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Abstract

We describean artificial immunesystem(AIS)
that is distributed,robust, dynamic,diverseand
adaptive. It capturesmany featuresof the ver-
tebrateimmunesystemand placesthem in the
context of the problemof protectinga network
of computersfrom illegal intrusions.

1 INTRODUCTION

The immunesystemis highly complicatedandappearsto
bepreciselytunedto theproblemof detectingandeliminat-
ing infections.Webelievethatit alsoprovidesacompelling
example of a distributed information-processingsystem,
onewhich we canstudyfor thepurposeof designingbet-
ter artificial adaptivesystems.A importantandnaturalap-
plicationdomainfor adaptive systemsis that of computer
security. A computersecuritysystemshouldprotecta ma-
chineor setof machinesfrom unauthorizedintrudersand
foreign code,which is similar in functionality to the im-
munesystemprotectingthe body (self ) from invasionby
inimical microbes(nonself ). Becauseof this compelling
similarity, wehavedesignedan“artificial immunesystem”
(AIS) to protectcomputernetworksbasedon immunologi-
cal principles,algorithmsandarchitecture.

In designingthis system,we wish to adhereto certain
principleswhich we have extractedfrom our studyof im-
munology: The immunesystemis diverse, which greatly
improvesrobustness,on both a populationandindividual
level, for example,differentpeoplearevulnerableto dif-
ferentmicrobes;it is distributed, consistingof many com-
ponentsthat interactlocally to provide global protection,
so thereis no centralcontrolandhenceno singlepoint of
failure;it is error tolerant in thata few mistakesin classifi-
cationandresponsearenot catastrophic;it is dynamic, i.e.
individual componentsarecontinuallycreated,destroyed,
andarecirculatedthroughoutthebody, whichincreasesthe

temporalandspatialdiversityof theimmunesystemallow-
ing it to discardcomponentsthatareuselessor dangerous
andimprove on existing components;it is self-protecting,
i.e. thesamemechanismsthatprotectthebodyalsoprotect
the immunesystemitself; and it is adaptable, i.e. it can
learnto recognizeandrespondto new microbes,andretain
a memoryof thosemicrobesto facilitatefutureresponses.

Weregardtheseprinciplesasgeneralguidelinesfor design.
Sometimeswecanincorporatetheseprinciplesby usingal-
gorithmsormechanismscopieddirectlyfrom immunology,
but at othertimesnew algorithmsarerequired.We arenot
primarily concernedwith mimickingtheimmunesystemin
all its details;rather, wearetrying to capturethoseaspects
of theimmunesystemthataremostrelevantto constructing
a robustdistributedadaptivesystem.

In earlier paperswe presentedresultsfrom this research
programin the context of computersecurity (e.g., [4]),
deemphasizingmoregeneralconsiderations.The goal of
this paperis to rectify that,makingthebiologicalconnec-
tionsmoreconcreteandemphasizingtheadaptivesystems
framework. In thenext section(2) we describetheorgani-
zationof our AIS, in thecontext of a specificapplication;
mostof whatis describedhasbeenimplemented,but some
of the ideasarestill speculative. Theresultsof testingthe
systemout in a real environmentaredescribedin Section
3, andthe paperconcludeswith a discussionof the AIS,
includingits relationto classifiersystems[9].

2 ARCHITECTURE

Before outlining the architectureand algorithmsof our
adaptive immunesystem(AIS), we mustfirst considerthe
environmentin which theAIS will exist. To preservegen-
erality, we representboth the protectedsystem(self) and
infectiousagents(nonself)asdynamicallychangingsetsof
bit strings. In cells of the body the profile of expressed
proteins(self) changesover time, andlikewise,we expect
our set of protectedstringsto vary over time. Similarly,



the body is subjectedto differentkinds of infectionsover
time; we canview nonselfasa dynamicallychangingset
of strings.

Althoughwe can,in principle,completelyspecifyour im-
munesystemarchitecturebasedon this abstractrepresen-
tationof self andnonselfassetsof bit strings,it is perhaps
helpfultohaveaspecificexamplein mind—onethatguides
specificimplementationdecisionsin orderto makethesys-
temconcreteenoughto testin a realenvironment.

2.1 APPLICATION DOMAIN: NETWORK
SECURITY

The mostnaturaldomainin which to begin applying im-
munesystemmechanismsis computersecurity, wherethe
analogybetweenprotectingthebodyandprotectinga nor-
mally operatingcomputer is evident. Within this do-
main, we have studiedseveral problems,including com-
putervirusdetection[6], host-basedintrusiondetection[5],
and network security [8]. In this paperwe concentrate
on the latter—protectinga local-areabroadcastnetwork
(LAN) from network-basedattacks.BroadcastLANs have
theconvenientpropertythateverylocation(computer)sees
everypacketpassingthroughtheLAN.

In this domain,we defineself to bethesetof normalpair-
wiseconnections(at theTCP/IPlevel) betweencomputers,
includingconnectionsbetweentwo computersin theLAN
aswell asconnectionsbetweenonecomputerin theLAN
andoneexternalcomputer(Figure1). A connectionis de-
fined in termsof its “data-pathtriple”—the sourceIP ad-
dress,the destinationIP address,andtheservice(or port)
by which thecomputerscommunicate.In our representa-
tion, thisinformationis compressedtoasingle49-bitstring
which unambiguouslydefinestheconnection.Self is then
the set of normally occurringconnectionsobserved over
time on theLAN, eachconnectionbeingrepresentedby a
49-bit string.Similarly, nonselfis alsoasetof connections
(usingthesame49-bit representation),thedifferencebeing
that nonselfconsistsof thoseconnections,potentially an
enormousnumber, that arenot normally observed on the
LAN.

2.2 MAPPING IMMUNOLOGY TO
COMPUTATION

Naturalimmunesystemsconsistof many differentkindsof
cellsandmolecules—lymphocytes(B-lymphocytesandT-
lymphocytes),macrophages,dendriticcells, naturalkiller
cells,mastcells,interleukins,interferons,andmany others.
Althoughthesecomponentshave beenidentifiedandstud-
ied experimentally, it is not alwayswell-understoodwhat
role they play in theoverall immuneresponse.In ourAIS,
we will simplify by introducingonebasictypeof detector

cell which combinesusefulpropertiesfrom severaldiffer-
ent immunecells. This detectorcell will have severaldif-
ferentpossiblestates,roughlycorrespondingto thymocytes
(immatureT-lymphocytes undergoing negative selection
in the thymus),naive B-lymphocytes (which have never
matchedforeign material), and memory B-lymphocytes
(which arelong-livedandeasilystimulated).The natural
immunesystemalsohasmany different typesof effector
cells, which implementdifferent immuneresponses(e.g.,
macrophage,mast-cellresponse,etc.), which we do not
currentlyincludein ourmodel.

Eachdetectorcell is representedby a singlebit string of
length ������� bits,anda smallamountof state(seeFigure
1). In effect, we arerepresentingonly the receptorregion
onthesurfaceof alymphocyte. It is thisregionthatbinds to
foreignmaterial,a processthatwe call recognition.There
aremany waysof implementingthedetectors,for example,
a detectorcouldbea productionrule,or a neuralnetwork,
or anagent.We choseto implementdetection(binding)as
string matching, whereeachdetectoris a string 	 , andde-
tectionof astring 
 occurswhenthereis amatchbetween

and 	 , accordingto a matching rule. We usestringmatch-
ingbecauseit issimpleandefficientto implement,andeasy
to analyzeandunderstand.Obviousmatchingrulesinclude
Hammingdistanceor edit distance,but we have adopteda
moreimmunologicallyplausiblerule, calledr-contiguous
bits [13].

Two strings 	 and 
 matchunderthe � -contiguousbits rule
if 	 and 
 have the samesymbolsin at least � contiguous
bit positions. The value � is a thresholdand determines
thespecificityof thedetector, which is anindicationof the
numberof stringscoveredby a singledetector. For exam-
ple,if ���
� , thematchingis completelyspecific,thatis, the
detectorwill detectonly a singlestring(itself; recall that �
is thelengthof thedetectorbit string).A consequenceof a
partialmatchingrulewith athreshold,suchas� -contiguous
bits, is that thereis a trade-off betweenthenumberof de-
tectorsused,andtheir specificity:As thespecificityof the
detectorsincreases,sothenumberof detectorsrequiredto
achievea certainlevel of coveragealsoincreases.

The detectorsaregroupedinto sets,onesetper machine,
or host, on the LAN; eachhost loosely correspondsto a
different locationin the body� . Becauseof the broadcast
assumption,eachdetectorsetis constantlyexposedto the
currentsetof connectionsin the LAN, which it usesasa
dynamicdefinitionof self (i.e.,theobservedconnectionsin
a fixedtime periodareanalogousto thesetof proteinsex-
pressedin thethymusduringsomeperiodof time). Within

�
The ability of immunesystemcells to circulatethroughout

the body is an importantpart of the immunesystemthat we are
currentlyignoring.In oursystem,detectorsremainin onelocation
for their lifetime.



activation
threshold

detector

cytokine

permutation
mask

level

set

immature memory activated # matches

0100111010100011101110...01110

external host

broadcast LAN

internal host

datapath triple
(20.20.20.5, 31.14.21.37, ftp)

port: 21
ip: 20.20.20.5

port: 1700
ip: 31.14.21.37

Detector

Host

Figure1: TheArchitectureof theAIS.

eachdetectorset, new detectors,or thymocytes,are cre-
atedrandomlyandasynchronouslyon a continualsched-
ule, similar to thenaturalimmunesystem.Thesenew de-
tectorsremainimmature for someperiodof time, during
which they have theopportunityto matchany currentnet-
work connections.If a detectormatcheswhenit is imma-
ture, it is killed (deleted).This processis callednegative
selection [6], andcloselyresemblesthenegative selection
of immatureT-lymphocytes(thymocytes)in thethymus.A
potentialproblemwith thisschemeis thata nonselfpacket
arriving during negative selectioncould causeimmature
detectorsto beerroneouslyeliminated.However, if we as-
sumethat nonselfpacketsarerare(a reasonableassump-
tion), therearelikely to be othermaturedetectorsaround
to detectthe foreignpacket. We thushave a small lossof
efficiency, from needlesslydeletingavalid detector, but no
appreciablelossof function.

Detectors that survive this initial testing phase are
promoted to mature detectors (analogous to mature
T-lymphocytes leaving the thymus and mature B-
lymphocytesleaving the bonemarrow). Eachmaturede-
tectoris now a valid detectorthatactsindependently. If a
maturedetector	 matchesa sufficient numberof packets
(seeactivation thresholdbelow), an alarm is raised. The
time for which 	 is a naive B-lymphocyte canbe thought
of asa learningphase.At the endof the learningphase,

if 	 has failed to match a packet it is deleted,but if it
hasmatcheda sufficient numberof nonselfpackets,it be-
comesamemorydetectorwith a greatlyextendedlifetime.
Memorydetectorshavea lowerthresholdof activation(see
below), thusimplementinga “secondaryresponse”that is
moresensitive andrespondsmoreaggressively thannaive
detectorsto previouslyseenstrings.Althoughthesemem-
ory detectorsaredesirable,a largefractionof naive detec-
tors must always be present,becausethe naive detectors
are necessaryfor the detectionof novel foreign packets,
i.e. they areessentialto anomalydetection.

2.3 INCOMPLETE SELF SETS

BoththenaturalimmunesystemandourAIS facetheprob-
lem of “incompleteself sets.” WhenT lymphocytesun-
dergo negative selectionin the thymus,they areexposed
to most but not all of the proteinsin the body. Conse-
quently, the negative selectionprocesscanbe incomplete
in the sensethat a lymphocyte could survive negative se-
lectionbut still bereactive againsta legitimateself protein
(onethatwasnotpresentedin thethymus)potentiallylead-
ing to anauto-immunereaction.In our AIS, suchanauto-
immunereactionis calleda false positive. Falsepositives
ariseif wetrain thesystemonanincompletedescriptionof
self, andthenencounternew but legitimatepatterns.We
would like thesystemto be tolerantof suchminor, legiti-



matenew patterns,but still detectabnormalactivity, andwe
have implementedtwo methodsdesignedto overcomethis
problem:Activationthresholdsandadaptive thresholds.

Activation thresholds are similar in function to avidity
thresholdsin lymphocytes. A lymphocyte is coveredwith
many identicalreceptors,andit is only activatedwhensuf-
ficiently many receptorsareboundto pathogens,i.e. when
theavidity thresholdfor bindingis exceeded.Analogously,
eachdetectorin theAIS mustmatchmultiple timesbefore
it is activated. Eachdetectorrecordsthenumberof times
it matches,andit raisesanalarmonly whenthenumberof
matchesexceedsthe activation threshold,which is stored
locally for eachdetectorset.Oncea detectorhasraisedan
alarm,it returnsits matchcountto zero. This mechanism
hasa timehorizon:Over time thecountof matchesslowly
returnsto zero. Thus,only repeatedoccurrencesof struc-
turally similar andtemporallyclumpedstringswill trigger
thedetectionsystem.

However, someattacksmay be launchedfrom many dif-
ferentmachines,in which casethefirst methodis unlikely
to besuccessful.To detectsuchdistributedcoordinatedat-
tacks,we introducea secondmethod,calledadaptive acti-
vation (labeledcytokine level in Figure1). Whenever the
matchcountof a detectorgoesfrom 0 to 1, the local acti-
vation thresholdis reducedby one. Hence,eachdifferent
detectorthatmatchesfor thefirst time “sensitizes”thede-
tection system,so that all detectorson that machineare
moreeasilyactivatedin future. This mechanismalsohas
a time horizon;over time, the activation thresholdgradu-
ally returnsto its default value.Thus,this methodwill de-
tectdiverseactivity from many differentsources,provided
thatactivity happenswithin a certainperiodof time. This
mechanismroughlycapturestherolethatinflammation,cy-
tokines,andothermoleculesplay in increasingor decreas-
ing the sensitivity of individual immunesystemlympho-
cyteswithin a physicallylocal region.

2.4 LEARNING MECHANISMS

Negative-selectionand the maturationof naive cells into
memorycellsaretwo simplelearningmechanismsusedby
theimmunesystem.A third form of immune-systemlearn-
ing, onethatresemblesa geneticalgorithm(withoutcross-
over), is incorporatedinto our model—affinity maturation.
In its simpleform, detectorscompeteagainstoneanother
for foreign packets, just as lymphocytescompeteto bind
foreignantigen.In thecasewheretwo detectorssimultane-
ouslymatchthesamepacket,theonewith theclosestmatch
(greatestfitness)wins. This introducespressurefor more
specificmatchinginto the system,causingthe systemto
discriminatemorepreciselybetweenself andnonself.We
propose,althoughwe have not yet implementedthis, that
successfuldetectors(thosethatbindmany foreignpackets)

will undergoproliferation(makingcopiesandmigratingto
othercomputers)andsomatichypermutation(copyingwith
a highmutationrate).

Theconceptof a second signal, known asco-stimulation,
is often usedto explain certainimmunologicalresponses.
One example of a secondsignal is a T-helper lympho-
cyte. When a B-lymphocyte (that is possiblya mutated
descendantof an earlier lymphocyte that survived nega-
tive selection)bindsa foreign peptide(the first signal), it
requiresa T-helper lymphocyte (that has beencensored
againstself in the thymus)in orderto trigger an immune
response.This second-signalsystempreventsmutatingB-
lymphocyte linesfrom incorrectlyreactingagainstself. In
our system,we usea humanasthe secondsignal. When
a detectorraisesanalarm,thereis somechancethat it is a
falsealarm(auto-immunereaction).Beforetakingaction,
the AIS waits a fixed amountof time (say 24 hours)for
a co-stimulatorysignal,which in the currentimplementa-
tion is an email messagefrom a human. If the signal is
received(confirmingtheanomaly),thedetectorentersthe
competitionto becomea memorydetector, but if it loses
the competition,it remainsnaive andhasits matchcount
resetto 0. If thesecondsignalis not received,theAIS as-
sumesthatit wasafalsealarmanddestroysthedetector(as
in thenaturalimmunesystem).

It might seemmorenaturalto sendmessagesto the AIS
in the caseof falsealarmsinsteadof true anomalies,so
that the AIS can adjust itself appropriatelyby immedi-
ately deletingthe auto-reactive detectors. Unfortunately,
this would createa vulnerability, becausea maliciousad-
versarycouldsendsignalsto theAIS, labelingtrueforeign
packetsasfalsealarms,thustolerizingtheAIS againstcer-
tain forms of attack. The form of co-stimulationthat we
have usedis muchmoredifficult to subvert. Becausefalse
alarmsaregenerallymuchmorefrequentthantrueanoma-
lies, our co-stimulationmethodhasthe additionaladvan-
tageactionby the humanoperatoris requiredin the less
frequentcase.

Figure2 summarizesthelifecycleof adetector. A detector
is initially randomlycreated,and thenremainsimmature
for a certainperiodof time, which is the tolerizationpe-
riod. If thedetectormatchesany stringasingletimeduring
tolerization,it is replacedby anew randomlygeneratedde-
tectorstring. If a detectorsurvivesimmaturity, it will exist
for afinite lifetime. At theendof thatlifetime it is replaced
by a new randomdetectorstring,unlessit hasexceededits
matchthresholdand becomesa memorydetector. If the
activationthresholdis exceededfor a maturedetector, it is
activated.If anactivateddetectordoesnot receive costim-
ulation,it dies(theimplicit assumptionis thatits activation
wasa falsepositive). However, if theactivateddetectorre-
ceivescostimulation,it entersthecompetition(seeabove)
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Figure2: TheLifecycleof aDetector.

to becomea memorydetectorwith an indefinitelifespan.
Memory detectorsneedonly matchonceto becomeacti-
vated.

2.5 DISTRIBUTION AND DIVERSITY

Eachof the mechanismsdescribedabove can be imple-
mentedwith a singledetectorset runningon a single lo-
cation. We cantrivially gainefficiency advantagesby dis-
tributing thesingledetectorsetacrossall locationson the
LAN, thusdistributing thecomputationalcostof intrusion
detection. Suchdistribution will give linear speedup,be-
causethereare no communicationcosts(apart from the
signalingof alarmsandcostimulation).However, we take
advantageof anotherimmunesystemfeatureto implement
a morepowerful form of distribution.

The protein major histocompatibility complex (MHC)
plays an important role in immune systems,becauseit
transportsproteinfragments(calledpeptides)from the in-
terior regionsof a cell to its surface,presenting thesepep-
tideson thecell’s surface.Thismechanismenablesroving
immunesystemcells to detectinfectionsin cells without
penetratingthecell membrane.Therearemany variations
of MHC, eachof which bindsa slightly differentclassof
peptides.Eachindividual in a populationis geneticallyca-
pableof makingasmallsetof theseMHC types(aboutten),

but the set of MHC typesvariesin different individuals.
Consequently, individuals in a populationare capableof
recognizingdifferentprofilesof peptides,providing anim-
portantform of population-level diversity � . Our AIS uses
permutationmasksto achieve a similar kind of diversity.
A permutationmaskdefinesa permutationof the bits in
thestringrepresentationof thenetwork packets. Eachde-
tectorsethasa different,randomly-generated,permutation
mask.Onelimitationof thenegative-selectionalgorithmas
originally implementedis that it canresultin undetectable
abnormalpatternscalledholes,which limit detectionrates
[3, 2]. Holescanexist for any symmetric,fixed-probability
matchingrule, but by usingpermutationmasks,we effec-
tively changethematchruleoneachhost,andsoovercome
the hole limitation. Thus, the permutationmaskcontrols
how the network packet is presentedto the detectionsys-
tem, which is analogousto the way differentMHC types
presentdifferentsetsof peptideson thecell surface.

The discussionthusfar hasconcentratedon the detection
sideof ourAIS andignoredquestionsof immuneresponse.
Whenstimulatedby lymphocytesboundto thecell surface,
immunesystemcells secretea wide variety of molecules

�
For example, thereare someviruses,suchas the Epstein-

Barr virus, thathave evolveddominantpeptideswhich cannotbe
boundby particularMHC types, leaving individuals who have
thoseMHC typesvulnerableto thedisease[10].



known collectively ascytokines. Thesecytokinesdiffuse
from the site wherethey were secreted,and in turn play
a role in stimulating or suppressingother immune sys-
tem cells. Thus,cells that detectpathogenscancommu-
nicateusingthesemolecularsignalswith cellsthatassistin
eliminatingthe pathogens(e.g.,mastcells, macrophages,
etc.). Althoughwe plan to extendour modelin the future
to includethis kind of signalingandresponse,thecurrent
modeleliminatesthiscomplication(exceptfor theadaptive
threshold).

3 RESULTS

TheAIS describedin Section2 hasbeenimplementedand
testedoutonasubnetof theComputerSciencedepartment
at the University of New Mexico, consistingof 50 ma-
chineson a switchedsegment. All analysisreportedhere
wasconductedoff-line, althoughanon-lineprototypehas
developedandtested.All resultsdescribedhereusedasys-
temwith 100detectorsperhost,with a matchlengthof 12
(i.e. ������� in the r-contiguousbits matchrule), andthe
49-bitdetectorsdescribedearlier.

3.1 DATA SETS

Two datasetswerecollected:A self setconsistingof nor-
mal traffic, anda nonselfsetconsistingof traffic generated
duringintrusiveactivity. Theselfsetwascollectedover50
days,duringwhich a total of 2.3million TCPconnections
werelogged,eachof which is a datapathtriple. These2.3
million datapathswerefiltereddown to 1.5 million datap-
aths.Thefiltering removedseveralclassesof noisy traffic
sources,suchaswebserversandftp servers,becausethese
arecontinuallycommunicatingwith new hosts,andsohave
no stabledefinition of normal in termsof datapaths.The
1.5million datapathsweremappedto 49-bitbinarystrings,
usinga mappingthat groupedunassignedports,to give a
total of 3900observeduniquestrings.Theself setwasdi-
vided into two parts:a trainingset(thefirst 43 days),and
a testset(thelast7 days).During thetestperiod,137new
datapathswerelogged,out of a total of 183000datapaths.
Eachnew triple occurredanaverageof 4 times. Thusthe
worstcasefalse-positiveratewouldbe78perday. Without
thresholdactivationandco-stimulation,we observe74 per
dayin ourexperiments,whichis slightly lessthanexpected
becausetherearenotenoughdetectorsto give100%detec-
tion. Adding a thresholdof 10 reducesthe falsepositives
to 8 per day, andaddingco-stimulationon top of this re-
ducesthe falsepositivesfurther, to 4 perday. Thehuman
wasgivena dayto respond,andit wasassumedthat in all
falsealarmcasesthe humandid not respond.Given that
eachfalsealarmconsistsof asmallsetof anomalouspack-
ets,this rateis extremelygood,especiallywhencompared
to state-of-the-artsystemsthatarein currentuse[12].

Table1: Detectionof the8 Incidents.

TPBASIC TPPERMUTATION
Average 0.28 0.43
Max. Possible 0.61 0.61
IncidentsDetected 7/8 8/8

Thenonselfsetwascomprisedof eightdifferentintrusive
incidents.Sevenof thesearefaithful logsof real incidents
that occurredon the network beingstudied,andoneinci-
dentwassyntheticallygeneratedto simulateanattackfrom
many different locations. This simulatedintrusion con-
sistedof 200 randomconnectionsbetweeninternalhosts
(the suppositionwas that the attackershadalreadypene-
tratedat leastonemachineon theLAN). Most of the real
attacksconsistedof probingof onesortor another, partic-
ularly of serviceswith recentlyreportedvulnerabilities.At
leastoneincidentinvolvedcompromiseof aninternalma-
chine. The traffic testedfor eachincidentconsistedof all
datapathsfrom the first nonselfdatapath(the start of the
incident),to the lastnonselfdatapath.Thus,eachincident
reproducesthetiming of theattack,aswell asincludingall
normaltraffic thatwasinterspersedthroughouttheattack.

3.2 EXPERIMENT AL RESULTS

Resultsaveragingdetectionover all eight incidentsarere-
portedin table3.2. All resultsuseanactivation threshold
of 10. Thefirst row reportstheaveragetruepositive (TP)
rate,thesecondrow reportsthemaximumpossibleTPrate
(the TP rate is limited becausethe incidentsincludeself
stringswhich will not bedetectable),andthethird row re-
portsthenumberof incidentsactuallydetected.To identify
anincident,only someof thenonselfstringsneedto bede-
tected,soin apracticalsense,thethird row givestheeffec-
tive truepositive rate.Thedetectionsystemclearlydetects
all 8 incidentswhenusingpermutationmasks,evenwith an
activationthresholdof 10.

Theeffectsof memoryweretestedout by simulation.The
detectionsystemwaspresentedwith thesyntheticincident
at time zeroin thesimulation,duringwhich the trueposi-
tiveratewas ������� (averagedover30runsof thesimulation).
The systemretainedmemorydetectorsfrom this incident
andthesimulationwascontinued.After simulatingthenet-
work runningfor another3 months,the detectionsystem
wasagainpresentedwith thesamesyntheticincident.Dur-
ing the3 monthsthememorydetectorsfrom the“primary
response”wereretained,but theotherdetectorswerecon-
stantlydyingandbeingreborn.Thusafterthreemonthsthe
setof non-memorydetectorshadchanged.Consequently,
the true positive rate for the incidentafter 3 monthswas



0.76,suggestingthatmemoryimplementedin this manner
is veryusefulfor the“secondaryresponse.”

4 DISCUSSION

In theprevioussectionswedescribedanarchitecturefor an
adaptive artificial systembasedon the immunesystem.It
incorporatesseveral forms of adaptationon differenttime
scales,andit addressesan importantproblemof practical
significance(network intrusiondetection).Mostof thefea-
turesdescribedin this paperhave beenincorporatedinto
oursoftwareprototypethatis currentlyrunningin realtime
onourdepartmentalnetwork. It routinelydiscoversoutside
attacksaswell asinterestinganomaliesthataregenerated
internally.

The AIS that we outlined in Section2 resemblesthe ar-
chitectureof a classifiersystem[9], althoughmostof the
detailsare different. Eachdetector 	 correspondsto the
condition part of a classifier, wherethe matchrule is � -
contiguousbits insteadof the traditional �������� alphabet
usedin classifiersystems.Our parameter� is a measure
of thespecificityof ourdetectors,muchlike thenumberof
don’t caresin a classifierconditionis a measureof its gen-
erality. If weconcatenatesomebits to eachdetectorwhich
specifywhattheproperresponseis (analogousto different
antibodyisotypes), then eachimmunecell (detectorplus
responsebits) correspondsdirectly to thecondition/action
rule format of classifiersystems.In placeof the message
list we have a continuousflux of datapathtriples that rep-
resentthecurrentstateof theenvironment. Currently, the
only connectionsgeneratedby ourAIS (analagousto inter-
nally generatedmessagesin a classifiersystem)arethose
resultingfrom alarmsbeingsentto thehumanoperator.

Thereis no direct analogof our negative-selectionalgo-
rithm in classifiersystems,exceptthe learningrules(such
asgeneticalgorithmand trigger conditions)underwhich
new rulesaregenerated.Bidding for messagesin classifier
systemsis analogousto immunecells competingto bind
to foreign datapaths.Likewise,we introducepressurefor
specificity, which is reminiscentof classifiersystems,by
allowing themorespecificmatchto win thecompetition.

The role of the bucket brigade(credit assignment)and
the geneticalgorithmis playedby our affinity maturation
model of learning,althoughours is simpler in the sense
thatwe assigncredit directly from the environmentto the
detectors,anddo not passstrengthamongimmunecells.
A more direct analogof the bucket brigadewould occur
if we tried to build up idiotypic networks of immunecell
in whichimmunecellsstimulateandrepressotherimmune
cells, asJerneproposed[11]. Although this is appealing
from an adaptive designperspective, thereis little if any
experimentalevidencethat suchnetworks exist in natural

immunesystems.Our planis to incorporateinternalfeed-
backsandself-regulationby extendingthecytokinesystem
(wesaw a primitiveform of this in theadaptive threshold).
Permutationmaskshave no directanalogin classicalclas-
sifier systems.Althoughthemappingis not �"!
� , we be-
lieve thattheAIS we havedescribedin this papercaptures
many of the importantpropertiesof classifiersystemsand
providesaninterestingpointof comparison.

Our startingpoint for this line of researchwasa collection
of pressingunsolvedproblemsin computersecurity. Over
the pastseveral yearswe have designedandbuilt several
successfulsolutionsto real computersecurityproblems.
Armed with that experience,we have shown herehow to
embedanarchitecturefor adaptive behavior in a real-time
environmentwith live agents(computersandthe humans
who operatethem).We follow Brooksandothers[7, 1] in
believing that it is fruitlessto designintelligentsystemsin
isolation from the environmentsin which they exist, and
we believe that researchon classifiersystemshassuffered
from too loosea coupling with live environments. Situ-
atedintelligentartifactsareperhapsmorecomplex to think
about(becausethey cannotbeneatlyseparatedfrom their
environments),but they canin somecasesusetheir envi-
ronmentsin waysthatsimplify their computations.

Moving beyond thecomputernetwork intrusion-detection
applicationthat we have described,the AIS might be ap-
plied to other classesof networks, including social net-
works, organizations,networks of markets, neurological
networks,or ecologicalnetworks. Like our LAN with ex-
ternalconnections,thesenetworksconsistof many compo-
nentsthataresparselyconnected,in which therearesome
orderedandsomerandomcomponents,and in which the
exactsetof connectionsis not static. Thereareimportant
computationsassociatedwith eachof thesenetworks,and
they would provide an importanttestof the generalityof
our architecturein its ability to discriminatenormal and
abnormalactivity andto respondappropriately.
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