
A Map of Security Risks Associated with Using COTS

Ulf Lindqvist and Erland Jonsson
Department of Computer Engineering
Chalmers University of Technology

SE-412 96 Göteborg, Sweden
{ulfl, erland.jonsson}@ce.chalmers.se

As published inComputer, Vol. 31, No. 6, June 1998, pp. 60-66.

Copyright © 1998 IEEE. Personal use of this material is permitted. However, per-
mission to reprint/republish this material for advertising or promotional purposes
or for creating new collective works for resale or redistribution to servers or lists,
or to reuse any copyrighted component of this work in other works must be ob-
tained from the IEEE.

0018-9162/98/$10.00 © 1998 IEEE60 Computer

A Map of Security
Risks Associated
with Using COTS

T
he traditional security design approach has
been one of risk avoidance, not only in sys-
tems with high-security (military grade)
requirements but also in medium-security
systems, such as those typically found in

financial institutions and corporate research depart-
ments. The design approach has been to construct
mainly customer-specific solutions using security
mechanisms such as physical “air gap” separation,
information flow analysis, and strict or formal devel-
opment and verification methods. However, there are
several reasons why these techniques are applied less
frequently today:

• Developing entirely customer-specific solutions is
usually far more expensive and in all cases more
time-consuming than purchasing COTS products.

• Some security mechanisms, particularly cryptog-
raphy, have proven so difficult to implement cor-
rectly that developers should be provided with
ready-made building blocks, relieving them of the
risk of introducing subtle but serious flaws.

• Most organizations want connectivity and inter-
networking rather than physical separation.
(Physical separation—also called “sneaker net”—
requires manual intervention to transport data
between a protected system and the outside world.)

More and more members of the security community
realize the impracticality and insufficiency of risk avoid-
ance as the sole doctrine. This was understood long
ago in the reliability community, where fault
tolerance was developed as a complement to fault pre-
vention.1 It turns out that strict development proce-
dures can only reduce the number of flaws in a complex
system, not eliminate every single one. Vulnerabilities

may also be introduced by changes in the system envi-
ronment or the way the system operates. Therefore,
both developers and system owners must anticipate
security problems and have a strategy for dealing with
them.2 This is particularly important with COTS-based
systems, because system owners have no control over
the development of the components.

SECURITY-RELATED COTS PRODUCTS
Any type of COTS component might have an

impact on the overall system security, depending on
how it is used in the system. Therefore every type of
COTS product could be security-related. On the other
hand, not all COTS products are designed without rel-
evant security concerns. Some COTS products are
indeed designed, implemented, and evaluated accord-
ing to medium or even high levels of security func-
tionality and assurance (although these products are in
the minority). Examples of COTS products intended
to improve security include cryptographic software
(and hardware), network firewalls, and antivirus tools.

The open question, however, is what level of secu-
rity one can attain by composing a system of different
products. An ideal design goal would be to make the
overall system security independent of how some
untrusted components behave, but that is often diffi-
cult to accomplish in practice.

COTS operating systems deserve special attention,
for several reasons:

• Operating systems are perhaps the most wide-
spread COTS products.

• Only a handful of different basic types of COTS
operating systems exist from which to choose,
and they show wide variation in their security
functionality and assurance.

The widespread use of commercial off-the-shelf products in combination
with increased internetworking calls for an analysis of the associated
security risks. Combining Internet connectivity and COTS-based systems
results in increased threats from both external and internal sources.

Ulf Lindqvist
Erland Jonsson
Chalmers University
of Technology

Co
ve

r F
ea

tu
re

.

.

• Many application programs rely on the operating
system to enforce security mechanisms, such as
user identification, authentication, and access
control.

TAXONOMY OF SECURITY RISKS
Every situation in which the use of computers can affect

something valuable (for example, human lives or health,
privacy, economic assets, or national security) involves risks.
Peter G. Neumann informally defines a risk as “a potential
problem, with causes and effects,” although pointing out
that there is no standard definition of the term.3

Here we are mainly concerned with security risks,
which we define as

• the system, through human misuse, experiences
loss of confidentiality, integrity, or availability for
any of its resources; or

• the system, through misuse or by accident, expe-
riences the introduction of a security vulnerabil-
ity. (A security vulnerability is a flaw that could
later be exploited to cause a loss of confidential-
ity, integrity, or availability.)

Our taxonomy is a map of potential problem areas.
It can be used to aid the analysis of security risks when
using systems that to some extent contain COTS com-
ponents. It is based on the typical phases in the estab-
lishment of the system.

Component design
Some security risks originate from the design of the

COTS components and are consequently beyond the
control of the customers:

• Inadvertently flawed component design. The
components may have various types of bugs,
some of which may affect security.

• Intentionally flawed component design. The com-
ponents may contain intentional security flaws,
such as backdoors, viruses, or Trojan horses (for a
more detailed explanation of this problem, see the
sidebar “Defining the Confinement Problem.”).

• Excessive component functionality. A component
may have many more features than the customer
needs or even knows about, and so the customer
might not realize the true security implications of
including the component in the system.

• Open or widely spread component design.
Although most academic security researchers
(including ourselves) promote openness and pub-
lic scrutiny for better security, a risk does exist if
details of the component design are widely
known outside the customer organization. Even
worse, from a security point of view, is the com-
mon situation in which the design is known to a

large development organization and its
partners but not to the customers.

• Insufficient or incorrect documentation.
The developer might not provide the cus-
tomer with the documentation needed to
correctly and securely integrate the com-
ponent into the system.

Component procurement
There are also security risks associated with

purchasing and delivering components:

• Insufficient component validation. A component
purchase might not fully conform with the cus-
tomer’s real security requirements, which are not
necessarily the same as the customer’s specified
requirements.

• Delivery through insecure channel. For example,
in downloading a software component via the
Internet, the product might be manipulated along
the way by a third party (an intermediary attack)
or the customer might be tricked into down-
loading a manipulated product from a site con-
trolled by the attacker, instead of the real product
from the vendor’s site.

Component integration
Integrating components, which is a step in the design

of the composed system, has the following risks:

• Mismatch between product security levels. A com-
mon problem when integrating different products
is that the security level must be set to the lowest
common denominator to make the products work
together. For example, in the Microsoft Windows
NT File System, user access to local system files
and folders can be restricted to read-only permis-
sion to prevent accidental or intentional modifi-
cation. However, for Microsoft Office 97 to work
properly, the user must be given write permission
for a number of system folders and files.4

• Insufficient understanding of integration require-
ments. The integrators might not fully under-
stand all of the preconditions for secure inte-
gration of the products, for example, that some
components must be physically protected.

Internet connection of system
When the system is connected to the Internet, a

number of additional risks must be considered:

• Increased external exposure. By connecting the
system to the Internet, exposure expands to a
large number of potential external attackers who
otherwise would not have any data communica-
tion path to the system.

June 1998 61

Some security risks
originate from the
design of the COTS

components and are
consequently

beyond the control
of the customers.

.

62 Computer

• Intrusion information and tools easily available.
An insider who decides to attack the system can
get a great deal of applicable information from
the Internet.

• Executable content. Many World Wide Web
pages have executable content (for example, Java
applets) that automatically downloads and exe-
cutes on a user’s computer when viewing the page

in a Web browser. Credulous users might well
run programs that attack their system.

• Outward channel for stolen information. The
Internet connection constitutes a channel that can
covertly and conveniently export information
stolen from the system, for example, by internal
attackers or by programs planted by external
attackers.

Defining the Confinement Problem
The confinement problem is a classic

computer security problem. Basically, it is
a question of how to limit the actions of an
executing program that normally has all the
privileges of its invoking user and, there-
fore, can do anything the invoker can do.

One example of such a program is a
Trojan horse. A Trojan-horse program
appears to be benign and to behave as
expected by the invoker but, in addition to
or instead of the expected actions, does
something malicious.

A classic and most elegant example of a
Trojan horse was presented by Ken
Thompson.1 Thompson describes a portion
of code hidden in the C compiler on a Unix
system. When Thompson’s modified com-
piler compiles the login program, it inserts
a backdoor into the login binary that, for
example, grants access to any account upon
entering a “master key” password. To
ensure that the Trojan horse does not dis-
appear when the C compiler is replaced by
a new version, Thompson’s compiler
detects when it is used to compile a new C
compiler and inserts the Trojan code into
the object code of the new compiler.

Unfortunately, Trojan horses present not
only a theoretical problem for researchers
but a serious threat to ordinary users of
computer systems. In the world of com-
puting today, factors such as increased soft-
ware complexity, dynamic code linking,
user abstraction from underlying functions,
Internet connectivity, and frequent down-
loading of executable code from various
sources all facilitate the insertion of Trojan
horses and make them difficult to discover.

A general problem
However, the confinement problem does

not apply only to Trojan horses. Untrusted
software that is not malicious might still

have side effects that are unexpected by the
invoker and may cause security problems.
This should be of particular concern to
developers of systems that include COTS
components.

Traditionally, computer security has
focused on confidentiality, that is, making
sure that only authorized subjects (people,
processes) have read access to certain
information. Therefore, an early definition
of the confinement problem concerns
information leakage: “…the problem of
confining a program during its execution
so that it cannot transmit information to
any other program except its caller.”2

Great effort has been expended on the
analysis and elimination of covert chan-
nels (unauthorized communication paths
through which a process could transmit
confidential information).

The basic problem can be stated more
generally: “What is the appropriate way
to confine an untrusted program so that it
can do everything it needs to do to meet
the user’s expectations, but nothing else?”
The imprecise definition does not give
much hope for a final solution, and the real
difficulty lies in correctly specifying the
permitted behavior of the program.

Suggested solutions
The general problem could be addressed,

however, if it were possible always to fol-
low the principle of least privilege, which
states that every subject should operate
using the least set of privileges necessary to
complete the job.3 Several access control
models designed with the purpose of
enforcing that principle have been pro-
posed.4 With military applications in mind,
designers have developed operating systems
implementing mandatory access control,
which bases confinement on data classifi-
cation labels and personnel clearance.

A more recent approach is domain-and-
type enforcement (DTE), in which an
attribute called a domain is associated with
each subject and another attribute called a
type is associated with each object. A cen-
tral matrix specifies whether a particular
mode of access to objects of a type is
granted or denied to subjects in a domain.5

Another type of confinement mecha-
nism is the Java security model,6 which is
an example of language-based confine-
ment of downloaded mobile code.
Cryptographic methods for ensuring
authenticity and integrity of programs are
often suggested, but their main drawback
is that they only solve the problem of con-
firming the author’s identity and that the
program has not been altered by someone
else; they are of little help when the user
does not trust the author.

References
1. K. Thompson, “Reflections on Trusting

Trust,” Comm. ACM, Aug. 1984, pp.
761-763.

2. B.W. Lampson, “A Note on the Confine-
ment Problem,” Comm. ACM, Oct. 1973,
pp. 613-615.

3. J.H. Saltzer and M.D. Schroeder, “The
Protection of Information in Computer
Systems,” Proc. IEEE, Sept. 1975, pp.
1,278-1,308.

4. R.S. Sandhu, “Lattice-Based Access Con-
trol Models,” Computer, Nov. 1993, pp.
9-19.

5. W.E. Boebert and R.Y. Kain, “A Further
Note on the Confinement Problem,” Proc.
30th Int’l Carnahan Conf. Security Tech-
nology, IEEE Press, Piscataway, N.J.,
1996, pp. 198-203.

6. G. McGraw and E.W. Felten, Java Secu-
rity: Hostile Applets, Holes & Antidotes,
John Wiley & Sons, New York, 1996.

.

System use
Some risks are related to how the users operate the

system:

• Unintended use. The system can be used in
an unintended way, for example, to store and
process data that are more sensitive than the
system was designed to handle or to attack
other systems.

• Insufficient understanding of function. Users
might not be able to judge their adherence to
the security policy if they do not fully under-
stand a function. For example, they might
not know whether or not a particular pro-
gram transmits passwords in the clear over
the network.

System maintenance
Finally, there are risks involved in the maintenance

of the system:

• Insecure updating. In the same way as the initial
software delivery is risky if performed via an inse-
cure channel, software updates can be modified
in transit or system owners can be fooled into
installing fraudulent updates.

• Unexpected side effects. Any changes made to
components in the system can have unexpected
side effects and might introduce new security vul-
nerabilities.

• Maintenance backdoors. The history of computer
insecurity contains many cases in which devel-
opers left open backdoors for convenient testing
and maintenance of their products. However,
such backdoors can be misused by anyone who
knows or finds out about them.

ANALYZING RISKS TO PRIVACY
IN A DATABASE SYSTEM

We were invited to investigate the security of a
privacy-oriented database system under develop-
ment. The system, which was based mainly on
COTS products, was designed to strongly protect
the privacy of the individuals recorded in the data-
base. Our study revealed a large number of security
problems that we reported to the developers and
later further analyzed in terms of underlying causes
and possible remedies.5

The system was intended for personal registers in
government or municipal services, offices in health care
and in social care, and other public services. The major
design goal was to make it virtually impossible to link
a sensitive record in the database to an individual with-
out proper authorization. To accomplish this separa-
tion of data, the designers used a combination of
cryptographic devices and record pseudonymity. Their

idea was to split identifying data and descriptive data
between two separate databases, using an individual
identification number, similar to a Social Security num-
ber, as the link between them. Figure 1 illustrates how
data could be split between the two databases.

• The open database would contain publicly avail-
able data such as name and address, with plaintext
individual identification numbers as record iden-
tification fields.

• The secret database would contain sensitive data,
with encrypted individual numbers as record
identifiers. That is, the records in the secret data-
base are pseudonymous rather than anonymous.
The designers did not require encryption of any
other fields in the secret database unless that
information could be used to link confidential
information to specific individuals.

The design goal was to make the database system
resistant to many different kinds of potential attack-
ers, ranging from dishonest or disgruntled current or
former employees to other organizations and even
foreign governments. Furthermore, even with physi-
cal access to the client hosts, to a copy of the data-
bases from the server host, or to both, the attackers
should not be able to violate the security policy of the
system. The developers summarized the comprehen-
sive security policy of the system in two statements:

• Confidentiality. Only authorized users should be
able to link records in the secret database to a
single individual.

• Integrity. Only authorized users should be able
to modify records in a meaningful way.

Most of the system components were COTS prod-
ucts from IBM: The computers were PS/2 PCs running
OS/2 2.11, the Transaction Security System6 (TSS) was
used for encryption and authentication, the database-
management system (DBMS) was DB2/2, and the OS/2
LAN Server was used for network communication
between the clients and the server.

June 1998 63

Open
database

Identification
No.

5912285565

6102121016

Name

Alice Bar

Bob Foo

Secret
database

Grant

$7,000

$9,000

Encrypted identification
 No.

ãA<#- zIJ^` ?ˆ

^

ˆAyS 2n1ºiI–a` ? ˜

Figure 1. The two
databases with simple
examples of records.

.

64 Computer

Several of the problems exposed in our study
could be traced to the fact that all of the COTS
components (except the TSS) were developed
with lower security requirements than the com-
posed database system. The developers had failed
to make the security of the system independent
of the (in)security of those components.

Risks revealed
A selected subset of the problems we found

shows typical COTS-related security risks.

• Trojan horse in client. Users had to present a smart
card and a secret PIN to start the application and
the cryptographic operations that were needed to
identify records in the secret database. Owing to
the lack of security protection mechanisms in the
operating system, nothing could prevent an
attacker with physical access to a client host from
installing a Trojan horse that could, for example,
record all transactions the user performs.

• Information leaking to swap file. The virtual
memory swap file of OS/2 might contain sensi-
tive information. The application has no control
over what information is transferred to this file.
It would be possible for an attacker to collect
information by searching this file after the autho-
rized user has finished working.

• DBMS log files. The log files of the DBMS con-
tained, among other things, information about
the origin of records, which could be used to cor-
relate records in the two databases.

• DBMS ordering of records. The designers had no
control over the ordering of records in the data-
base. In the system analyzed, records were always
added in the same order in both the open and
secret databases. With access to copies (disk or
backups) of the two databases, it would be an
easy task to identify all the secret records.

The last item is perhaps the most evident example
of how a “simple” but serious problem can be over-
looked when developers rely on general-purpose prod-
ucts to solve problems for which those products were
not designed.

All of these problems can be categorized as insufficient
understanding of integration requirements. Or, if we
choose to consider the components as unsuitable for this
type of application, as insufficient component validation.

RISKS EXPERIENCED IN INTRUSION EXPERIMENTS
There is currently no established method to quan-

titatively measure the security of a system in com-
parison with other systems. However, there are
guidelines for building systems with a certain level of
security functionality and assurance, and developers

can submit their system to a third-party evaluator
who will try to determine whether the system was
built according to the guidelines. In the reliability
field, guidelines exist for building high-reliability sys-
tems, as well as methods to test the system and mea-
sure its reliability in an artificial operational
environment, typically through various fault-injec-
tion methods.7

With that analogy in mind, and with the objective
of finding operational security measurements, we con-
ducted intrusion experiments in which students were
encouraged to attack a certain system for a limited
period of time, under careful supervision and with the
requirement that all their activities be reported and
documented.

Thus far, we have performed one pilot experiment
and three full-scale experiments on a Unix system
(SunOS 4.x) and one full-scale experiment on a Novell
NetWare system. We have analyzed the first Unix exper-
iment and presented a model of the intrusion process,8

as well as a taxonomy of intrusion techniques and
results. Analysis of the other experiments is in progress.

We chose to use ordinary students as attackers
instead of experienced crackers and to provide them
with standard user accounts. In this way, we would
model the insider threat; that is, when legitimate users
of a system for some reason decide to extend or misuse
their privileges. We also ensured that each test envi-
ronment represented a standard installation of a com-
mon COTS-based computing system.

The results of the stated experiments should be
interesting to all readers who use comparable systems.
Unfortunately, those results are not comforting:

• Almost all attackers performed successful intru-
sions.

• Several of the intrusions were indeed severe, giv-
ing the attacker administrator privileges.

• The Internet provides a vast amount of information
on how to successfully attack common systems.

• Known vulnerabilities are often technically diffi-
cult to exploit. Still, many of our attackers broke
into the system through such holes (often without
really understanding why it was possible) by using
so-called exploit scripts published on the Internet.

The last item describes a serious threat, of which
today’s system owners must be aware. A relatively small
community of technically skilled crackers prepares pro-
grams that automatically exploit some vulnerability in
a common type of system and makes these programs
available on the Internet. Consequently, the group of
potential attackers who can perform technically
advanced intrusions now includes all who can find,
download, and execute these programs—clearly an
immensely large number of people.

The major design
goal was to make it
virtually impossible
to link a sensitive

record in the
database to an

individual without
proper authorization.

.

June 1998 65

The exploit scripts (which can be shell scripts,
source code, or precompiled binaries) do not always
work as distributed, probably to prevent people with-
out any programming skills from using them.
However, the errors are sometimes easy to fix, and
many exploit scripts are ready to use. Typically, the
exploit scripts take advantage of flaws in privileged
programs (such as setuid programs in Unix) or
processes (typically network server processes) by, for
example, acting in one of the following ways:

• The exploit script calls the victim program with
input data that were unexpected by the author of
the victim program. The input data must in some
cases be carefully crafted by the author of the
exploit script, whereas in other cases the author
simply provides an excessive amount of random
data.

• The exploit script makes unexpected changes in the
execution environment, for example, by moving or
renaming files accessed by a privileged process.

• The exploit script retrieves the secret upon which
security is based (typically a password or a cryp-
tographic key) through, for example, shrewd
guessing or an exhaustive search.

Our experiments resulted in a wide variety of intru-
sions, each of which would normally be possible owing
to a combination of several risks rather than a single
one. (Incidentally, this seems to be a general fact.) For
example, one well-known intrusion uses the setuid
mechanism of the Sendmail program. This may be
related to the inadvertently flawed component design
and excessive component functionality as well as insuf-
ficient component validation in the taxonomy. On the
other hand, the fact that this intrusion method was
known to the attackers may make it referable to the
class intrusion information and tools easily available.

A RISK MANAGEMENT APPROACH
The problem of protecting COTS-based systems

connected to the Internet is difficult, because this com-
bination increases outsider as well as insider threats.
Simply by connecting to the outside world, a system
becomes vastly more exposed to external attackers.
Furthermore, as observed in our experiments, the exis-
tence and availability of exploit scripts and informa-
tion about flaws also increase the threat from insiders.

Solutions must be sought in the risk management
field, where the cost of protection is traditionally
weighed against the potential loss caused by a violation
of security. A modern risk management philosophy
must also include the following:

• A well-defined and relevant security policy. The
security policy primarily defines what is and is

not allowed in terms of system security,
although it should also include dictates
regarding enforcement, responsibilities,
and reporting. In fact, an intrusion is
defined as a violation of the security policy
(regardless of whether the violation comes
from the inside or outside). Without a secu-
rity policy, you cannot determine if an
event is an intrusion, strictly speaking.
Hence, the definition of a relevant security
policy is a prerequisite for security risk
management.

• Holistic perspective. System security must
be viewed as a holistic property; it is not
sufficient to just look at a small number of
stronger parts (compare with the database
system example). Thus, system security
must be considered in a space as well as a
time dimension. By time, we mean the system life cycle:
Security risks should be estimated in the development, pro-
curement, integration, operation, and maintenance of a sys-
tem. By space, we mean the structure of the system and the
environment in which it is embedded, an environment that
includes humans, buildings, and organizations.

• Confinement of untrusted components. Processes that are
untrusted should be limited in what they can do, ideally to
the extent that they can do nothing else than exactly what
they are supposed to do (see the sidebar “Defining the
Confinement Problem”). For example, a process that nor-
mally does not perform any network communication should
not be allowed to connect to the network. Confining
untrusted COTS components is highly desirable, but is dif-
ficult to do in practice. It might be difficult to correctly deter-
mine the minimum set of resources that black-box
components require to function in all cases. If you fail to do
this, the component may not be able to operate in an unfore-
seen situation. Or you may specify a confinement that is too
lax to provide an appropriate level of security. And if you
use COTS products to perform the confinement (for exam-
ple, using a standard Web browser to confine Java applets),
the question becomes how far the guardians themselves can
be trusted.

• Partitioning. The growing complexity of systems and net-
works is the source of numerous security problems. By par-
titioning a system into relatively small parts, separated by
“watertight bulkheads” in the form of trusted monitoring
components, the gain is twofold: Each part becomes less
complex and more manageable in terms of security, and the
effects of an intrusion are likely to be limited to a single sec-
tion. The partitioning must be performed with caution, how-
ever, to avoid the creation of undesired “single points of
failure,” for example, a single vulnerable link for the vital
communication between two sections.

• Contingency anticipation. All systems have security vulner-
abilities, and many sites will experience security violations.
An organization that has accepted this and made appropri-

A relatively small
community of

technically skilled
crackers prepares

programs that
automatically exploit
some vulnerability in

a common type of
system and makes

these programs
available on the

Internet.

.

66 Computer

ate planning will more likely succeed in limiting
loss after having been the victim of an intrusion.
This contingency planning, preferably performed
with the support of software tools, should include
methods for intrusion detection, evidence collec-
tion, and recovery.

• Flaw remediation and active evolution. A system
owner should strive to remove all known vulner-
abilities in a system as soon as they are discovered.
This is not always easy, because all implications of
the remedial actions must be carefully considered.
Furthermore, component developers might be
unwilling to produce patches. However, our exper-
iments show that removal of all publicly known
vulnerabilities would make the attackers’ task sig-
nificantly more difficult. Continuous replacement
of components when new security technologies
emerge is also important.

• Support. The continuous risk management
process must be supported by all levels of an
organization, from top management down to
ordinary users. Organizations using COTS prod-
ucts also need active security support from both
developers and third-party vendors.

• Awareness. The tradition of covering up security
incidents aids only the attackers and must be bro-
ken if we will ever have a chance to learn from
earlier mistakes. Through education and open-
ness concerning security, people can become
more motivated and many risks can be avoided.

T he use of COTS systems presents two faces,
from a security point of view. On the one hand,
security vulnerabilities in those systems will be

continuously discovered, owing to the fact that crack-
ers will find it more rewarding to look for flaws and
write exploit scripts that can be used to attack many
systems. On the other hand, a large customer base
should mean that vendors can afford to make an
extensive effort to fix security problems. Furthermore,
such systems will be closely watched by the security
community, and alerts of security problems will be
readily announced. However, alerts are of little use if
they are not read, understood, spread throughout
organizations, and followed by appropriate measures
taken by vendors, managers, administrators, and
users. Thus, we believe that awareness and openness
in security issues are the only means to gain manage-
able security in COTS-based systems. ❖

References
1. A. Avizienis, “Design of Fault-Tolerant Computers,”

Proc. 1967 Fall Joint Computer Conf., Thompson
Books, Washington, D.C., Vol. 31, 1967, pp. 733-743.

2. J.J. Kahn and M.D. Abrams, “Contingency Planning:
What to Do when Bad Things Happen to Good Systems,”

Proc. 18th Nat’l Information Systems Security Conf.,
Nat’l Inst. of Standards and Technology/Nat’l Computer
Security Center, Baltimore, Md., 1995, pp. 470-479.

3. P.G. Neumann, Computer-Related Risks, ACM Press,
New York, 1995, pp. 2,348.

4. “OFF97: Security Requirements when Using NTFS Par-
titions,” Article Q169387, Microsoft Corp., Redmond,
Wash., 1997.

5. U. Lindqvist, T. Olovsson, and E. Jonsson, “An Analy-
sis of a Secure System Based on Trusted Components,”
Proc. 11th Ann. Conf. Computer Assurance, IEEE Press,
Piscataway, N.J., 1996, pp. 213-223.

6. D.G. Abraham et al., “Transaction Security System,”
IBM Systems J., Vol. 30, No. 2, 1991, pp. 206-229.

7. R.K. Iyer, “Experimental Evaluation,” Proc. 25th Int’l
Symp. Fault-Tolerant Computing (Special Issue), IEEE
CS Press, Los Alamitos, Calif., 1995, pp. 115-132.

8. E. Jonsson and T. Olovsson, “A Quantitative Model of
the Security Intrusion Process Based on Attacker Behav-
ior,” IEEE Trans. Software Eng., Apr. 1997, pp. 235-245.

Ulf Lindqvist is a PhD research student in the Depart-
ment of Computer Engineering at Chalmers Univer-
sity of Technology. His research focuses on computer
and network security, especially methods for analysis,
categorization, and detection of intrusions and vul-
nerabilities. Lindqvist received an MS in computer sci-
ence and engineering and a licentiate of engineering
from Chalmers. He is a student member of the IEEE,
the IEEE Computer Society, the ACM, and Usenix.

Erland Jonsson is an associate professor of computer
security and head of the Department of Computer
Engineering at Chalmers University of Technology.
His research interests include the quantitative assess-
ment of security, as well as systems with simultaneous
security, reliability, and safety requirements. Jonsson
received an MS in electrical engineering and a PhD in
computer engineering from Chalmers. He is a board
member of the Special Interest Group for Security of
the Swedish Information Processing Society and a
member of the IEEE Computer Society.

Contact the authors at the Department of Computer
Engineering, Chalmers University of Technology,
SE-412 96 Göteborg, Sweden; {ulfl,erland.jonsson}
@ce.chalmers.se.

