
1
From: Proceedings of the 1999 IEEE Symposium on Security and Privacy.
Copyright © 1999 by The Institute of Electrical and Electronic Engineers, Inc. All rights reserved.

Software Smart Cards via Cryptographic Camouflage

D. N. Hoover and B. N. Kausik
Arcot Systems, Inc., www.arcot.com

doug@arcot.com, nat@arcot.com

Abstract

A sensitive point in public key cryptography is how to
protect the private key. We outline a method of protecting
private keys using cryptographic camouflage. Specifically,
we do not encrypt the private key with a password that is
too long for exhaustive attack. Instead, we encrypt it so
that only one password will decrypt it correctly, but many
passwords will decrypt it to produce a key that looks valid
enough to fool an attacker. For certain applications, this
method protects a private key against dictionary attack, as
a smart card does, but entirely in software.

1 Introduction

With the advent of support for public key cryptography
in web browsers, the use of public key cryptographic sig-
natures and authentication protocols is becoming more
common. The security of the private key, however, re-
mains a problem. The most basic threat is the theft of a
private key that is stored on a disk. Usually such a key is
stored in a software key container – a file wherein the keys
are encrypted by a password. An attacker who steals the
container can try to guess the password using a dictionary
attack. The main defenses against such an attack are (a)
make the password space extremely large, (b) slow down
the operation of checking a single password. Neither of
these methods is very practical.

We propose a method for secure storage of private keys
in software, using cryptographic camouflage, whereby
attacks on the key container are inherently supervised.
Metaphorically speaking, the proposed key container em-
beds the user’s private key among spurious but plausible
private keys. An attacker who tries to crack the key con-
tainer will recover many plausible private keys, but will
not be able to distinguish the correct private key from the
spurious decoys until he tries to use the keys to access
resources via an authentication server. The authentication
server will notice multiple authentication failures and sus-
pend access.

The main idea behind cryptographic camouflage is as
follows. Usually, data that we encrypt is made up of veri-
fiable plaintext, in that it has sufficient structure that will
show a cryptanalyst whether he used the right key to de-
crypt it. For example, if an English sentence is DES-
encrypted with one key and then decrypted with a different

key, the result will likely be a random-looking string of
bytes, not an English sentence. Thus, an attacker can crack
the encrypted message by exhaustively searching the key
space, even if he does not know any of the original text—
he knows he has broken the cryptogram when he recovers
an English sentence. In this case, to defend against an
exhaustive search attack, one must make the space of de-
cryption keys large enough that exhaustive search attacks
are computationally infeasible.

On the other hand, if every decrypt has the same struc-
ture as the original data, the attacker cannot distinguish the
correctly decrypted data from the many plausible but spu-
rious decrypts. In such case, we do not have to make our
key space too large to search, because the data is camou-
flaged1 by the many false decrypts.

What makes most conventional software key containers
vulnerable to dictionary search is that they contain verifi-
able plaintext that shows an attacker when he has guessed
the right password. The key container may contain a hash
of the password or the key may be represented in a format
that allows the attacker to tell if he has correctly decrypted
the private key.

A more secure alternative is to store private keys on a
hardware smart card. The key is be protected by a pass-
word and the smart card resists key search attacks by
locking up permanently after a limited number of attempts
to unlock it with incorrect passwords. Unfortunately smart
cards require expensive infrastructure in the form of smart
card readers, as well as substantial administrative effort in
distributing and updating user cards.

Protecting a private key using cryptographic camou-
flage gives some of the advantages of smart cards without
requiring any extra hardware. We can use camouflage to
protect private keys because in most public key encryption
algorithms, the part of a private key that really needs to be

1 Lomas, Gong et al. [5] introduced the notion of veri-

fiable plaintext and the more general idea of verifiable text
[2]. They emphasize that it is unsafe to protect a secret
with a key from a relatively small keyspace such as a
password in the following cases. (1) If the attacker can tell
successful decrypts from the recovered information (veri-
fiable plaintext), or (2) from some more general evidence
given by the context whether he has guessed the right key
(verifiable text).

2

kept private is often random, for example the DSA X com-
ponent, or random looking, for example the RSA private
exponent. Indeed, if it were not essentially random, it
could be guessed, and hence could not be truly private.
This is a natural situation in which to apply the form of
camouflage we described above.

2 Camouflaging Private Keys

Camouflaging a private key is not entirely simple. An
attacker has a number of means of distinguishing the true
private key from a false one, and we have to eliminate all
these means. In this section, we will discuss the necessary
measures in general terms. We will find that applying
these measures imposes some restrictions on the use of a
camouflaged private key. We will discuss those restric-
tions in the next section and discuss further details of
camouflaging different private keys in the sections fol-
lowing that one.

Let us suppose that we protect a private key by en-
crypting it, or parts of it, with a PIN of reasonable length,
say six to eight digits. We do our actual encryption using
DES or some other well-known encryption algorithm and
a key derived from the PIN by some method along the
general lines of PKCS #5, i.e., by hashing the PIN, possi-
bly together with a salt.

We don’t require an enormous PIN space because our
security doesn’t lie in making a search infeasible, but
rather in making sure that many false PINs produce a
plausible decrypt, and in limiting the number of PINs that
an attacker can try. To be successful, we must make sure
that an attacker does not have any feasible test that can
distinguish the true private key from a false candidate, or
at least from most false candidates. If he did have such a
test, he could decrypt the private key with every possible
PIN and apply the test that to every candidate private key
that results. By such an attack, he would obtain the private
key or at least eliminate many of the false candidates.
Therefore we must make sure he has no test for the true
private key, not even a probabilistic one.

2.1 Don’t encrypt known structure with the
PIN

Don’t encrypt the whole representation of the private
key in any standard form with the PIN, because they all
contain some structure defined by the format. Decrypting
with the wrong PIN won’t usually produce a result with
this structure. Don’t even think of encrypting the
modulus of an RSA key because, unlike the true modulus,
most false decrypts will have small factors.

2.2 Conceal the public key and don’t use it to

encrypt verifiable plaintext

If an attacker knows the public key, then he can tell
whether a candidate private key is the real one by signing
something with the candidate key and trying to verify the
signature with the public key.

To avoid this attack, we have to keep the public key se-
cret, even from its owner. Only authorized, trusted parties
at secure sites may have access to a user's public key.
This restriction has a number of consequences, discussed
in the next section.

Likewise, if the public key is used to encrypt any veri-
fiable plaintext, we can test for the true private key by
decrypting the ciphertext and verifying the resulting text.

2.3 Don’t reveal information about the PIN

This is an obvious point, but most key containers con-
tain a hash of the password so as to check that it is (proba-
bly) correct before using it to decrypt the key. That is just
the sort of thing we want to avoid.

We can avoid this attack just by not keeping a hash of
the PIN with the encrypted private key. A hash does serve
a purpose, thoughin the case of the user mis-typing the
PIN, the hash keeps the key owner's correspondent from
getting messages signed with an incorrectly decrypted
private key. We can serve this purpose and still protect
against this attack by storing a partial hash or checksum
that can detect typographical errors in the PIN. For exam-
ple, we could imitate ISBN and use a p-valued checksum,
where p is a prime larger than the number of digits in the
pin and larger than the cardinality of the character set used
in the PIN. Such a checksum detects any typo that is a
simple transposition or an error in one character. It should
be borne in mind, however, that keeping an N-valued
checksum will, on average, reduce the number of possible
PINs, and hence the security of the private key, by a factor
of N.

2.4 Randomize and protect signatures

Suppose that we use a camouflaged RSA private key to
sign some data in a standard way, for example according
to PKCS #1. That is, we hash the data with a secure hash
algorithm, pad it deterministically to the length of the pri-
vate key's modulus, and then encrypt it with the private
key. If an attacker can get hold of the key container, the
data signed, and the signature, then he can find the private
key by trying every PIN and checking whether the corre-
sponding candidate private key produces the same signa-
ture.

To avoid this attack we must pad the hash randomly in-
stead of deterministically, so that the signing the same data
again will not produce the same signature. It is crucial to

3

use a secure source of randomness (see [4]) so that the
attacker cannot guess the random pad.

In signature systems such as DSA, the public key can
be computed from the private key. Hence, even though
the signature contains a random element, an attacker can
test a candidate private key by computing its public key
and trying to verify the signature with that public key. To
avoid this attack, we must encrypt any signature so that
only the intended recipient can read it.

3 Using Camouflaged Private Keys

As we saw in the previous section, in order to camou-
flage a private key successfully we must address a number
of things besides the private key. These issues will require
measures that will impose some restrictions on the safe
uses of a camouflaged private key and its public counter-
part. We now examine these restrictions in the context of
the primary applications of public key cryptography.
1. Use the private key to sign a message. Since only

trusted parties can be given access to the public key, a
camouflaged private key can be used to sign messages
that are to be verified by trusted parties, but cannot be
used to sign messages sent to a stranger. For instance,
camouflaged keys can be sign checks to be verified by
a bank.

2. Use the public key to encrypt a message to the
holder of the private key. As discussed earlier, for
messages that contain verifiable plaintext, this would
compromise the camouflaged private key.

3. Distribute the public key in a certificate.
Public keys corresponding to camouflaged private
keys can be placed in certificates. However, the pub-
lic key must be encrypted so that only trusted entities
can decrypt it. For example, the public key being
certified could be encrypted with a symmetric key and
the symmetric key distributed amongst the trusted en-
tities. There are several ways of placing such en-
crypted public keys inside certificates conforming to
standards such as X.509. There are two advantages to
encrypting the public key in the certificate. Firstly, the
Certificate Authority controls the use of the certificate
by controlling the distribution of the decryption key.
Secondly, revoking the certificate is simplified, since
only those verifiers that possess the decryption key
need to be alerted of the revocation.

4. Authenticate by signing a challenge sent by a
server in a standard challenge-response protocol.
Camouflaged private keys can be used for this, pro-
vided the server has the ability to recover the user’s
decrypted public key.

To summarize, a camouflaged private key is useful for
digital signatures in a closed public-key infrastruc-
tureone in which signed messages may be verified only

by certain trusted entities. These entities will typically be
servers that need to authenticate by verifying that a chal-
lenge has been signed by the user's private key. If a
server receives enough bad signatures from a user, it
locks-out the user pending administrative intervention.
Since the public key corresponding to a camouflaged pri-
vate key can be placed in a certificate, a server in a closed
PKI does not need a list of all its users or of their public
keys. It identifies users and obtains their keys from the
certificate is just as in an ordinary, open PKI.

Now let us discuss in more detail just how to camou-
flage a private key.

4 Details of Protecting the Camouflaged
Private Key

A user's camouflaged private key is protected not by
the sheer size of its PIN space, but by the fact that an at-
tacker cannot tell whether he has cracked it without con-
tacting an authentication server. The size of the search
space for a sophisticated hacker trying to crack a camou-
flaged wallet is about

K = (Number of PINs) / (Number of checksum values)

The probability that a hacker can crack a given wallet is

P = (expected number of attempts to authenticate be-
fore the user is suspended)/K

The numbers need to be chosen so that

P *(value of breaking a key)

is small enough that it is not worth the trouble of stealing a
camouflaged card and trying to crack it.

Typically the number K will not be large enough to
stop a brute force attack that has some feasible way to
check whether an attempted decrypt of the camouflaged
private key is correct without contacting a server. There-
fore we must be careful to make sure there is no way that
an attacker can distinguish the true private key from false
decrypts.

How the private key is encrypted depends on what kind
of key it is.

4.1 DSA Camouflaged private key

A DSA private key consists of three parameters (p, a
large prime, q, a smaller prime, 160 bits with the top bit
set, and g, a number mod p) and a private key x, which is
any number less than q. The public key corresponding to

x is y=gx .
It is easy to protect a DSA private key in such a way

that decrypting it with any pin produces a legitimate pri-
vate keyjust choose x with the top bit clear and do not
encrypt the top bit.

4

4.2 RSA Camouflaged private key

We begin with a review of RSA keys. An RSA private
key consists of a modulus n, which is a number of the
form pq, where p and q are large primes, and a private
exponent d, a number that is relatively prime to (p-1)(q-
1). Exponents that differ by a multiple of

ϕ(n) = (p-1)(q-1)/gcd((p-1)(q-1))

are equivalentencrypting with them produces the same
results. The primes p and q together with some other
numbers that can be used to speed up cryptographic op-
erations are often included in the private key. An RSA
public key corresponding to (n,d) is a pair (n,e) (with the
same n) such that

de ≡ 1 mod ϕ(n).

Usually d and e are chosen smaller than n. This restriction,
however, is unnecessary, since exponents that are equiva-
lent mod ϕ(n) produce the same encryption function.

The relation between the public and private keys is per-
fectly symmetric, i.e. what is encrypted using one can be
decrypted only using the other; and it is not feasible to
obtain either key from the other.

Generating RSA keys for Camouflaging

1. Determine length (in bits) for the modulus and public
exponent. The length of the modulus is chosen with
respect to the security required of the system, say
1024 bits. The length of the public exponent must be
large enough that it is infeasible for an attacker to
enumerate all exponents of this length.

2. Choose two safe primes p and q of an appropriate size
and let the modulus n be pq. Safe primes are primes
of the form p = 2p’ + 1, q = 2q’ + 1, where p’ and q’
are also primes.

3. Choose the public exponent e to be within the allowed
length and relatively prime to (p-1)(q-1).

4. Let D be the inverse of e mod ϕ(n). Choose a random
k such that the private exponent d = D + k ϕ(n) has no
more than b bits.

Camouflaging the RSA private key

1. Leave the modulus n unencrypted.

2. Discard the highest-order and lowest-order bits of d
since these are both 1. Let f be the remaining string of
bits. Encrypt f using a key derived from the password
or PIN. Use an encryption method that preserves
length. For example, use DES, padding f with ran-
dom bits to a multiple of the block length when en-

crypting, maintaining a record of the length of f in
conjunction with the encrypted text.

Recovering the Camouflaged Private Key

1. The modulus n is unencrypted and directly available.

2. Decrypt the encrypted form of f using the key derived
from the user’s password or PIN. Discard the pad-
ding. Restore the highest-order and lowest-order bits
to obtain d.

How camouflaging works on RSA Keys

The crux of the problem is to encrypt private exponent
d in such a way that an attacker cannot distinguish a false
decrypt from a true one.

One obvious characteristic of RSA private keys is that
the private exponent d is odd. We thwart attacks based on
this characteristic since we guarantee that the recovered
exponent is always odd. Another characteristic of the
private exponent is that it is prime relative to (p-1)(q-1).
The attacker cannot exploit the second characteristic, since
finding (p-1)(q-1) is equivalent to factoring the modulus,
an infeasible task by assumption in the RSA system.
Could an attacker conceivably find some way to test this
property even though he cannot find p and q? We avoid
this possibility by choosing p and q to be safe primes.
Then any false decrypt d’, being odd, will, like the true
exponent d, be in a given range and a legitimate exponent
for n, unless d’ is divisible by either p’ or q’, the probability
of which is miniscule.

The private exponent may also have some other char-
acteristics depending how it is generated. For example,
the usual methods of generating an RSA key (e.g. [9], p.
467) produces a private exponent d that is smaller than (p-
1)(q-1). It is hard to tell whether a candidate private expo-
nent d’ is smaller than (p-1)(q-1), which the attacker does
not know. To make things more difficult for the attacker,
we pad d with a multiple of ϕ(n).

There is one other property that d has and a false de-
crypt d’ may not have. The private exponent d has a corre-
sponding public exponent e that has a limited number of
bits. One may be worried that an attacker could test this
property, even though he cannot compute the public expo-
nent e’ corresponding to a candidate private exponent d’.
If so, just choose a general public exponent e, i.e. let its
length be the number of bits in n and pad it to the length of
n when encrypting it. But in practice we are likely to pre-
fer choosing our public exponents relatively short, making
public key operations, which are usually performed on a
busy server, cheaper. But making e short requires some
additional caresee the discussion of Wiener’s attack,
below.

Encrypting the private key in the proper way does not
solve all the problems involved in camouflaging it. We

5

must also address some hazards that arise from the context
in which the private key is used.

5 Hazards of Camouflaged Keys

5.1 Brute Force Public Exponent Attack for
RSA

The requirement to conceal the public key has some
consequences for RSA. Since we do not try to keep the
modulus secret, we must depart from the common practice
of using some fixed number as the public exponent.
Moreover, we must use public exponents that are long
enough that an attacker cannot enumerate them all in the
following simple brute force attack: For each possible
public exponent, test whether it can decrypt a string en-
crypted by a candidate private key. With high probability,
the true private key will be the only candidate whose pub-
lic exponent is short.

5.2 Known signature attack for RSA

If a hacker has a message signed using a camouflaged
private key and knows exactly what was encrypted to form
the signature, he can try encrypting that thing with all de-
crypts of the private key until a result matching the signa-
ture is obtained.

There are two possible ways to avoid this attack.
1. Attach a random pad to the hash of the message be-

fore encrypting it. That way the hacker may know the
message and hence the hash, but does not know what
exactly was encrypted. (This practice is differs from
PKCS #1, which specifies deterministic padding for
private key operations.)

2. If one is worried that even a signature with a random
pad may give away some information about the ran-
dom exponent, encrypt the signature with another key
before sending it, as discussed below for DSA.

Note that if we do choose to encrypt the signature, we
still need some random element, since otherwise the at-
tacker can test a private key against the encrypted signa-
ture of a message by signing and encrypting the same
message, then comparing results. If a random pad is not
used when signing, use the standard form of hybrid mes-
sage encryptionchoose a random symmetric key, en-
crypt the signature with that key using one’s favorite sym-
metric encryption algorithm, then encrypt the symmetric
key with the recipient’s public key.

5.3 Known signature attack for DSA

Unlike RSA, a DSA public key can be computed from
the private key. Therefore, if a hacker has anything signed
by a camouflaged DSA private key, he can, in spite of the

random component of DSA signatures, crack the camou-
flaged key container by doing the following.
1. Decrypt the camouflaged private key with each PIN

that matches the checksum.
2. For each resulting candidate, compute the related

public key and try to verify the signature with that
public key.

Verification will succeed only for the correct private
key.

To avoid this possibility we need to encrypt signatures
when we send them to the authentication server. This key
could be the authentication server’s public key, or we
could pair the signing key with an encryption key. For
example,

camouflaged private key = DSA private key + Elgamal
public key

camouflaged public key = DSA public key + Elgamal
private key

To sign data, form the DSA signature and then encrypt
that with the Elgamal public key. To verify a signature,
decrypt with the Elgamal private key and then verify the
DSA signature.

Pairing keys in this way gives the combined key the
property that RSA keys have, that one cannot derive the
public key from the private one. Note that, since DSA
signing includes a random component, it is not necessary
to add any further randomness.

5.4 Wiener’s attack for RSA

In the camouflaged scheme, public and private expo-
nents have changed roles in some sense.
1. The public exponent is considered to be completely

secret from the typical attacker, i.e. one that does not
operate an authentication server.

2. The private exponent is encrypted, but the PIN space
is small enough that the attacker could try them all
and examine each candidate private exponent.

Thus, we need to consider classical attacks on RSA, but
with the role of the public and private exponents reversed.
Wiener’s attack [11] on a short private (in our case, public)
exponent is of particular interest because we would like to
use a rather short public key, so that the public key opera-
tions which are performed on a busy server, are efficient
as possible. A hacker could however, try Wiener’s test for
all private key candidates. The probability is vanishingly
small that more than one candidate would produce a suc-
cess with Wiener’s attack and extract a short exponent for
the complementary key.

Wiener’s attack breaks down if the public exponent is
large enoughhalf the length of the modulus sufficesor

6

if the private exponent is large enough (larger than n3/2).
To make the private exponent large, add a multiple of (p-
1)(q-1) to it. The resulting exponent is mathematically
equivalent to the usual one, though encrypting with it is
more expensive.

Of course, independent of the defense against Wiener’s
attack, the public exponent should not be so short as to be
subject to the brute force attack discussed above.

5.5 Using the same PIN for a camouflaged key
and for something else

Suppose the PIN for a camouflaged key is used as the
password that decrypts an object that contains verifiable
plaintext, such as an ordinary key store or a log-on pass-
word. Then a hacker can find all the pins that pass the
checksum test and see which one unlocks the other object.
If there is one that does so then it is pretty likely to be the
PIN for the camouflaged key container. Even if there is
no checksum, using the same PIN means that the camou-
flaged key is no safer than the other container. If the char-
acter set for the camouflaged PIN (e.g. digits) is more re-
stricted than it would normally be for the other container
(e.g. printable characters) then the security of both con-
tainers is reduced.

On the whole, we cannot prevent a user from using a
camouflaged key’s PIN for something else, only try to dis-
courage it. Note that smart cards are subject to the same
attack in a degree comparable to that of a camouflaged key
without a checksum.

5.6 Two copies of a Camouflaged key with dif-
ferent PINs or two Camouflaged keys with
the same PIN and different salts

Encryption based on a PIN is usually done following a
method similar to PKCS #5, which specifies that one hash
the PIN together with an 8-byte random salt to form the
actual encryption key. The point of using the salt, which
is not secret, is to slow down a dictionary attack by mak-
ing it impossible to precompute the encryption keys de-
rived from the PINs. Since camouflaged key protection
does not depend on slowing down a dictionary attack, it
does not really need to use a salt, and the following attack
shows that there is good reason why we should not. Es-
sentially the same attack shows that if a checksum is used
then we must never encrypt the same camouflaged key
with different PINs. Hence we should allow the user to set
the PIN once only, when the key is created, or at least be-
fore it leaves a secure area.

Suppose we have two copies of a camouflaged key, en-
crypted with different PINs. For each key, the hacker de-
crypts with each PIN that passes the checksum test for that

key, getting a set of candidates for the true private key.
Probably there is only one key that is in both sets.

When there is a salt, a similar attack can work even
without a partial hash, even if the PINs are the same, be-
cause if the set of salts is much larger than the space of
PINs, as it usually is, the probability is vanishingly small
that any pair of decrypts but the true ones will match.

If two camouflaged keys are encrypted with the same
PIN and different salts and a checksum is kept then a
comparatively small proportion of the PINs (1/(number of

checksum values)2) will pass both checksum tests, help-
ing the attacker guess the right one.

Without salts, it is only mildly bad to use the same PIN
for different camouflaged keys. The main consequence is
that an attacker has more servers on which to try a limited
number of passwords each.

6 Comparison with Other Authentication
Methods

The camouflage technique gives us a tamper-resistant
software key container, a “software smart card,” that can
be used mainly for authentication. How does such a soft-
ware key container compare for strength and flexibility
with other common authentication methods, such as pass-
words, public key authentication with the key in a con-
ventional password-protected key container, and pass-
word-protected smart cards?

6.1 Advantages of Software Smart Cards

1) There are several varieties of password-only authenti-
cation methods, ranging through old fashioned pass-
word systems with a hashed or encrypted form of the
password stored on the server [6], possibly with the
password transmission protected by SSL, through
Kerberos [10] to other, more secure, secure password
protocols in which the password is never transmitted
[1,3,12]. Software smart cards have the following ad-
vantages over all forms of password-only protocols.
a) Software smart cards are a form of two-factor

authentication, so an attacker cannot get access to
an account simply by watching a user type his
password or PIN.

b) Software smart cards use certificates, so that the
server need not know its users in advance.

2) Software smart cards are stronger than conventional
software key containers because they are not suscepti-
ble to brute force or dictionary attacks. Conventional
software key containers default to one-factor authenti-
cation since having access to the key-container typi-
cally implies that the password protecting the con-
tainer can be guessed by dictionary attack. Any pass-
word that the user can remember without writing

7

down is in principle subject to some form of diction-
ary attack.

3) Brute force and dictionary attacks get easier as com-
puters get faster. Computer speed does not affect the
security of the camouflage until it gets fast enough to
factor the modulus of an RSA key or crack the en-
cryption protecting a public key.

4) Software smart cards do not require the purchase,
distribution, or administration of cards and card-
reader hardware.

5) Software smart cards can be copied and backed-up as
a convenience to the user.

6) Software smart cards can be stored on any storage
medium, including hardware smart cards.

6.2 Disadvantages of Software Smart Cards

1. With a software smart card, all cryptography must be
performed on a host processor and is therefore subject
to unauthorized copying by viruses. Storage smart
cards also suffer this risk. Crypto smart cards are im-
mune to such attacks since all processing is done
within the card. But even with a crypto smart card, a
virus can switch the documents being signed, causing
the user to sign false documents unwittingly.

2. The strength of software smart cards applies only to
closed PKIs.

7 Camouflaged Symmetric Keys

A number of commentators have suggested a modifi-
cation of our method in which the public/private key pair
is replaced by a symmetric key. In such case, things don’t
change much superficially but there is a subtle but impor-
tant difference in the trust models. Specifically, the sym-
metric key variation of the scheme is weaker than the
asymmetric key version, because it allows rogue server
operators to steal the secret key of any user who sends his
certificate to that server as part of the authentication proto-
col. In cases where this risk is not considered significant,
the symmetric key version is an attractive one because it is
more efficient.

8 Conclusion

We have presented a camouflage technique for soft-
ware storage of digital signature credentials. The tech-
nique enables "software smart cards"—software containers
for secure storage of private keys, combining the assur-
ance of hardware with the flexibility of software. Typical
applications for the technology include intranet applica-
tions such as HR and enterprise resource planning; extra-
net applications such as supply chain management, busi-
ness-to-business e-commerce, healthcare information sys-

tems; consumer applications such as e-payment, e-
commerce, and online banking; enterprise security appli-
cations such as firewall remote access etc.

9 Acknowledgements

We thank Martin Hellman, Taher Elgamal, Bruce
Schneier, Niels Ferguson, Dan Boneh, David Jablon, Tom
Wu and the anonymous referees for many helpful sugges-
tions.

10 References

[1] S.M. Bellovin and M. Merritt. Encrypted key exchange:
"Password-based protocols secure against dictionary at-
tacks", Proceedings of the 1992 IEEE Computer Society
Conference on Research in Security and Privacy, 72-84,
1992.

[2] L. Gong, T.M.A. Lomas, R.M. Needham, and J.H. Saltzer.
Protecting poorly chosen secrets from guessing attacks.
IEEE Journal on Selected Areas in Communications,
11(5):648-656, June 1993.

[3] D. Jablon. Strong password-only authenticated key exchange.
Computer Communication Review, 26(5):5-26, October
1996.

[4] J. Kelsey, B. Schneier, D. Wagner, and C. Hall, "Cryptana-
lytic attacks on pseudorandom number generators", Fast
Software Encryption, Fifth International Proceedings, pp.
168-188, Springer-Verlag, 1988.

[5] T.M.A. Lomas, L. Gong, J.H. Saltzer, and R.M. Needham,
"Reducing Risks from Poorly Chosen Keys". Proceedings of
the 12th ACM Symposium on Operating System Principles,
pp. 14-18, 1989.

[6] R.H. Morris and K. Thompson. Unix password security.
Communications of the ACM, 22(11):594, November
1979.

[7] PKCS #1: RSA Encryption Standard, RSA Laboratories
Technical Note, Version 1.5, Nov. 1, 1993,
http://www.rsa.com/rsalabs/pubs/PKCS/

[8] PKCS #5: Password-Based Encryption Standard, RSA Labo-
ratories Technical Note, Version 1.5, Nov. 1, 1993,
http://www.rsa.com/rsalabs/pubs/PKCS/

[9] Bruce Schneier, Applied Cryptography, second edition,
Wiley, 1996.

[10] J.G. Steiner, C. Neuman, and J.I. Schiller, “Kerberos: An
Authentication Service for Open Network Systems, in Pro-
ceedings of the USENIX Winter Conference, February,
1988, pp.191-202.

8

[11] Michael J. Wiener, Cryptanalysis of of short RSA secret
exponents, IEEE Transactions on Information Theory, v. 36
no. 3, May 1990.

[12] Thomas Wu, “The secure remote password protocol,” in
Proceedings of the 1998 Network and Distributed System Se-

curity Symposium, Internet Society, pp. 97-111, 1998.
http://srp.stanford.edu/srp/ndss.html

