B Computer Security Laboratory |

Audit Workbench

Christopher Wee
James Hoagland
Wilson Choi, choiw@lsil.com
Bradford Wetmore, wetmore@bongos.ebay.sun.com
Faculty:
Karl Levitt
Biswanath Mukherjee
Matthew Bishop

University of California, Davis

Sponsored by National Security Agency, University Research Program

|
University of California, Davis
netsec@cs.ucdavis.edu

1of24

B Computer Security Laboratory |

Outline

[J What is auditing?

] Goals

[J Visual audit browser

[Hypertext audit logs

[] Scenarios

[J Protocol-driven Audit Reduction

[Auditing Clients & Servers

[1 Audit Reduction

[1 Policy Enforcement & Security Model
[Further work

20f24

|
University of California, Davis
netsec@cs.ucdavis.edu

B Computer Security Laboratory |

What is Auditing?

Logging — recording security relevant behavior by programs and users
Reduction — aggregation of low-level events into high-level, abstract events

Analysis —review logs for intrusions or policy violations

Why Audit?

[J Review access of objects by users,

[1 Review the effectiveness of system protection mechanisms,

[J Record attempts to bypass protection mechanisms,

[Detect uses of privilege greater than, or inappropriate for, the role of the user,
[J Deter perpetrators, and

[1 Assess damage and assist in recovery from intrusion.

3of24
|

University of California, Davis
netsec@cs.ucdavis.edu

B Computer Security Laboratory |

Goals

[J Tools for System Security Officers (SSO)
* Filters
* Visual graphs
» Graphical, interactive audit browsers

[] Tools for researchers
» system-independent audit logs
» tools to combine, reduce, splice, etc. logs
» portable analysis algorithms
» portable representation of security relevant behavior and state

|
University of California, Davis
netsec@cs.ucdavis.edu

4 of 24

B Computer Security Laboratory |

Models/Views

Workbench:
filters, tools

Audit Workbench

E-R View Statistical View

! !
e

Audit Manager
Audit Loggers

Synthetic logs

|
University of California, Davis
netsec@cs.ucdavis.edu

5of 24

B Computer Security Laboratory

BSM Audit Log

file, Thu Oct 21 16:23:39 1993, + 970501 msec,
header,107,execve(2):,Thu Oct 21 16:23:43 1993, + 160000 msec
path,/,/usr/export/home/heberlei,/usr/export/home/heberlei/loadmodule
process,heberlei,heberlei,heberlei,staff,330

return,No such file or directory,-1

trailer,107

header,53,vfork(2): process creation,Thu Oct 21 16:23:43 1993, + 170000 msec
largument,0,330,child PID
process,heberlei,heberlei,heberlei,staff,319

return,Error 0,330

trailer,53

header,120,execve(2):,Thu Oct 21 16:23:43 1993, + 170000 msec
path,/,/usr/export/home/heberlei,/usr/openwin/bin/./loadmodule
attribute, 104755, root,staff,1822,55365,56424
process,heberlei,root,heberlei,staff,330

return,Error 0,0

trailer,120

header,104,0pen(2): read, Thu Oct 21 16:23:43 1993, + 170000 msec
path,/,/usr/export/home/heberlei,/ust/lib/ld.so

attribute, 100555, root,staff,1822,101476,25280
process,heberlei,root,heberlei,staff,330

return,Error 0,3

trailer,104

hheader,35,exit(2): process termination,Thu Oct 21 16:23:49 1993, + 100000 msec
process,heberlei,root,root,daemon,334

return,Error 0,0

trailer,35

header,141,stat(2):,Thu Oct 21 16:23:49 1993, + 610000 msec
path,/,/usr/export/home/heberlei/.wastebasket,/usr/export/home/heberlei/.wastebasket
attribute,42755,heberlei,staff,1822,59984,4414
process,heberlei,heberlei,heberlei,staff,174

return,Error 0,0

trailer,141

file,Thu Oct 21 16:23:51 1993, + 447661 msec,

Figure 1. Excerpt from BSM audit log

|
University of California, Davis
netsec@cs.ucdavis.edu

6 of 24

B Computer Security Laboratory |

Visual Audit “Browser”

O Initial audit browser prototype “ab” [Wetmore92]
« text based
« written in C, cumbersome to modify
* Sun BSM audit logs

[J Visual audit browser [Wee, Hoagland94]
 transformation of audit logs into DAGs with annotations
« graphs produced by AT&T’s dot tool
« written in Perl, easily extensible
* interactive browsing (work-in-progress)

1.presented NSATechFest93

|
University of California, Davis
netsec@cs.ucdavis.edu

7 of 24

B Computer Security Laboratory |

Visual summary of overnight audit log
TR N NI 2.\

guid of guid of guid of guid of

€D D & @
o @3

12 am

N

w
3

g »
3 3

3

8 am @ Gind

8 of 24

|
University of California, Davis
netsec@cs.ucdavis.edu

B Computer

Security Laboratory |

Visual summary of suid-shell script attack

: jhoaglan™\{
—

audit id for

symlink()

S~ -~
- 2 ~
- . ~
i — eli 7 Ui ~
audit id for P euid for ./ euid for ~
— = ~

501:
Jusr/ucb/quotg

500:
Jusr/bin/csh,

euid for

L L L L T T ey eppp———

| lusr/export/home/jhoag :

I /home/hoagland/suilj

506:
lusr/export/home/hoagland/suig
lusr/bin/sh

create(2):

508:
/usr/bin/chmod,

chmod to 00666
from 104644 at
Tue Jul 519:32:42 1994

letc/security/password.adju

| lusr/export/home/jhoaglan/.histofy

9 of 24

|
University of California, Davis
netsec@cs.ucdavis.edu

B Computer Security Laboratory |

Visual Audit Browser (continued)

Benefits

[1 Irrelevant details are filtered

[Enables the user to scan for unusual patterns

[1 Useful in studying attacks that exploit system vulnerabilities

Difficulties
[1 temporal relationships are hard to discern
» prototype of a audit log “movie maker” (in progress)
[1 Multiple views required
» Control-flow, process centered view
« Data object view
» Information flow view
» Accountability-flow view (in progress)
[1 Filtering is arbitrary
[1 No automatic inferences and minimal reduction performed

|
University of California, Davis
netsec@cs.ucdavis.edu

10 of 24

B Computer Security Laboratory

Hypertext Audit Logs

Extending the original text-based audit browser

0 HTML, W3 http, & NCSA mosaic

[1 Hypertext allows rapid investigation of audit logs

[1 Full audit log details available

1 WWW permits distributed browsing and annotation
« coordinated analysis by SSOs at different sites

Disadvantages:
[J No filtering
[1 Security of HTTP protocol is weak
[J Few automated inferences
[J Not portable across different audit systems
[J Human must search for malicious activity
« malicious activity may remain undetected

|
University of California, Davis
netsec@cs.ucdavis.edu

11 of 24

B Computer Security Laboratory |

A client-server database system

Sue
. database
‘ server
.‘.:
James
(? requestjonndoe
CrackerJack

Challenges:

[I Indirection through database server obscures accountability
[J OS access control only mediate direct accesses, not indirect ones
[J Cannot rely upon server authentication

* inadequate

» buggy or contain trojans, back-doors

|
University of California, Davis
netsec@cs.ucdavis.edu

12 of 24

B Computer Security Laboratory |

Microkernel operating system

program| [user
programs

i T

Sérver Server
I Server /

\

?
audit log
micro kernel
Challenges:

[J Auditing is distributed
[J Audit logs likely to be more detailed, less coherent
[J Checking servers introduced to the secured environment for malicious elements

UJ

Approach

[1 Anomaly detection — compare old traffic with new traffic
[J Audit analysis — compare new traffic against protocol specification

13 of 24
|
University of California, Davis
netsec@cs.ucdavis.edu

B Computer Security Laboratory |

Personal computers & peripherals

Challenges:
[J Lack adequate identification & authentication
[Can serve as storage channels or launchpads for attacks
» Possess network ports, network identifiers, increasing amounts of computation
power and “intelligence”
Approach:
[Exploit the fact that even PCs and peripherals use standard protocols

14 of 24
|

University of California, Davis
netsec@cs.ucdavis.edu

B Computer Security Laboratory |

Auditing Clients & Servers

database
client

database
server

[J No changes to the clients or server

[J Express audit logs in terms of the abstractions used in security policies
* e.g., users, information, rights, instead of processes, files, inodes etc.

[J OS services are logged in the system audit logs

[J C-S transactions are logged by monitoring Inter-Process-Communications (IPC)

|
University of California, Davis
netsec@cs.ucdavis.edu

15 of 24

B Computer Security Laboratory |

Audit Log
__/

[J Transactions between clients & servers (C-S) makes analysis tractable

Protocol-driven Audit Reduction

Client/server Policy

Protocols

Audit)
Reduction reduced Synthesize
Filter audit attributes
log
unreduced events SI\%HQP/

[Information is retained, clutter is reduced

* e.g., series of read()s interspersed by NFS_Read IPC replaced by FILE_ READ
[J Audit event parameters are matched and checked across multiple audit events
» consistent values are retained as attributes of the reduced log

 inconsistent values raise warning flags

[Events unexplained by the protocol are highlighted for further examination

|
University of California, Davis
netsec@cs.ucdavis.edu

16 of 24

B Computer Security Laboratory |

Protocol-driven Audit Reduction (cont’d)

Benefits:
[1 System independence
* e.g., simple model of Unix processes
* e.g., NFS, DNS, HTTP standards
[Systematic reduction
[1 Reduced logs are more abstract and less clutter
[1 Distributed audit aggregation
» most distributed systems interact using standard protocols

Research goals:

[1 Methodology for solving accountability tracing

[1 Retrofit delegation of access rights into Unix protection model
» synthesized delegation credentials

[1 Automatic translation of protocols into audit reduction filters

[1 Portable reduction and analysis algorithms

|
University of California, Davis
netsec@cs.ucdavis.edu

17 of 24

B Computer Security Laboratory |

Tracing accountability and authorization

« Accountability — who was responsible?
» Authorization path — how or from whom were permissions/rights obtained?

Accountability is a property of a system that enables actions to be traced to the user
responsible for initiating the activity.

Theauthorization path is the set of all principals that delegated rights to the

Ted {y interrupt activity
Alice P ;
indirect authorization path -} \O unlock door

open enter protected
door area

accountable principal or otherwise “contributed” to the activity.

18 of 24

|
University of California, Davis
netsec@cs.ucdavis.edu

B Computer Security Laboratory |

Reducing C-S Transactions

[1 Client-server transactions are represented by a production

NFS_READ
user X

cred_list X

-> [open()] read()+
user Y
cred_list = { cred_list_X U new(credy) }

auth_list = { new(credo.>v) }

[] based on finite state automata or grammars
[tailored for each client-server protocol specification
[attributes synthesized tailored to needs of policy enforcement

[I Initial prototype

using attribute grammars on subset of NFS in [Ch0i93]

1. Presented at NSA TechFest93

|
University of California, Davis
netsec@cs.ucdavis.edu

19 of 24

B Computer Security Laboratory |

Example: Reduction using templates

On the client-side

C_Nfs_Read(F)--> read(F) by X@P (NFS_READ(F) from NFS@S to Y@D)

+

acct_list= acct_lisl (X@P - NFS@$

Figure 2. High-level Nfs_Read production (client side)

On the server side,

S Nfs_Read(F) --> NFS_READ(F) from Y@S to NFS@D [open(F) by X@P] (read(F) by X@

acct_list=acct_listl (Y@S- X@P

3)+

Figure 3. High level NFS_READ production (server side)

To aggregate client and server sides,

Read(F)--> C_Nfs_Read(F) with Clist S _Nfs_Read(F) with Slist

acct_list= Clistd Slist

Figure 4. Aggregating client and server events

|
University of California, Davis
netsec@cs.ucdavis.edu

20 of 24

B Computer Security Laboratory |

Result of reduction and synthesis

P - serveg —»
' N \ 3,4,5

vV, |
C_Nfs_Read(F) R 2
acct = Frank@P -> NFS@A 4

S Nfs_Read(F)
acct = NFS@A -> NFS@B

READ(F)
acct = Frank@P->NFS@A, NFS@A->NFS@B

21 of 24

|
University of California, Davis
netsec@cs.ucdavis.edu

B Computer Security Laboratory |

Aggregation

From raw audit events,
open(), NFS_LOOKUP, NFS_GETATTR, read(), NFS_READ, read(),...,
NFS_READ, NFS_GETATTR, close()

Using specification-based audit reduction, audit output might look like,
FILE /net/mailserver/usr/spool/mail/wee read by daemon @ 11:33:04 PST

Adding synthesized accountability, we have
FILE /net/mailserver/usr/spool/mail/wee read by

[wee@client->root@client->root@mailserver->daemon@mailserver]
authorized by [wee@client->root@client->root@mailserver].

1. The prototype required much exception handling and cannot yet trace attributes this concisely.

22 of 24

|
University of California, Davis
netsec@cs.ucdavis.edu

B Computer Security Laboratory |

Policy Enforcement / Intrusion Detection

[1 Security policies do not translate into a well defined set of behavior

Model of security state
[Security state of a system is dictated by policy
[I Initial security state is affected by system'’s initial state & system configuration

« exact information about system configuration is hard to obtain due to upgrades,
patches, re-configurations etc.

[1 How does specific behavior affect security state?

Alternate approach:

[J Protocol-based audit reduction defers need for complete model of security
» only requires protocol and minor assumptions about security model

[J Lower level security policy requirements are easier to define
* e.g., definitions of objects, users, ownership, permission

23 of 24

|
University of California, Davis
netsec@cs.ucdavis.edu

B Computer Security Laboratory |

Further Work

[0 Enhancements to visuals
» data-centered graphs
« animated displays of audit logs
[1 Aggregate Sun BSM and HPUX audit logs
[1 Aggregating system logs with other sources of information
[1 Protocol-based audit reduction
e more reductions
» simple inferences about security state of a Unix system
» portability
[J Tampered audit logs
e simple mutations
» effects of simple mutations

|
University of California, Davis
netsec@cs.ucdavis.edu

24 of 24

