bank can
assign the “NewAccount” role to Sally and Bob
and “DepositMoney” only to Sally. Sally can
open an account and deposit money, while Bob
can only open a new account.

EJBs can work with roles defined at declarative
and programmatic levels. At a high level many
of the design decisions regarding EJB security
come down to when to use declarative or pro-
grammatic security for authorization.

Declarative security is generally considered by
architects to be the holy grail. The developer is
insulated from many of the security implementa-
tion details since the security is configured at de-
ployment time by the administrator. At deploy-
ment time the administrator can configure the
authentication and authorization settings for
each EJB with no impact on the code.

More importantly, once the application is run-
ning in production the security model can be
changed and roles and authorized users can be
added, deleted or updated. Again, these changes
can be done without reworking the code or re-
building the system.

Logical roles that authorize the user to perform
specific functions can be mapped to the EJBs at
the method level. A given EJB can support mul-
tiple types of users and groups as well as differ-
ent usage scenarios. A single EJB could imple-
ment read, write, and update methods with dif-
ferent combinations of roles mapped to each of
these methods.

In this model the EJB container manages the au-
thorization responsibilities and insulates the de-



May 2002, Page 32 Information Security Bulletin

Copyright ©2002 - All Rights Reserved - Do Not Copy Without Written Permission

veloper from dealing with them at a coding
level. The tradeoff for being insulated from these
issues is a lack of fine-grained control and the in-
ability to provide instance level authorization.

With programmatic security, the developer is
back in the driver’s seat. The developer can im-
plement authorization checks (typically calling
isCallerInRole) however, wherever he or
she chooses. As with declarative security the de-
veloper can implement roles on a method-by-
method basis.

The developer has the flexibility to add logical
algorithms based upon the Caller’s role. This en-
ables the system to descend below the high level
role and enforce lower level rules based upon a
given user’s parameters and permissions.

The price to pay with this approach is that the
developer’s main concern is generally develop-
ing business logic and not security. Program-
ming mistakes can be made and they are much
harder to detect in the code than at the deploy-
ment level. The administrator is generally
charged with being much more security aware
and will more easily adapt to and find security
issues in a declarative model. In the declarative
model, the security configuration is visible and
manageable at the application server administra-
tion console level rather than the code level
only.

The other issue with heavy reliance on program-
matic security is ongoing administration and
changes to policies, roles, users and groups.
When role checking is altered in a programmatic
model, coding changes are necessary. It is also
necessary to recompile, rebuild and deploy the
system. This can cause the system to be brought
down for redeployment and creates additional
work for the development and administration
teams.

This design decision comes down to the choice
on how to balance convenience and control. The
decision of how and when to use each of these is
one of the first major design decisions you need
to make.

The middle road is to implement both. Handle
high level tasks that can be broken down into
users, groups, and roles at the container level us-
ing declarative security. For lower level issues,
finer grained roles and permissions, and attrib-
ute-based and instance level issues consider pro-
grammatic security.

RunAs
EJBs have one other important method regard-
ing roles. The RunAs method enables the EJB
deployer to assign attributes and credentials to
the EJB at deployment time from an administra-
tive level. This method allows the EJB compo-
nents to use impersonation. RunAs is an effec-
tive way to manage component to component
calls especially when calling from one layer to

another. Imagine a bank employee who is a
teller and is empowered to execute wire trans-
fers as well. When he or she executes the wire
trasfer this is “RunAs” as the authorised wire
transfer user.

Privacy
Cryptographic functions are defined in the Java
Cryptography Extension (JCE). The JCE supports
public and private key systems (including stan-
dard algorithms such as Blowfish, DES, and
RSA), message digests, digital signatures, and
key management operations. JCE provides a full
suite of tools to implement a sophisticated
cryptographic subsystem. A full discussion of
JCE is beyond the scope of this article, but Sun’s
Javasoft website has a good deal of documenta-
tion on JCE.

In addition to the standard JCE implementation,
the Cryptix Foundation has developed the
Cryptix JCE which provides additional algo-
rithms and functionality.

One of the main issues with JCE is performance.
If this is a concern in your application, it is possi-
ble for JNI to call out to a C or C++ based
cryptographic application to enable better per-
formance. JNI has its own share of isues, so it is
important to balance your need for speed with
the brittle nature of JNI.

As with any use of cryptography, you should
consult the legal documents to see if there are
any implications for usage in your locale.

Using SSL
In a standard J2EE application there are two
non-obvious areas in which to consider using
SSL (the obvious way is between the web server
and client).

The first is in a basic and form authentication
scenario where passwords are sent in clear text.
SSL can provide privacy for these. The contents
can then be encrypted using JCE to encrypt both
the pipe and its contents.

The second is that the wire level protocol for EJB
communication is RMI-IIOP. There is no direct
support for SSL in RMI-IIOP, but for an addi-
tional layer of protection, J2EE applications can
use RMI-IIOP over SSL to secure these network
communications.

Classloaders
The Java language uses a class loader to load
and verify byte codes as well as handling execu-
tion and security tasks. In a security conscious
application, the Secure class loader should be
used. The Secure Class loader enables permis-
sion checking for class loading operations.

COMPONENT SECURITY



Information Security Bulletin May 2002, Page 34

Copyright ©2002 - All Rights Reserved - Do Not Copy Without Written Permission

Final Note on
Application Server Assessment
One of the chief benefits of the J2EE architecture
is the ability to choose “horses for courses.” The
various application servers each have strengths
and weaknesses. If your organization is at the
point of assessing application servers, then note
that the security implementation is one of the
primary differentiators between the application
server brands.

Conclusion
EJBs are a critical part of Sun’s J2EE strategy. The
EJB security model is flexible enough to enable
multiple different paradigms and patterns for se-
curing an enterprise’s valuable assets. The EJB
model lends itself to an architectural approach,
which empowers a wider audience, including
the enterprise security team, to participate along-

side developers and architects to design secure
components solutions.

COMPONENT SECURITY

Gunnar Peterson is a Software
Architect. He designs secure,
stable, and scalable solutions
for complex problem spaces.
Over his ten year career, he
has been dedicated to design
and development of distrib-
uted middleware Object-Ori-
ented and Component sys-
tems for clients ranging from
large enterprises to start-ups.

Currently, Gunnar is CTO of Arctec Group. Arctec
Group’s primary focus is “Strategies for Industrial
Strength, Integrated Architectures.”

He can be reached at gunnar@arctecgroup.net.


