
Information Security Bulletin June 2002, Page 17

Copyright ©2002 CHI Publishing Ltd - All rights reserved - Do not copy without written permission

COMPONENT SECURITY

Component Security Design
Considerations for J2EE and
.Net – An Architectural View

Part 2
Gunnar Peterson

Introduction
This series of articles aims to provide informa-
tion regarding key security design elements for
developers, architects, security and development
team stakeholders who work on component pro-
jects. In the previous issue, we discussed design
considerations for Sun Microsystems’ middle-
ware platform Java 2 Enterprise Edition (J2EE).
In this article we will describe the key issues fac-
ing any team implementing components for
Microsoft’s .Net middleware platform.

As discussed in the previous issue, component
security is something that many organizations
are just beginning to focus on. Historically, an
enterprise’s may be comprised of firewalls, intru-
sion detection, information security policy, con-
figuration guidelines, and perhaps PKI. The soft-
ware industry’s move towards component pro-
gramming enables organizations to engage the
security team (composed of individuals who are
not necessarily developers) to extend their secu-
rity model and policies to the application layer.

Well-designed component systems abstract the
low level code up to higher level logical objects,
methods and attributes. Representatives from
the business, security, administration or develop-
ment team are then able to influence design de-
cisions related to their area of expertise without
having to have the ability to read source code.
The result of this collaboration is a significantly
more mature finished product.

As stated in the previous issue, the power im-
plied by components on development team
structure has yet to be realized. Two factors that
are responsible for this are:

1. Organizations have been slow to fully compre-
hend the implications of components. The opti-
mal organization of a component development
team is fundamentally different from a tradi-
tional procedural or object oriented develop-
ment team. Component design reflects a strict
decoupling of roles and responsibilities, espe-
cially the separation of logic from data and user
interface and the organizational structure of the
development team should mimic this distinction.

2. With the lack of clear definition of roles in
their organizations, the individuals best suited
to adding value to these more focused and

specialized development teams have for the
most part not stepped up to define or fulfill
these roles. Couple this with the fact that there
are not a lot of good examples in the way of
books, conferences, or documentation for indi-
viduals to follow.

The full power of component development will
remain under-realized until organizations define
a more holistic approach to development and
members of the development step into this
breach. Today, enterprise security team members
have a good opportunity to provide more value
and more layers of protection to their organiza-
tions that use component-based designs like
J2EE and .Net. First, the enterprise security team
members must learn some of the key security el-
ements in the framework.

.Net in brief
As stated above, .Net is Microsoft’s latest foray into
component development. Unlike J2EE, .Net repre-
sents an evolution from a long history (in software
time) of component frameworks. .Net’s history can
be traced from its predecessors COM/DCOM/
COM+. COM was Microsoft’s first effort at enter-
prise level interoperability. COM grew out of
Microsoft’s work on ActiveX, which primarily was
designed to provide functionality such as embed-
ding Excel spreadsheets in Word documents.
COM added support for enterprise concerns such
as transaction and security support.

“COM was like an ugly woman with a heart of gold.
You really had to want to fall in love, but once you
did, it was forever. Java was like a beautiful woman
with horrible breath. Sure she looks great from across
a crowded room, but you really need to overlook cer-
tain annoyances if you plan on spending any time
with her. The CLR is like a great looking woman with
nice breath but since you are her first fling, you can’t
ask her ex for pointers on how to get along with her.
Colorful analogies aside, the CLR seems to please ev-
eryone who gets near it. Perfect? No. Imminently
better than anything else out there? Absolutely.
[Please note this was originally written in gen-
der-neutral terms, but it reads much better with gen-
der-specific pronouns. Feel free to mentally replace the
female pronoun with male pronouns.]”

-Don Box

17



June 2002, Page 18 Information Security Bulletin

Copyright ©2002 CHI Publishing Ltd - All rights reserved - Do not copy without written permission

So what is this wonderful CLR you may ask?
The CLR is the Common Language Runtime. It rep-
resents one the of the major design differences
between COM+ and .Net. Conceptually, the
CLR is similar Java’s Java Virtual Machine (JVM).
Like the JVM, the CLR abstracts the developer
from the machine level code. The CLR “man-
ages” the code at runtime and handles tasks
such as memory management, object lifecycle,
and security. The CLR is one of the foundational
elements of .Net.

Like J2EE, .Net specifies solutions to common
enterprise development problems. The .Net plat-
form has a rich framework that assists develop-
ers who are working on database access,
messaging, transactions, or other enterprise type
tasks. The platform also supports web applica-
tions through Internet Information Server (IIS) as
well as the ASP.NET runtime.

Unlike J2EE, you are not able to choose your ap-
plication server vendor. J2EE architects can com-
pare and contrasts the merits of the product
from such application server’s as IBM’s
Websphere and BEA’s Weblogic. Today, if you are
developing for the .Net platform your applica-
tion server is made by Microsoft, period. Obvi-
ously, this alleviates the portability issues found
in porting J2EE applications from one vendor to
another. Note that there are two projects from
the Open Source/Free Software world that are
actively working to port .Net to Linux and other
non-Windows platforms.

- Mono
(www.go-mono.com)

- DotGNU
(www.dotgnu.org)

From a design point of view, .Net offers some
additional flexibility that J2EE does not in terms
of language support. J2EE applications must be
written in the Java programming language,
while .Net applications can be written using a
host of languages including C#, C++, Visual
Basic, and even COBOL. This makes it possible
for a development team that does not have a
uniform background in the same language to de-
velop components that can still interoperate. No
matter which .Net supported language you are
working with, you compile your code to an inter-
mediate language (commonly referred to as “IL”)
instead of machine code. The IL and the CLR
provide type safety for the component
interoperation across the disparate programming
languages. The IL and CLR ensure that while
data types such as strings and integers are han-
dled in different manners by the different pro-
gramming languages (C# and Visual Basic sup-
port different data types, for example), these
types are translated and handled in a consistent
manner within the CLR.

Tiers (again)
In the previous issue, we examined the
Model-View-Controller (MVC) architecture since
this is used as a reference for J2EE applications.
In the .Net world the terminology is slightly dif-
ferent, but the concepts are generally similar.
The classical approach to application architecture
from the COM/COM+ world has been N-tier ar-
chitecture. Like MVC, N-tier requires strict sepa-
ration between the GUI, logical and data ele-
ments in the application. .Net adds a more ser-
vice-based approach to the traditional N-tier ar-
chitecture. Since .Net is still new there is not yet
a detailed, formalized architecture in place like
N-tier or MVC that articulates the optimal way
to leverage all of its features.

In terms of communication options between the
tiers of the application, .Net adds two new
methods in addition to DCOM which is how
COM objects communicate over the wire. .Net
supports DCOM as well as:

- .Net Remoting (using TCP or HTTP)

- ASP.NET (using SOAP)

For an in depth examination of Architectural op-
tions in .Net, please see msdn.Microsoft.com.

Now we will move on to the building blocks of a
secure component system: Authentication, Autho-
rization, and Privacy.

Authentication in .Net
So, .Net has a well defined model for compo-
nent developers to program against and it also

COMPONENT SECURITY

ASP.NET
Client-Side
Application
(e.g. VB)

Presentation Tier

.Net
Platform
Services

Business Logic or Middle Tier

COM+
Objects

Web
Services

ADO.NET

DCOM, MSMQ,
SOAP, Remoting

Database

Figure 1 - Example .Net Architecture
with Tiers and Services



Information Security Bulletin June 2002, Page 19

Copyright ©2002 CHI Publishing Ltd - All rights reserved - Do not copy without written permission

COMPONENT SECURITY
supports a strict decoupling of GUI, business
logic, and data code, now how do you get a
user logged on to your system? Authentication
is the front door to your component system.
Proper identification of the user enables more
detailed security checks for authorization and
confidentiality.

As with J2EE, .Net pushes component develop-
ers and architects to leverage the framework
rather than coding all functionality from scratch.
The spirit of .Net is to utilize the standard frame-
work for low level plumbing and allow the de-
velopers to focus on writing business logic. Be-
hind the scenes at authentication time, the CLR
handles the task of creating the user’s context
and manages and associates the user’s Identity
and Prinicpal.

The .Net framework defines four methods for
authenticating a user onto the system.

- Form-based authentication: utilizes HTML
forms and cookies to manage session state

- Passport authentication: this is the much-ma-
ligned service that has Microsoft managing
user’s identity. For an in depth discussion of
the risks inherent in centralizing identities, re-
fer to: http://avirubin.com/passport.html.

- Windows authentication: utilizes standard
Windows authentication mechanisms such as
Kerberos

- Internet Information Server (IIS): IIS can au-
thenticate using a Windows directory or differ-
ent user store depending on configuration. IIS
can also support certificate-based authentica-
tion. Many projects use IIS as an authentica-
tion server, but it is important to assess
whether this functionality necessitates its use.

Described in the ISB (Volume 6, Issue 9) arti-
cles “IIS Web Servers: It’s Time to Just Be Care-
ful" and “IIS: It’s Time to Just Say ‘No’” by E.
Eugene Schultz and Ric Steinberger, respec-
tively, IIS comes with a host of security issues,
and it should not be introduced to your .Net
application unless it is providing some value
beyond just authentication.

While the ability to use the user stores and man-
agement tools in Active Directory can be appeal-
ing, from a design point of view the flexibility to
not be bound to a specific user store is a very
valuable asset in .Net.

Choosing the proper authentication mechanism is
an important first step in securing your system.
Note also it is critical to understand the ongoing
impact on user administration based on which
route you choose. While it is generally straightfor-
ward to change authentication program code, it
can be problematic to migrate back end user
stores from one implementation to another.

Authorization in .Net
Once the user is authenticated it is then possible
to authorize users to perform certain actions
based upon the design and configuration of the
system. Authorization in .Net can be handled us-
ing:

- ACLs on the Windows file system

- URL authorization: Users and roles are given
permissions based upon the URI namespace.
The permissions can grant or deny access

- Principal objects: .Net can authorize calls
based on Windows or Generic principal objects
based upon the object’s context at runtime

For more fine-grained authorization, it is neces-
sary to use roles. At a logical level, roles should
be mapped to the actions that a user can per-
form. The design of the system governs how
roles are mapped to components. If your devel-
opment team uses Use Cases to describe function-
ality, then the Actors in the diagrams are a good
starting point to specify the Users and Roles for a
given component.

As with J2EE, .Net roles can be implemented in a
declarative or programmatic fashion. The same
design guidelines apply to .Net authorization
implementation. Declarative authorization pro-
vides a cleaner and simpler administrative inter-
face and enables method level authorization.
Programmatic authorization (via the IsInRole

call) can enable different authorization strategies
and decompose the security checks even further
within the methods. As was stated in part 1 of
this paper [ISB0705, May 2002], a blended ap-
proach that uses high level roles at a declarative
level and more detailed checks at a program-
matic level is worthwhile considering.

In an instance where a specific user can run as
multiple users, impersonation can be used. As its
name implies, impersonation provides the ability
for a user, object or context to impersonate key
attributes in a given scenario. This may desirable
when traversing from one tier to another, for ex-
ample.

Evidence-Based Security
At this point, you may ask yourself: “Where
does the CLR get the information it needs to de-
termine the validity of the information it is au-
thenticating and authorizing?” The CLR gathers
evidence to determine if the inbound call meets
the criteria defined in the security policy. The
evidence that is examined includes the URL, site,
and zone as well as signatures. Based upon the
CLR’s assessment of the evidence and the policy,
the CLR can determine access rights to a given
piece of functionality.

Privacy
Cryptographic operations for adding privacy to
.Net systems are available to developers in a va-



June 2002, Page 20 Information Security Bulletin

Copyright ©2002 CHI Publishing Ltd - All rights reserved - Do not copy without written permission

riety of ways. As with the rest of .Net, the cryp-
tographic functionality is equally available to any
.Net supported language whether the developer
is using Visual Basic or C++. So a developer us-
ing Visual Basic who may not be particularly
well versed in the guts of crypto can still take
advantage of it via the .Net framework. This ap-
proach has its pluses and minuses obviously, it is
up to the security and architecture teams to en-
sure a well designed crypto system. Cryptogra-
phy systems are too complex to be left to the
“lone developer” as if the system were just an-
other database access class.

.Net supports standard encryption algorithms
such as RC2, DES, Triple DES, Rijndael, and
RSA. Encryption functionality is available to de-
velopers either though the CryptoAPI which is a
holdover from the COM days or as a stream in
the .Net framework.

Streams can be implemented as back end
streams or passthrough streams. Back end
streams typically write data through to a file or
memory stream. Passthrough system read data
in and then write out a separate stream.

Simple Object Access Protocol (SOAP)
SOAP is one of the key technologies in the .Net
platform. In the next part of the paper we will
discuss SOAP, its role in .Net and its role in
interoperability between .Net and J2EE.

Conclusion
There are many keys to a secure .Net component
deployment. The team structure and methodol-

ogy must support input on critical design deci-
sions from multiple stakeholders not just the de-
velopment team. It is crucial for the security
team to understand the .Net terminology and
components so that they can contribute to a se-
cure system.

The .Net framework is flexible enough to sup-
port a sophisticated security implementation, but
this flexibility is only valuable if analysis and de-
sign work is done to take advantage of the secu-
rity functionality.

COMPONENT SECURITY

Gunnar Peterson is a Software
Architect. He designs secure, sta-
ble, and scalable solutions for
complex problem spaces. Over his
ten year career, he has been dedi-
cated to design and development
of distributed middleware Ob-
ject-Oriented and Component
systems for clients ranging from
large enterprises to start ups. Cur-
rently, Gunnar is CTO of Arctec

Group. Arctec Group’s primary focus is “Strategies for
Industrial Strength, Integrated Architectures.” He is
shown here on the trail of the wily cutthroat trout
deep in the Rocky Mountains. He can be reached at
gunnar@arctecgroup.net.


