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Abstract

We describean artificial immune system(AIS)
thatis distributed, robust, dynamic,diverseand
adaptve. It capturesmary featuresof the ver-
tebrateimmune systemand placesthemin the
contet of the problemof protectinga network
of computergrom illegalintrusions.

1 INTRODUCTION

The immunesystemis highly complicatedandappeargo

bepreciselftunedto theproblemof detectingandeliminat-

inginfections.We believethatit alsoprovidesacompelling
example of a distributed information-processingystem,
onewhich we canstudyfor the purposeof designingbet-

ter artificial adaptve systems A importantandnaturalap-

plication domainfor adaptve systemds that of computer
security A computersecuritysystemshouldprotecta ma-

chineor setof machinesfrom unauthorizedntrudersand
foreign code,which is similar in functionality to the im-

munesystemprotectingthe body (self) from invasionby

inimical microbes(nonself). Becauseof this compelling
similarity, we have designedan“artificial immunesystem”
(AIS) to protectcomputemetworksbasedonimmunologi-
cal principles,algorithmsandarchitecture.

In designingthis system,we wish to adhereto certain
principleswhich we have extractedfrom our studyof im-

munology: The immunesystemis diverse, which greatly
improvesrobustnesspn both a populationandindividual
level, for example,differentpeopleare vulnerableto dif-

ferentmicrobes;it is distributed, consistingof mary com-
ponentsthat interactlocally to provide global protection,
sothereis no centralcontrolandhenceno single point of

failure;it is error tolerant in thatafew mistalesin classifi-
cationandresponsearenot catastrophicit is dynamic, i.e.
individual componentsre continually created destrged,
andarecirculatedthroughouthebody; whichincreaseshe

temporalandspatialdiversityof theimmunesystemallow-
ing it to discardcomponentshat areuselesor dangerous
andimprove on existing componentsit is self-protecting,
i.e. thesamemechanismghatprotectthe bodyalsoprotect
the immunesystemitself; andit is adaptable, i.e. it can
learnto recognizeandrespondo new microbesandretain
amemoryof thosemicrobedgo facilitatefutureresponses.

We regardtheseprinciplesasgenerabuidelinesfor design.
Sometimesve canincorporateheseprinciplesby usingal-
gorithmsor mechanismsopieddirectlyfrom immunology
but at othertimesnew algorithmsarerequired.We arenot
primarily concernedvith mimickingtheimmunesystemin
all its details;rather we aretrying to capturethoseaspects
of theimmunesystenthataremostrelevantto constructing
arohustdistributedadaptve system.

In earlier paperswe presentedesultsfrom this research
programin the context of computersecurity (e.g., [4]),
deemphasizingnore generalconsiderations.The goal of
this paperis to rectify that, makingthe biological connec-
tionsmoreconcreteandemphasizinghe adaptve systems
frameawork. In the next section(2) we describethe organi-
zationof our AlIS, in the context of a specificapplication;
mostof whatis describedhasbeenimplementedbut some
of theideasarestill speculatre. The resultsof testingthe
systemout in areal ervironmentaredescribedn Section
3, andthe paperconcludeswith a discussiorof the AlS,
includingits relationto classifiersystemg9].

2 ARCHITECTURE

Before outlining the architectureand algorithms of our
adaptve immunesystem(AlS), we mustfirst considerthe
ervironmentin which the AlS will exist. To presere gen-
erality, we represenboth the protectedsystem(self) and
infectiousagentgnonself)asdynamicallychangingsetsof
bit strings. In cells of the body the profile of expressed
proteins(self) changesver time, andlik ewise, we expect
our setof protectedstringsto vary over time. Similarly,



the body is subjectedo differentkinds of infectionsover
time; we canview nonselfasa dynamicallychangingset
of strings.

Althoughwe can,in principle,completelyspecifyour im-
munesystemarchitecturebasedon this abstractepresen-
tationof selfandnonselfassetsof bit strings,it is perhaps
helpfulto have a specificexamplein mind—onethatguides
specificimplementatiordecisionsn orderto makethesys-
temconcreteenoughto testin arealenvironment.

2.1 APPLICATION DOMAIN: NETWORK
SECURITY

The mostnaturaldomainin which to begin applyingim-
munesystemmechanismss computersecurity wherethe
analogybetweerprotectingthe bodyandprotectinga nor-
mally operatingcomputeris evident. Within this do-
main, we have studiedseveral problems,including com-
putervirusdetectior{6], host-basethtrusiondetectior[5],
and network security[8]. In this paperwe concentrate
on the latter—protectinga local-areabroadcastnetwork
(LAN) from network-basedattacks.Broadcast ANs have
thecorvenientpropertythateverylocation(computersees
every paclet passinghroughthe LAN.

In this domain,we defineselfto bethe setof normalpair-
wiseconnectiongatthe TCP/IPlevel) betweercomputers,
including connectiondetweerntwo computersn the LAN
aswell asconnectiondetweenone computerin the LAN
andoneexternalcomputer(Figurel). A connections de-
finedin termsof its “data-pathtriple’—the sourcelP ad-
dress the destinationP addressandthe service(or port)
by which the computerccommunicate.ln our representa-
tion, thisinformationis compressetb asingle49-bitstring
which unambiguouslydefinesthe connection.Selfis then
the set of normally occurringconnectionsobsened over
time on the LAN, eachconnectiorbeingrepresentety a
49-bit string. Similarly, nonselfis alsoa setof connections
(usingthe same49-bitrepresentation}hedifferencebeing
that nonselfconsistsof thoseconnectionspotentially an
enormousnumber that are not normally obsened on the
LAN.

2.2 MAPPING IMMUNOLOGY TO
COMPUTATION

Naturalimmunesystemsonsistof mary differentkindsof
cellsandmolecules—lymphogtes(B-lymphog/tesandT-
lymphogytes), macrophagesjendritic cells, naturalkiller
cells,mastcells,interleukinsjnterferonsandmary others.
Althoughthesecomponenthiave beenidentifiedandstud-
ied experimentally it is not always well-understoodvhat
role they play in the overallimmuneresponseln our AlS,
we will simplify by introducingonebasictype of detector

cell which combinesusefulpropertiedfrom several differ-

entimmunecells. This detectorcell will have several dif-

ferentpossiblestatesroughlycorrespondingo thymogytes
(immature T-lymphogytes undegoing negative selection
in the thymus), naive B-lymphogytes (which have never
matchedforeign material), and memory B-lymphoogytes
(which arelong-lived and easily stimulated). The natural
immunesystemalsohasmary differenttypesof effector
cells, which implementdifferentimmuneresponsese.g.,
macrophagemast-cellresponsegtc.), which we do not
currentlyincludein our model.

Eachdetectorcell is representedby a single bit string of

lengthl = 49 bits, anda smallamountof state(seeFigure
1). In effect, we arerepresentingpnly the receptorregion

onthesurfaceof alymphogyte. It is thisregionthatbindsto

foreignmaterial,a procesghatwe call recognition.There
aremary waysof implementinghedetectorsfor example,
adetectorcould be a productionrule, or a neuralnetwork,

or anagent.We choseto implementdetection(binding) as
string matching, whereeachdetectoris a stringd, andde-
tectionof astrings occurswhenthereis amatchbetweers

andd, accordingto a matching rule. We usestringmatch-
ing becaus is simpleandefficienttoimplementandeasy
to analyzeandunderstandObviousmatchingrulesinclude
Hammingdistanceor edit distance put we have adopteda
more immunologicallyplausiblerule, called r-contiguous

bits[13].

Two stringsd ands matchunderther-contiguousbitsrule
if d ands have the samesymbolsin atleastr contiguous
bit positions. The valuer is a thresholdand determines
the specificityof the detectorwhich is anindicationof the
numberof stringscoveredby a singledetector For exam-
ple,if r = I, thematchings completelyspecific thatis, the
detectowill detectonly a singlestring (itself; recallthat!
is thelengthof thedetectorbit string). A consequencef a
partialmatchingulewith athreshold suchasr-contiguous
bits, is thatthereis a trade-of betweenthe numberof de-
tectorsused,andtheir specificity: As the specificityof the
detectorsncreasessothe numberof detectorgequiredto
achieve acertainlevel of coveragealsoincreases.

The detectorsare groupedinto sets,one setper machine,
or host, on the LAN; eachhostloosely corresponddo a
differentlocationin the body'. Becauseof the broadcast
assumptioneachdetectorsetis constantlyexposedto the
currentsetof connectionsn the LAN, which it usesasa
dynamicdefinitionof self(i.e.,theobsenedconnectionsn
afixedtime periodareanalogoudo the setof proteinsex-
pressedn thethymusduringsomeperiodof time). Within

1The ability of immunesystemcellsto circulatethroughout
the body is animportantpart of theimmunesystemthatwe are
currentlyignoring. In oursystemgdetectorsemainin onelocation
for theirlifetime.
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Figurel: TheArchitectureof the AIS.

eachdetectorset, new detectors,or thymogytes, are cre-
atedrandomlyand asynchronouslyn a continualsched-
ule, similar to the naturalimmunesystem.Thesenew de-
tectorsremainimmature for someperiod of time, during
which they have the opportunityto matchary currentnet-
work connectionsIf a detectomatchesvhenit is imma-
ture, it is killed (deleted). This processs called negative
selection [6], andcloselyresembleshe negative selection
of immatureT-lymphogytes(thymogytes)in thethymus.A
potentialproblemwith this schemas thata nonselfpaclet
arriving during negative selectioncould causeimmature
detectorgo be erroneousheliminated.However, if we as-
sumethat nonselfpacletsarerare (a reasonableassump-
tion), therearelikely to be other maturedetectorsaround
to detectthe foreign paclet. We thushave a smallloss of
efficiency, from needlesslyleletinga valid detectoybut no
appreciabldossof function.

Detectors that survive this initial testing phase are
promoted to mature detectors (analogousto mature
T-lymphogites leaving the thymus and mature B-

lymphog/tesleaving the bonemarrav). Eachmaturede-
tectoris now a valid detectorthatactsindependently|f a
maturedetectord matchesa sufficient numberof paclets
(seeactiation thresholdbelon), an alarmis raised. The
time for which d is a naive B-lymphogyte canbe thought
of asa learningphase. At the end of the learningphase,

if d hasfailed to matcha paclet it is deleted,but if it
hasmatcheda sufiicient numberof nonselfpaclets,it be-
comesa memorydetectomvith a greatlyextendedifetime.
Memorydetectordave alowerthresholdof activation(see
below), thusimplementinga “secondaryresponse’thatis
more sensitve andrespondsnoreaggressiely thannaive
detectorgo previously seenstrings. Althoughthesemem-
ory detectorsaaredesirablea large fraction of naive detec-
tors must always be present,becausehe naive detectors
are necessaryor the detectionof novel foreign paclets,
i.e. they areessentiato anomalydetection.

2.3 INCOMPLETE SELF SETS

BoththenaturalimmunesystemandourAlS facetheprob-
lem of “incompleteself sets. WhenT lymphog/tesun-
dergo negative selectionin the thymus,they are exposed
to mostbut not all of the proteinsin the body Conse-
guently the negative selectionprocesscanbe incomplete
in the sensethat a lymphogyte could survive negative se-
lectionbut still bereactve againsta legitimateself protein
(onethatwasnotpresentedh thethymus)potentiallylead-
ing to anauto-immuneeaction.In our AlS, suchan auto-
immunereactionis calleda false positive. Falsepositives
ariseif wetrainthesystemonanincompletedescriptiorof
self, andthenencountemew but legitimate patterns. We
would like the systemto be tolerantof suchminor, legiti-



matenew patternsbut still detecabnormabhctivity, andwe
have implementedwo methodsdesignedo overcomethis
problem:Activationthresholdsandadaptve thresholds.

Activation thresholds are similar in function to avidity
thresholdsn lymphogytes. A lymphogyte is coveredwith
mary identicalreceptorsandit is only activatedwhensuf-
ficiently mary receptorsareboundto pathogensi,e. when
theavidity thresholdor bindingis exceededAnalogously
eachdetectoiin the AIS mustmatchmultiple timesbefore
it is actvated. Eachdetectorrecordsthe numberof times
it matchesandit raisesanalarmonly whenthe numberof
matchesexceedsthe activation threshold,which is stored
locally for eachdetectorset. Oncea detectothasraisedan
alarm,it returnsits matchcountto zero. This mechanism
hasatime horizon: Overtime the countof matchesslowly
returnsto zero. Thus, only repeatedccurrencesf struc-
turally similar andtemporallyclumpedstringswill trigger
thedetectiorsystem.

However, someattacksmay be launchedfrom mary dif-
ferentmachinesin which casethefirst methodis unlikely
to besuccessfulTo detectsuchdistributedcoordinatedat-
tacks,we introducea secondmethod,calledadaptive acti-
vation (labeledcytokine level in Figurel). Wheneer the
matchcountof a detectorgoesfrom 0 to 1, the local acti-
vation thresholdis reducedby one. Hence,eachdifferent
detectorthatmatchedor thefirst time “sensitizes’the de-
tection system,so that all detectorson that machineare
more easily activatedin future. This mechanisnalsohas
a time horizon; over time, the actvation thresholdgradu-
ally returnsto its default value. Thus,this methodwill de-
tectdiverseactiity from mary differentsourcesprovided
thatactivity happenswithin a certainperiodof time. This
mechanismoughlycapturesherolethatinflammationcy-
tokines,andothermoleculelay in increasingor decreas-
ing the sensitvity of individual immune systemlympho-
cyteswithin a physicallylocal region.

2.4 LEARNING MECHANISMS

Negative-selectiorand the maturationof naie cells into
memorycellsaretwo simplelearningmechanismsisedby
theimmunesystem A third form of immune-systertearn-
ing, onethatresembles geneticalgorithm(without cross-
over),is incorporatednto our model—afinity maturation.
In its simpleform, detectorscompeteagainstone another
for foreign paclets, just aslymphog/tescompeteto bind
foreignantigen.In thecasewheretwo detectorsimultane-
ouslymatchthesamepaclet,theonewith theclosesmatch
(greatesfitness)wins. This introducespressurdor more
specificmatchinginto the system,causingthe systemto
discriminatemore preciselybetweerself andnonself. We
propose althoughwe have not yetimplementedhis, that
successfulletectorgthosethatbind mary foreignpaclets)

will undego proliferation(makingcopiesandmigratingto
othercomputersandsomatichypermutatiorfcopying with
ahighmutationrate).

The conceptof a second signal, known as co-stimulation,
is often usedto explain certainimmunologicalresponses.
One example of a secondsignal is a T-helper lympho-
cyte. Whena B-lymphogyte (that is possiblya mutated
descendanbf an earlier ymphogyte that survived nega-
tive selection)binds a foreign peptide(the first signal), it
requiresa T-helper lymphogyte (that has beencensored
againstself in the thymus)in orderto trigger animmune
responseThis second-signadystempreventsmutatingB-
lymphooyte linesfrom incorrectlyreactingagainstself. In
our system we usea humanasthe secondsignal. When
adetectoraisesanalarm,thereis somechancehatit is a
falsealarm (auto-immuneeaction). Beforetaking action,
the AIS waits a fixed amountof time (say 24 hours)for
a co-stimulatorysignal,which in the currentimplementa-
tion is an email messagdrom a human. If the signalis
recevved (confirmingthe anomaly),the detectorentersthe
competitionto becomea memorydetectoy but if it loses
the competition,it remainsnaive and hasits matchcount
resetto 0. If thesecondsignalis notreceved,the AIS as-
sumeghatit wasafalsealarmanddestrysthedetector(as
in the naturalimmunesystem).

It might seemmore naturalto sendmessage$o the AIS

in the caseof falsealarmsinsteadof true anomaliesso
that the AIS can adjustitself appropriatelyby immedi-
ately deletingthe auto-reactie detectors. Unfortunately
this would createa vulnerability, because maliciousad-
versarycouldsendsignalsto the AlS, labelingtrueforeign
pacletsasfalsealarmsthustolerizingthe AIS againsicer

tain forms of attack. The form of co-stimulationthat we

have usedis muchmoredifficult to subvert. Becausdalse
alarmsaregenerallymuchmorefrequentthantrueanoma-
lies, our co-stimulationmethodhasthe additionaladvan-
tageaction by the humanoperatoris requiredin the less
frequentcase.

Figure2 summarizeshelifecycle of adetector A detector
is initially randomlycreated,and thenremainsimmature
for a certainperiod of time, which is the tolerizationpe-
riod. If thedetectomatchesry stringasingletime during
tolerization,it is replacedy anew randomlygeneratedie-
tectorstring. If adetectorsurvivesimmaturity; it will exist
for afinite lifetime. At theendof thatlifetimeit is replaced
by a new randomdetectorstring, unlesst hasexceededts
matchthresholdand becomesa memorydetector If the
activationthresholdis exceededor a maturedetectorit is
activated.If anactivateddetectordoesnot receive costim-
ulation,it dies(theimplicit assumptioris thatits activation
wasafalsepositive). However, if the activateddetectorre-
ceivescostimulationjt entersthe competition(seeabove)
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Figure2: ThelLifecycle of a Detector

to becomea memorydetectorwith anindefinite lifespan.
Memory detectorsneedonly matchonceto becomeacti-
vated.

2.5 DISTRIBUTION AND DIVERSITY

Each of the mechanismslescribedabove can be imple-

mentedwith a single detectorsetrunningon a single lo-

cation. We cantrivially gainefficiengy advantagedy dis-

tributing the single detectorsetacrossall locationson the
LAN, thusdistributing the computationatostof intrusion
detection. Suchdistribution will give linear speedupbe-
causethere are no communicationcosts(apartfrom the
signalingof alarmsandcostimulation).However, we take

adwantageof anotheiimmunesystemfeatureto implement
amorepowerful form of distribution.

The protein major histocompatibility complex (MHC)
plays an importantrole in immune systems,becauseit
transportgroteinfragmentycalledpeptides)rom thein-
terior regionsof a cell to its surface,presenting thesepep-
tidesonthecell’s surface. This mechanisnenablegoving
immunesystemcells to detectinfectionsin cells without
penetratinghe cell membrane Therearemary variations
of MHC, eachof which bindsa slightly differentclassof
peptides Eachindividualin a populationis geneticallyca-
pableof makingasmallsetof theseMHC types(abouten),

but the setof MHC typesvariesin differentindividuals.
Consequentlyindividualsin a populationare capableof
recognizingdifferentprofilesof peptidesproviding anim-
portantform of population-leel diversity?. Our AlS uses
permutationmasksto achieve a similar kind of diversity.
A permutationmaskdefinesa permutationof the bits in
the stringrepresentationf the network paclets. Eachde-
tectorsethasa different,randomly-generate@ermutation
mask.Onelimitation of thenegative-selectioralgorithmas
originally implementeds thatit canresultin undetectable
abnormabpatternscalledholes,which limit detectionrates
[3, 2]. Holescanexist for ary symmetric fixed-probability
matchingrule, but by using permutatiormasks,we effec-
tively changeghematchrule oneachhost,andsoovercome
the hole limitation. Thus, the permutationmaskcontrols
how the network pacletis presentedo the detectionsys-
tem, which is analogoudo the way differentMHC types
presentifferentsetsof peptidesonthecell surface.

The discussiorthusfar hasconcentrateen the detection
sideof our AIS andignoredquestion®f immuneresponse.
Whenstimulatedoy lymphog/tesboundto thecell surface,

immunesystemcells secretea wide variety of molecules

2For example, there are someviruses, such as the Epstein-
Barrvirus, thathave evolved dominantpeptidesnvhich cannotbe
boundby particular MHC types, leaving individuals who have
thoseMHC typesvulnerableto thediseasg10].



known collectively as cytokines. Thesecytokinesdiffuse
from the site wherethey were secretedandin turn play
a role in stimulating or suppressingther immune sys-
tem cells. Thus, cells that detectpathogensancommu-
nicateusingthesemolecularsignalswith cellsthatassisin
eliminatingthe pathogenge.g., mastcells, macrophages,
etc.). Althoughwe planto extendour modelin the future
to includethis kind of signalingandresponsethe current
modeleliminateghis complication(exceptfor theadaptve
threshold).

3 RESULTS

The AIS describedn Section2 hasbeenimplementedand

testedoutonasubnetf the ComputeiSciencedepartment
at the University of New Mexico, consistingof 50 ma-

chineson a switchedsegment. All analysisreportedhere

was conductedff-line, althoughan on-line prototypehas

developedandtested All resultsdescribedhereusedasys-

temwith 100detectorgerhost,with a matchlengthof 12

(i.e. r = 12 in ther-contiguoushits matchrule), andthe

49-hitdetectorglescribecearlier

3.1 DATA SETS

Two datasetswerecollected:A self setconsistingof nor-
mal traffic, anda nonselfsetconsistingof traffic generated
duringintrusive actiity. Theself setwascollectedover50
days,duringwhich a total of 2.3 million TCP connections
werelogged,eachof whichis a datapathriple. These2.3
million datapathsverefiltered down to 1.5 million datap-
aths. Thefiltering removed several classe®f noisy traffic
sourcessuchaswebsenersandftp seners,becauseéhese
arecontinuallycommunicatingvith new hostsandsohave
no stabledefinition of normalin termsof datapaths.The
1.5million datapathsveremappedo 49-bitbinarystrings,
usinga mappingthat groupedunassignegborts, to give a
total of 39000bseneduniquestrings. The self setwasdi-
videdinto two parts: a training set(the first 43 days),and
atestset(thelast7 days).During thetestperiod,137 nen
datapathsverelogged,out of a total of 183000datapaths.
Eachnew triple occurredan averageof 4 times. Thusthe
worstcasefalse-positie ratewould be 78 perday. Without
thresholdactivationandco-stimulationwe obsene 74 per
dayin ourexperimentswhichis slightly lessthanexpected
because¢herearenotenoughdetectorgo give 100%detec-
tion. Adding a thresholdof 10 reduceghe falsepositives
to 8 perday, and addingco-stimulationon top of this re-
ducesthe falsepositivesfurther, to 4 perday The human
wasgivenadayto respondandit wasassumedhatin all
falsealarmcaseshe humandid not respond. Given that
eachfalsealarmconsistof asmallsetof anomaloupack-
ets,thisrateis extremelygood,especiallywhencompared
to state-of-the-arsystemghatarein currentuse[12].

Tablel: Detectionof the 8 Incidents.

TPBASIC TPPERMUTATION

Average 0.28 0.43
Max. Possible 0.61 0.61
IncidentsDetected 7/8 8/8

The nonselfsetwascomprisedof eight differentintrusive
incidents.Seven of thesearefaithful logs of realincidents
that occurredon the network beingstudied,andoneinci-
dentwassyntheticallygeneratedio simulateanattackfrom
mary differentlocations. This simulatedintrusion con-
sistedof 200 randomconnectiondetweeninternal hosts
(the suppositionwas that the attaclers had alreadypene-
tratedat leastonemachineon the LAN). Most of thereal
attacksconsistef probingof onesortor anothey partic-
ularly of serviceswith recentlyreportedvulnerabilities.At
leastoneincidentinvolved compromiseof aninternalma-
chine. Thetraffic testedfor eachincidentconsistedf all
datapathgrom the first nonselfdatapath(the start of the
incident),to thelastnonselfdatapath.Thus,eachincident
reproduceshetiming of theattack,aswell asincludingall
normaltraffic thatwasinterspersethroughouthe attack.

3.2 EXPERIMENTAL RESULTS

Resultsaveragingdetectionover all eightincidentsarere-

portedin table3.2. All resultsusean actiationthreshold
of 10. Thefirst row reportsthe averagetrue positive (TP)

rate,the secondow reportsthe maximumpossibleTP rate
(the TP rateis limited becausehe incidentsinclude self

stringswhichwill not be detectable)andthethird row re-

portsthenumberof incidentsactuallydetectedTo identify

anincident,only someof thenonselfstringsneedto bede-

tectedsoin apracticalsensethethird row givestheeffec-

tive true positive rate. The detectionsystenmclearly detects
all 8 incidentsvhenusingpermutatiormasksgvenwith an

activationthresholdof 10.

The effectsof memoryweretestedout by simulation. The
detectionsystemwaspresentedvith the syntheticincident
attime zeroin the simulation,during which the true posi-
tiveratewas0.23 (averagedver30runsof thesimulation).
The systemretainedmemorydetectordrom this incident
andthesimulationwascontinued After simulatingthenet-
work runningfor another3 months,the detectionsystem
wasagainpresentedvith the samesynthetidancident.Dur-
ing the 3 monthsthe memorydetectordrom the “primary
responsetvereretained put the otherdetectorsverecon-
stantlydyingandbeingreborn.Thusafterthreemonthsthe
setof non-memorydetectorshadchanged.Consequently
the true positive rate for the incidentafter 3 monthswas



0.76,suggestinghatmemoryimplementedn this manner
is very usefulfor the“secondaryresponsé.

4 DISCUSSION

In the previoussectionave describedanarchitecturdor an
adaptve artificial systembasedon theimmunesystem.lt
incorporatesseveral forms of adaptatioron differenttime
scalesandit addresseanimportantproblemof practical
significancgnetwork intrusiondetection) Most of thefea-
turesdescribedn this paperhave beenincorporatednto
our softwareprototypethatis currentlyrunningin realtime
onourdepartmentahetwork. It routinelydiscoversoutside
attacksaswell asinterestinganomalieghataregenerated
internally.

The AIS that we outlinedin Section2 resembleghe ar
chitectureof a classifiersystem[9, althoughmostof the
detailsare different. Eachdetectord corresponddo the
condition part of a classifiey wherethe matchrule is r-
contiguousbits insteadof the traditional 1,0, § alphabet
usedin classifiersystems.Our parameter is a measure
of thespecificityof our detectorsmuchlik e the numberof
don't caresn aclassifierconditionis a measuref its gen-
erality. If we concatenateomebits to eachdetectomwhich
specifywhatthe properresponsés (analogougo different
antibodyisotypes), then eachimmunecell (detectorplus
responseits) correspondslirectly to the condition/action
rule format of classifiersystems.In placeof the message
list we have a continuoudflux of datapathriplesthatrep-
resentthe currentstateof the ernvironment. Currently the
only connectiongeneratedby our AIS (analagouso inter-
nally generatednessages a classifiersystem)arethose
resultingfrom alarmsbeingsentto the humanoperator

Thereis no direct analogof our negative-selectioralgo-
rithm in classifiersystemsgxceptthelearningrules(such
as geneticalgorithm and trigger conditions)underwhich
new rulesaregeneratedBidding for messagem classifier
systemds analogoudo immune cells competingto bind
to foreign datapaths Likewise, we introducepressurdor
specificity which is reminiscentof classifiersystemspy
allowing themorespecificmatchto win the competition.

The role of the bucket brigade (credit assignmentjand
the geneticalgorithmis playedby our affinity maturation
model of learning, althoughoursis simplerin the sense
thatwe assigncreditdirectly from the ervironmentto the
detectorsand do not passstrengthamongimmunecells.

A moredirect analogof the bucket brigadewould occur
if we tried to build up idiotypic networks of immunecell

in whichimmunecellsstimulateandrepresstherimmune
cells, as Jerneproposed11]. Althoughthis is appealing
from an adaptve designperspectie, thereis little if ary

experimentalevidencethat suchnetworks exist in natural

immunesystems.Our planis to incorporatenternalfeed-

backsandself-regulationby extendingthe cytokinesystem
(we sawv a primitive form of thisin theadaptve threshold).
Permutatiormaskshave no directanalogin classicaklas-

sifier systems Althoughthe mappingis not1 — 1, we be-

lieve thatthe AIS we have describedn this papercaptures
mary of theimportantpropertiesof classifiersystemsand

providesaninterestingpoint of comparison.

Our startingpoint for this line of researclwasa collection
of pressingunsohed problemsin computersecurity Over

the pastseveral yearswe have designedand built several
successfukolutionsto real computersecurity problems.
Armed with that experiencewe have shavn herehow to

embedan architecturdor adaptve behaior in areal-time
ervironmentwith live agents(computersandthe humans
who operatethem). We follow Brooksandothers[7, 1] in

believing thatit is fruitlessto designintelligentsystemsn

isolation from the ervironmentsin which they exist, and
we believe thatresearchon classifiersystemshassuffered
from too loosea coupling with live ervironments. Situ-

atedintelligentartifactsareperhapsnorecomple to think

about(becausehey cannotbe neatlyseparatedrom their

ervironments),but they canin somecaseausetheir ervi-

ronmentdn waysthatsimplify their computations.

Moving beyond the computemetwork intrusion-detection
applicationthat we have describedthe AIS might be ap-
plied to other classesof networks, including social net-
works, organizations,networks of markets, neurological
networks, or ecologicalnetworks. Like our LAN with ex-
ternalconnectionsthesenetworksconsistof mary compo-
nentsthataresparselyconnectedin which therearesome
orderedand somerandomcomponentsandin which the
exactsetof connectionss not static. Thereareimportant
computationassociatedavith eachof thesenetworks, and
they would provide an importanttestof the generalityof
our architecturein its ability to discriminatenormal and
abnormakctiity andto respondappropriately
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