
Information Security Bulletin July 2002, Page 1

COMPONENT SECURITY

Component Security Design
Considerations for J2EE and
.Net – An Architectural View

Part 3
Gunnar Peterson

“When you are content to simply be yourself and
don’t compare or compete, everybody will respect
you.” -Lao Tzu

Introduction
In the previous two parts of this series [1, 2], we
explored security design considerations for Sun’s
Java 2 Enterprise Edition (J2EE) and Microsoft’s
.Net platform for enterprise components. In this
part we will examine which differentiators are
available for those who are in the process of
choosing between the two.

We will deal with the case of organizations run-
ning both types of software by discussing utiliz-
ing Web Services to provide interoperability be-
tween the two platforms and the security issues
in these technologies.

Depending on your role, different comparison
criteria can be more or less valuable to you from
the perspective of using a given platform. The
frameworks will be compared from the architec-
tural viewpoint sine the architect should have a
high degree of concern regarding security as
well as the ability of the chosen framework to
live up to design, development and deployment
criteria.

This role will be defined differently in different
organizations, but the point is to show which cri-
teria are crucial from a cross-functional view-
point. An effective security architect should be
able to parse and consider the security issues
and implications from many viewpoints.

Finally, if you are reading this and expecting
some religious “good versus evil” comparison,
you’ll be disappointed. Surprisingly, the plat-
forms are from many viewpoints, more similar
than different. Each platform has its own nu-
ances and implications and it is these subtle dif-
ferences that we’ll delve into.

Architect’s View

Architect’s Role
The architect is the chief advocate of the “ilities”:
scalability, stability, reliability, usability, interope-
rability and security. The architect is generally
the individual charged with thinking horizon-
tally across the organization. This role is an ideal

spot from which to push for the holy grail of
“defense in depth.”

Process and Design Revisited
No matter which platform you choose, you are
hosed from a security standpoint if you don’t
utilize software design and development process
to the fullest extent possible. The architect is the
logical starting point to address where security
issues and requirements fit in the design and de-
velopment process.

Frequently, security requirements are gathered
at the end of a project life-cycle. Only after the
functionality of a system has been coded the de-
velopment team sets about figuring out how “se-
cure” it. This is too late. As we have seen in the
case of the ActiveX controls and Java Applets,
designing security into the basic requirements
from the beginning is essential to success.

The security team should be heavily involved
during the Inception and Elaboration project
phases to ensure that the requirements are gath-
ered and described correctly and that the corre-
sponding design handles the security issues.

Design Options Compared

Users
As an architect designing security implementa-
tions, one of the first things to work on is the
storage and management of user information.
J2EE and .Net allow for a variety of options re-
garding users. Both support LDAP and RDBMS
as user stores while the .Net platform also adds
its own Active Directory as a user solution. The
architect may view the straightforward integra-
tion with Active Directory as a bonus for the
.Net platform, since this may make for better re-
use. Understanding the existing user stores in
your organization and how well they integrate
with either platform is important in order to
create a manageable system.

Operating Systems
With all due respect to the Open Source ports of
.Net, the price to pay for the integration with the
Windows tools and technologies is that the sys-
tem is also tied to the Windows OS and its secu-
rity issues. The focus of this series is on the

25



July 2002, Page 2 Information Security Bulletin

middleware frameworks, not the supporting op-
erating systems, but one of the limitations with
.Net is that you inherit the security problems in
the Windows operating systems.

Being tied to Windows (or any other single oper-
ating system) also limits the architect’s choice re-
garding the scope of security management and
monitoring tools that are available.

In a J2EE application (which can run under Win-
dows), you will also inherit the security issues
from the operating system, but you have the
chance to pick which operating system can pro-
vide the best security for your organization. The
advantage for J2EE is that the component frame-
work does not require a specific operating sys-
tem. However, if you organization is already
running .Net servers this advantage is not so sig-
nificant.

Note also, that for J2EE application portability
across application server vendors is not ensured.
Porting a Weblogic application from Windows to
Linux will probably be easier than porting it
from Weblogic on Windows to Websphere on
Windows.

Programming Languages

Just as the .Net architecture necessitates the
Windows operating system, J2EE requires that
developers develop in the Java programming
language. .Net developers are free to develop in
a wide variety of languages, such as Visual Basic,
C++, or the new C#.

While being locked into an operating system can
be a security disadvantage, from an architectural
viewpoint being locked into a language may not
be.

The reason is that an operating system has a cas-
cading effect across other enterprise design deci-
sions. By being locked into a given operating
system you are automatically limited with regard
to which technologies you can use, e.g. for intru-
sion detection or as a firewall. The limitation of
programming language is not nearly as restric-
tive for an architect, although a developer may
feel differently.

For the architect the power is in the middleware
framework itself, not in the language.

While the ability to support multiple languages
is a significant productivity advantage for .Net, it
adds complexity for the architect who must
manage, standardize and design to accommo-
date security issues in each language.

As J2EE uses solely Java, the architect can pro-
vide a consistent, detailed set of requirements for
secure utilization of Java in the environment.
Then the architect is free to spin more brain cy-
cles on middleware platform issues.

Developer Tools
Microsoft has historically been at the forefront at
producing effective developer tools for middle of
the road developers. The prime example of this
is Visual Basic. As trendy as it is to bash VB, I am
not going to knock it. Remember that architec-
turally speaking, the power is in the framework.
With Visual Studio .Net, Microsoft continues
their fine tradition at producing excellent devel-
opment, debugging and deployment tools. Any-
thing that facilitates higher quality code in your
production system is an advantage to you, the
security architect.

As you may expect, the tools story on the Java
side is less consistent and varies from one ven-
dor to another. Java tool vendors offer a variety
of great tools ranging from products for rela-
tively small scale systems up to enterprise envi-
ronments that can model and generate Java code
directly from UML models. However, there is no
product in the Java space that can match Visual
Studio.

Organizational and Integration Issues
In most organizations, security will not be the
sole determining factor in selecting a middle-
ware platform. If it were, Microsoft could very
well be dominating the market with Visual Ada.

Security is a strategic concern, but other issues
such as existing staff skill set and integration will
probably dominate the discussion of which plat-
form to choose. Understanding which security
model makes sense in your organization can add
value to this discussion, however.

Since one of the main roles of middleware is to
facilitate the integration of legacy and back-end
systems it is worth considering the security im-
plications of the integration strategies inherent
in J2EE and .Net. J2EE provides the Java Con-
nector Architecture (JCA) as a means of legacy
integration. Microsoft offers a variety of technol-
ogies for legacy integration, such as BizTalk.

Each type of integration project has many vari-
ables. Hence, it is important to consider the
middleware security implications for J2EE or
.Net in the context of the target system and its
limitations. Some issues to consider when choos-
ing J2EE or .Net as the middleware platform for
integrating to a legacy system such as SAP or
Siebel are:

- Is it possible or preferable to use Single Sign-
On?

- Can the context from the session be passed to
the legacy system?

- Are roles supported?

- Which protocols are available for communica-
tion?

- Can the applications exchange keys?

COMPONENT SECURITY



Information Security Bulletin July 2002, Page 3

COMPONENT SECURITY
- How are errors handled? Can error message

be propagated up to the middleware layer?

Management and Monitoring
Since .Net is designed as a vertical slice, it bene-
fits from great management tools from all parts
of the .Net and Windows platforms. The security
team can leverage management tools from con-
tiguous platform elements such as Active Direc-
tory to aid administration on .Net applications.
In order to establish more pervasive security it is
beneficial to supplement the standard .Net ad-
ministration tools with technologies that are not
part of the .Net stack. In particular, utilizing a
3rd party monitoring or managed security moni-
toring system such as Counterpane [3] in con-
junction with standard .Net tools enables ease of
administration and provides a balanced view of
the system.

In J2EE, the application server vendors each
have a unique implementation regarding admin-
istration. The Java Management Extension (JMX)
standard is attempting to bring all of these im-
plementations under the same roof, but right
now there is no common solution. Third party
products can be used to integrate the systems
and provide functionality for security manage-
ment and monitoring. Since J2EE was designed
as an ecosystem for multiple vendors it is possi-
ble to come up with a variety of approaches
such as best of breed or lowest cost for manage-

ment and monitoring. However, achieving this
in practice places a greater burden on the archi-
tect.

Despite being limited to the Windows operating
system with regard to management and moni-
toring functionality, the .Net environment offers
a fairly complete set of tools that can be supple-
mented as needed. J2EE management provides a
greater breadth of functionality, but is basically a
series of toolkits that need to be configured and
integrated to work together harmoniously.

Interoperability
From the “why can’t we all just get along?” de-
partment we have Web Services. Both Scott
McNealy and Bill Gates agree this is the way sys-
tems should communicate in the future. History
tells us that this may be the last time these two
agree on anything for a while, so let’s make the
most of it.

Web Services with SOAP
“Keep your friends close, but keep your enemies
closer.”

-Michael Corleone in
“The Godfather” by Mario Puzo

Many security pundits deride Web Services and
SOAP because of their ability to be a “firewall
friendly” protocol. The reality is that today orga-
nizations already traverse the firewall using



July 2002, Page 4 Information Security Bulletin

RMI-IIOP (J2EE or CORBA), DCOM
(COM/COM+), or proprietary messaging sys-
tems. Given that Web Services simplify this
equation by offering a consistent, standard way
to communicate for distributed applications,
Web Services actually are an incremental im-
provement for secure development versus the
current situation.

There are numerous issues to consider regarding
securing your Web Service. A full discussion of
this is out of the scope of a component security
article. Some of the details to examine are cov-
ered in [4].

In the case of interoperable Web Services where
each Web Service is running on a different type
of server, for example a J2EE Web Service com-
municating with a .Net Web Service, one of the
main security advantages is to leverage the XML
document that defines the data payload between
the services. There are two main things to con-
sider using the XML document to add layers of
security to your Web Services application.

- The XML payload can be used to propagate
important security attributes such as roles and
policies in a format that is understandable
across middleware frameworks.

- Utilize the Web Service XML schema to embed
logic and hierarchies that enforce security
rules, such as relationships and data access
permissions.

Note also that Web Services are an important in-
tegration strategy for interoperability across dis-
parate J2EE application servers.

Conclusion
Given an architecture-centric software develop-
ment methodology and an energetic security
team both J2EE and .Net enable the security
team to play a significant role in shaping the
overall security of the component development.

Unless you are starting an organization from
scratch many of the design decisions will be dic-
tated to you by the current system. It is vital to
understand which platform offers better security
within the context of your organization’s sys-
tems, skills and processes. The fundamental key
to success is for the security team to participate
shoulder to shoulder with the developers and
architects throughout the development life-cycle.

References
[1] Component Security Design Considerations for
J2EE and .Net - An Architectural View, Part 1, Gun-
nar Peterson, Information Security Bulletin, Vol
7, iss. 5 (May 2002), pp 29-34.

[2] Component Security Design Considerations for
J2EE and .Net - An Architectural View, Part 2, Gun-
nar Peterson, Information Security Bulletin, Vol
7, iss. 6 (June 2002), pp 17-20.

[3] www.counterpane.com

[4] http://www-106.ibm.com/developerworks/
webservices/library/ws-secmap/

COMPONENT SECURITY

Gunnar Peterson is a Software
Architect. He designs secure, sta-
ble, and scalable solutions for
complex problem spaces. Over his
ten year career, he has been dedi-
cated to design and development
of distributed middleware Ob-
ject-Oriented and Component
systems for clients ranging from
large enterprises to start ups. Cur-
rently, Gunnar is CTO of Arctec

Group. Arctec Group’s primary focus is “Strategies for
Industrial Strength, Integrated Architectures.” He is
shown here on the trail of the wily cutthroat trout
deep in the Rocky Mountains. He can be reached at
gunnar@arctecgroup.net.


