
A framework for modelling
trojans and computer virus infection
Harold Thimbleby

1
, Stuart Anderson

2
and Paul Cairns

1

1School of Computing Science, Middlesex University, Bounds Green Road,
LONDON, N11 2NQ.

2Department of Computer Science, Edinburgh University, King’s Road,
EDINBURGH, EH9 3JZ.

Email: harold@mdx.ac.uk, soa@lfcs.ed.ac.uk & p.cairns@mdx.ac.uk

It is not possible to view a computer operating in the real world, including the
possibility of Trojan Horse programs and computer viruses, as simply a finite
realisation of a Turing Machine. We consider the actions of Trojan Horses and
viruses in real computer systems and suggest a minimal framework for an adequate
formal understanding of the phenomena. Some conventional approaches, including
biological metaphors, are shown to be inadequate; some suggestions are made

towards constructing virally-resistant systems.

1. INTRODUCTION

Computer viruses are not merely an irritating and de-
structive feature of personal computing, they also mimic
the behaviour of biological pests. Computer viruses hi-
jack the facilities provided by the host computer, lie
dormant, cross-infect other hosts, and when activated
cause various forms of damage, from obvious destruc-
tion of host data to more subtle changes that are much
harder to detect.

The predominantly human medical metaphors em-
ployed when discussing computer viruses are mislead-
ing because of ethical connotations. The word “virus”
itself is a rich metaphor, and terms like “infection,”
“viral attack,” “disinfectant,” “viral damage” are fre-
quently used of computer viruses. While these terms
lack any precise meaning in relation to computers, we
know roughly what they mean. Furthermore the debate
about the computer virus threat is predominantly expe-
riential: awareness of viruses is biased towards frequent
infections caused by successful viruses; debate centres
around newly identified virus cases.

In order to begin to tackle viruses effectively we
should define the essential, general features exhibited
by viruses without appealing to metaphor or limited
experience to fill in the gaps in our understanding.

Computer viruses seem to be a simple phenomenon
(hackers manage to write them in quantity, and there
are virus construction kits that anyone can use to de-
velop sophisticated viruses) yet they do pose a real haz-
ard. The science fiction anticipation of viruses was
thought to be obvious [7]. It is of interest, then, to
explore the fundamental limits of detection and pre-
vention and other issues. On the face of it, one would
look to standard models of computation, such as Tur-
ing Machines, as a starting point for this investigation.

However a closer analysis requires concepts not usu-
ally considered in the standard models of computation.
We agree with Wegner [48] that Turing equivalent for-
malisms are not sufficiently expressive for systems that
interact. A virus has to enter a system to infect it,
and this is such an interaction. And as we shall ar-
gue, the biological metaphor is inadequate too (though
it can still inspire computational ideas, both good and
bad). The computational process undertaken by a virus
does not terminate; moreover, when the (possibly) Tur-
ing process of an infected program terminates, the virus
has already infected another program that will subse-
quently execute — a virus that terminated would not
be infective.

Viruses should not be dismissed as a trivial problem
for users of computers that do not run secure operat-
ing systems. Together with Trojan Horses, they are a
major menace for any sort of system, and are a particu-
lar concern for computer systems connected to networks
[31]. As well as being a practical problem, this paper
will show that viruses pose theoretical problems also.
Indeed, this paper, by laying out some of these prob-
lems, begs many questions that raise many further re-
search questions. Some of these research questions will
be pointed out explicitly throughout the paper.

In summary, this paper highlights the limitations
of applying the conventional computational models to
computer virus phenomena, and it offers a new frame-
work. We motivate our paper by defining and nam-
ing the phenomena under discussion. We then exam-
ine a variety of related phenomena, such as: compiler
viruses, Cohen’s proof about virus detection, the possi-
ble structures of virally resistant systems, and, finally,
Koch’s Postulates and other biological issues. The rea-
son why people write viruses is beyond the scope of the
present paper; see [5] for an introduction and overview

Computer Journal, 41(7), pp444–458, 1999.



2 H. W. Thimbleby, S. O. Anderson and P. Cairns

of the literature.

1.1. Orientation and terminology

Viruses and Trojan Horses make computers do things
that their users do not want them to do. The term Tro-
jan Horse is due to the Greeks’ use of a hollow wooden
horse filled with warriors to deceive the Trojans. The
Trojans were violently torn between accepting the horse
or rejecting it; indeed, they did start checking it, but
were fatefully tricked into tearing down their own city
walls and pushed it in themselves [46]. More recent dis-
cussions of viruses include [2, 11, 14, 17, 25, 36]. The
interested reader is referred to [47] for up to date infor-
mation on specific viruses, which are not the concern of
the present paper.

For clarity and to avoid an air of pedantry we abbrevi-
ate “Trojan Horse” by the single word “trojan” when re-
ferring to computer programs. Trojan programs, some-
times with names like sex, often seem so attractive that
users are sooner tempted to “bring them into their city,”
like the original Trojan Horse, than to test or to reject
them — so bringing upon themselves the results in-
tended by the trojans’ designers. The complication is
that trojans do something unwanted yet they offer to
provide a wanted service.

One might start by considering four simple categories
of trojan:

Direct masquerades pretend to be normal programs.

Example: a program called dir that does not list a
directory, the normal use of the command of that
name. Computer systems often permit many pro-
grams of the same name to co-exist, with conse-
quent opportunities for masquerading trojans.

Simple masquerades do not masquerade as existing
programs, but rather masquerade as possible pro-
grams that are other than they are.

Example: programs with names like sex above.

Slip masquerades have names approximating legiti-
mate program names.

Example: a program called dr that might be acti-
vated if the user miss-typed dir. Since users want
to install programs (e.g., for maintenance or up-
grade purposes) and perhaps write their own pro-
grams, in practice few systems provide restrictions
on the names of programs; even if they do, there
must be fewer restrictions on the programmers who
design them. The consequence of this liberality is
undetectable/unidentifiable trojans.

Environmental masquerades are not easily identi-
fiable programs invoked by the user, but are typi-
cally already-running programs that provide an un-
wanted interpretation on the user’s commands or
other activities.

Example: An operating system whose login prompt
to the user is an otherwise clear screen and the
prompt ‘login:’ can be indirectly trojanised by
constructing a program that intercepts the user, by
clearing the screen and issuing the login prompt it-
self. It can then embark on any activity it pleases,
typically recording the user’s name and password;
to avoid detection by the user it would then trans-
fer control to the authentic login program. (If this
is not feasible, it could misleadingly report a pass-
word error, ask the user to try again, and then ter-
minate so that the authentic login program takes
over completely.)

Example: When an entertainment CD is inserted,
it may start playing automatically — if it contains
executable code, it may be executed and do (or
prepare to do) damage. The Macintosh AutoStart
9805 is a trojan of this sort; it commences execu-
tion as a side-effect of inserting removable media.

Beyond these basic categories, it is fruitless providing
precise definitions of the categories or types of unwanted
behaviour of trojans (or, indeed, viruses) since their
(i.e., their programmers’) intention is to be devious. An
actual trojan may exhibit mixtures of these behaviours
and random effects to confuse and mislead the user.
There is one trojan which, itself doing no direct dam-
age, instructs the user to switch off the computer (pre-
tending to have detected a serious hardware fault); if
the user responds to this advice, they are liable to lose
any data that has not been saved to disc. If we admit
these programs that merely say things, what should we
make of programs constructed by experimenters that
say what they would do had they been actual viruses
or trojans?

Given the wide range of behaviour, both intended
and accidental, not surprisingly the terms trojan and
virus are the subject of lively debate [21], based on a
number of architectural and other distinctions. Most
work in the area has concentrated on purely represen-
tational concerns, where every ‘variant’ of a virus tech-
nique (such as the Vienna virus represents) are consid-
ered different. (This has resulted in particular interest
in ‘polymorphic’ viruses, which modify their represen-
tation on each infection.) Our approach is more seman-
tical.

Whatever its behaviour, a viral infection has three
core components:

A trojan component An infected program does
something unwanted in certain circumstances. The
trojan component is sometimes called the payload.

A dormancy component The viral infection may
conceal itself indefinitely. Trojans, too, may use
dormancy to conceal their presence, but with a
virus dormancy (or, equivalently, unnoticed trojan
damage) is essential for the effectiveness of their
third component:

Computer Journal, 41(7), pp444–458, 1999.



A framework for trojans and viruses 3

An infective component Infected programs infect
further programs, which then behave in a simi-
lar way. (Viruses may wish to avoid re-infection,
because re-infection takes time or space and may
therefore make an infection more obvious. Viruses
often include a heuristic for self-detection, a proce-
dure which, if identified, might be directed against
them.)

Even this abstract list has problems! A virus that only
replicates consumes computer resources (it uses disc
space, it wastes time. . . ) even though it may not have
an explicit trojan component. Or a virus that is never
dormant might still be able to infect, provided it uses
some other means of avoiding detection.

If we allow programs to run on various machines,
across platforms, why stop at digital computers? Are
viruses with no infective component, but which trick hu-
mans into spreading them, rather than spreading them-
selves, really viruses? Are chain-mail, spam [38] and
email panic scares, which are replicated as people email
the panic to people they wish to warn, really viruses
[18, 35]? Certainly, these are serious problems. As com-
munications systems become more sophisticated, per-
forming actions (such as forwarding email) on behalf of
users, the traditional distinctions between trojans and
viruses become harder to maintain.

In particular the trojan component may be ‘harmless’
(viewed inside a computer) but precipitate a chain of be-
haviour outside any computer, ending with a harmful
conclusion. Although the trojan component may run at
a definite time, the user may in principle be unaware of
the consequences until much later. A particularly per-
nicious program, ADTrojan, sends rude email to other
users. The only action a computer could detect would
be the (not necessarily) unauthorised mailing. The re-
cipients of the email, however, can complain, leading to
repercussions for the original user. Other sorts of de-
layed trojan activity include programs that steal pass-
words: the noticeable damage occurs much later when
the passwords are used to enable third parties to do
other work — which of course may be part of a larger
chain of activities, only the end of which is blatant dam-
age. The legal consequences of this sort of indirect be-
haviour involving innocent parties have not yet been
worked through satisfactorily.

We might also add that a virus has a survival com-
ponent. Crucial to the long-term practical success of
a virus is that it can infect in some sense faster than it
can be eliminated; to do so, it may infect other comput-
ers — these other computers are often the responsibility
of other people or organisations, and so the elimination
of a virus requires human co-operation, which is typ-
ically slower to recruit than the spread of the virus.
Clearly, virus survival is of practical significance, and
the organisational structures anti-virus manufacturers
use to distribute their products is of commercial inter-
est. However, survival is an emergent property, that

follows from dormancy and infection, so we do not for-
malise it here. We consider it an epidemiological issue
(see, e.g., [23]).

Because we use words like virus and trojan, and often
give them names (e.g., the Vienna Virus), it is easy to
think the problem is just one of identification.2 How-
ever, bugs, viruses and worms can, under appropriate
assumptions, be benign. Bugs are used constructively
in certain forms of AI programming; viruses can be used
to spread information [49]; worms can be used to dis-
tribute processing [12]. Moreover, the people who write
destructive programs may think their programs are be-
nign, even if others disagree. Clearly identifying ‘the’
problem is a human issue, related to what one wishes
to define as a problem. From the formal point of view,
the question is, if one wished to classify something as a
problem, whether that thing could be distinguished to
be so identified. Of two programs, before one can say
one is a trojan, it has to be established that they are
different.

Thus to develop our framework, we wish to be able
to model the essential issues, but perhaps not make all
of the distinctions some authors have made. An ade-
quate framework must involve notions of behaviour, in-
visibility, infection — what is the ‘same’ virus? These
questions have practical implications: How should vi-
ruses be named? Are all strains of the Vienna virus the
same virus, or are they different?3

A framework must address, or relate to, the confu-
sion that can exist over the interpretation of ‘damage.’
If a user, being malicious, intends damage, are we then
to consider the activities wrought by a trojan on his
or her behalf as ‘constructive’ ? The notion of damage
clearly assumes particular value systems and intentions
on the behalf of particular classes of user. Indeed, the
behaviour of a user developing a compiler system, who
in the course of their legitimate work, compiles code,
replaces system resources, and recompiles various pro-
grams and so forth, is hard to distinguish on purely
technical grounds from a user who replaces programs
with malicious intent. (A tongue-in-cheek article ar-
gues that research ideas behave like viruses [37]: which
explains the proliferation of research publications and
journals.)

Although both trojans and viruses may be difficult to
isolate after damage has been detected, the additional
components of viruses ensure they are not so easily elim-
inated. As a result of dormancy and infection, a virus
normally makes many copies of itself (not necessarily
identical) before the damage is detected. The virus may
make copies of itself essentially outside the computer it

2This is what most virus detection programs do: they look for
viruses whose signature they recognise. If a user (or a program
they are running) knows what virus to look for, there is a partial
oracle for (what we will show to be) the non-computable function
that identifies the virus. See [45].

3The Vienna virus has many variants, partly due to the pub-
lication of source code for one variation of it in [8].

Computer Journal, 41(7), pp444–458, 1999.



4 H. W. Thimbleby, S. O. Anderson and P. Cairns

is running on: it may make copies of itself on remov-
able media (such as a floppy disc) so that the user, on
putting the disc in another computer, infects a remote
computer; or it may use networks to do the infection
more directly itself. When — if — the virus is detected
it will already have spread somewhere else, where its
management is someone else’s responsibility.4

We assert that a virus can only be defined seman-
tically, that is in terms of the meaning of programs,
rather than in syntactic patterns appearing in code.
This belief is strongly at variance with most of the lit-
erature on the topic [9, 15]. All viruses to date have
been trivial, and this gives the impression that viruses
might be classified as syntactical, with various identifi-
able structures — for example, fragments of code that
correspond with the three conceptual components listed
above. With the prevalence of so-called polymorphic vi-
ruses (ones that have different syntactical forms [32]),
this view is of course questionable, but there is a linger-
ing (and incorrect) view, perhaps partly inspired by the
relatively concrete notion of biological chromosomes or
genes, that there ‘really’ is a syntactic basis. If any bio-
logical metaphor is required, computer viruses are more
like Dawkins’s memes, “viruses of the mind,” than bi-
ological genes [13], a point we return to later (§5). In
our view, what is important about a virus is not how it
works, but what it accomplishes.

A virus is best defined by saying what it is to be in-
fected. An infected version of a program p is a program
p′ that behaves indistinguishably from p on ‘most’ in-
puts, behaves distinguishably from p on some inputs,
and sometimes when p′ is executed it infects other pro-
grams in the ‘same’ way. This preliminary definition
begs a lot of questions and uses terms without defini-
tion. The remainder of this paper, then, is directed to
making these notions precise. However, one thing is
clear from this definition, the notion of viral infection
is not linked to any particular syntactic representation
as code.

Our paper will necessarily introduce a new definition
of virus, which we will provide after justifying a new
framework within which to express the definition. In
particular, so-called worms, which some authors dis-
tinguish from viruses as autonomous programs rather
than programs physically carried by users, are not dis-
tinguished in our framework.

We will find it convenient to use the general term
infection to indicate the presence of a trojan or a
virus: an infection is, from the hacker’s point of view,
an intentional bug. In keeping with our abstract ap-
proach (and indeed the medical usage) this does not
imply a particular manner of acquiring the infection,
nor that the infection is transmissible to other programs

4It follows that successful elimination of viruses requires a dis-
tribution mechanism for the antidotes: this is usually done by
conventional marketing channels (that do not use the same vec-
tors as the virus), rather than by virus-like computer-based repli-
cation.

or computer systems.

1.2. Previous work

We are aware of previous work on the theoretical limits
to the detectability of trojans (e.g., [1, 9, 10]). Our own
first undetectability proof for masquerades [42], based
on this work, was questioned for not explicitly address-
ing security issues [15] (a criticism that also applies to
the other methods). We have also attempted to iden-
tify and distinguish the causes of co-operative behaviour
and destructive behaviour [43], but this was informal;
and we have found problems in a proposed detection
mechanism [26], but our findings did not constitute a
general theory.

2. INADEQUACY OF TURING MACHINE
MODELS

It might seem obvious that personal computers are Tur-
ing Machine equivalent, and as personal computers get
viruses, so Turing Machine models are an appropriate
basis for studying issues of infection. However, this view
is false.

First, we will make a plausible argument, then we
shall provide a proof. Turing Machines are infinite ma-
chines, whereas personal computers are finite. Clearly,
Turing Machines are an idealisation. Personal comput-
ers have properties not shared with Turing Machines.
Some real-world properties of personal computers —
plausibly including the issues of trojans and viruses —
are not modelled by the idealisation.

Now, more formally, suppose we define ‘infected’ as a
predicate on Turing Machine programs, and we do not
try to formalise what can be observed as a result of the
execution of the program. What can this mean? It can
only mean that the result of running the program is ei-
ther unchanged (the infection has no observable effect)
or that the result is incorrect (the infection is not ‘hid-
den’). In neither case do we have a non-trivial problem.

All previous work is based on abstract models of com-
putation together with a concrete notions of replication.
Such approaches cannot capture various subtle notions
of, for example,

• masquerading, where a user knows names of pro-
grams and anticipates their likely behaviour;

• infection, where viruses may encrypt themselves
and be different each time they infect.

Our comments will apply equally to any Turing equiv-
alent model of computation, such as λ-calculus. Note
that it is important to distinguish between a represen-
tation of viruses (clearly, any computable theory of vi-
ruses is directly representable on Turing Machines), and
a definition of an effective model.

There is a tension that, on the one hand, the con-
ventional undetectability results are too pessimistic; on
the other hand, näıve notions of infection may lead to

Computer Journal, 41(7), pp444–458, 1999.



A framework for trojans and viruses 5

excessive optimism — in that specific remedies may be
attempted that rely on these notions of infection. Ques-
tions remain whether virus activity, replication and in-
fection, can be usefully constrained in suitable computa-
tional models where such activity is explicitly but gen-
erally modelled. We will explore some of these issues
below, in §4.

2.1. ‘Other’ programs

The notion of a virus infecting other programs has to be
modelled: such a notion is essential to any discussion
of viruses. But ‘other’ programs cannot be modelled
by a conventional Turing Machine model since there is
no other program — even if the Turing Machine tape
contains several interleaved programs whose execution
is multiplexed.

2.2. Self-awareness of infection

In principle, a program could be infected by a virus in
such a way that it could not tell it was infected (the
malicious code could interfere with any infection test-
ing): thus, the reliable judgement whether a program is
infected depends on an external mechanism that is not
affected by that infection. In fact so-called armoured
viruses [3] exist for the Intel 80486 processor, which de-
tect attempts to single-step (and hence understand their
behaviour) them by rewriting already-pipelined instruc-
tions so that they can distinguish whether they are be-
ing run directly by hardware or being interpreted.

We will avoid this problem by introducing the con-
cept of trojan and viral methods, which are outside the
system — they are outside the standard Turing model
— whose infection is being considered.

2.3. Self-replication as a special case

If infected programs were empty, computer viruses
would involve self-replication. Self-replication of pro-
grams has attracted a great deal of attention, partic-
ularly because of the apparently paradoxical problem
of encoding concrete representations of programs inside
themselves: that is, when a self-replicating program is
run, its output is its own source code. From this point
of view of self-replication, a program that merely ac-
cesses its representation (e.g., from a source code file)
would be cheating!

Turing completeness (sufficiency for implementing a
universal Turing Machine) is neither necessary nor suf-
ficient for self-replication.

It is not necessary since self-replicating programs
can be constructed as non-recursive straight-line pro-
grams. A programming language could therefore be
constructed that was not Turing complete, but which
was sufficient to implement non-cheating self-replicating
programs.

It is not sufficient, since Turing completeness is up to
representation. We can construct a programming lan-

guage that is Turing complete, but where the language
uses symbols that running programs cannot output. We
then have Turing completeness where self-replication is
impossible. A proof of insufficiency where the domain
and range of a Turing complete language are identical
is given in [39].

Fokkinga [16] gives a construction for self-replicating
programs, and adds a variation: a program that recog-
nises its own source code — which is a pre-requisite
for a virus not to repeatedly re-infect a file (see §2.2).
Kanada gives an example of a self-replicating program
that runs on the World Wide Web [24].

2.4. Time

Turing machines are infinite machines, and their speed
of operation is immaterial. The real world of practical
computers is finite; space is finite and time is signifi-
cant. Since, for small n, every program on an n word
(RAM + backing store) computer can be enumerated
and classified as acceptable or infected by inspection,
it follows that an adequate framework should allow for
the complexity of classification.

Also, some viruses do their damage ‘merely’ by con-
suming resources. This reduces the effective speed of
the computer, or looses free space. Neither of these ef-
fects are of any consequence in a computational model
that admits an infinitely fast, infinite memory machine.

3. A NEW FRAMEWORK

In any rigorous framework for the study of viruses there
must be a mechanism to create and distinguish between
various programs. Without loss of generality, the neces-
sary extension is an environment, a mapping of names
to programs, equipped with the appropriate operators
to make enquiries of it and to manipulate it.

The object of our study are computer programs to-
gether with their inputs and outputs.

We could imagine a real computer to be an array
of bits, including its RAM, screens, backing store, and
the state of its CPU. Parts of this array correspond to
programs, part to data files, and various parts to such
components as boot sequences and directory structures.
The meaning of certain sequences of bits may depend
on where they reside in the computer. A bit pattern
may be a graphic image, but somewhere else it might
be a program that can be run. After an error, such as
stack overflow and obtaining a bad return address, the
computer might be directed to interpret a graphic as
program.

We call all these things together (the full state of a
machine, program texts, graphic images and so forth)
the representation. The collection of all possible rep-
resentations we denote R. Any given representation,
r ∈ R, is finite. Note that R includes all fault condi-
tions, such as the computer ‘locking up.’

The user is not concerned with representations. In-
deed much of the memory of a computer is hidden

Computer Journal, 41(7), pp444–458, 1999.



6 H. W. Thimbleby, S. O. Anderson and P. Cairns

from the user, in boot sectors and other places. The
user is concerned with names of programs, and the
computer uses those names, following various rules, to
obtain the representations of the corresponding pro-
grams. We therefore introduce the environment map,
E, which is a fixed map from a representation (typically
the current configuration of the computer) to an envi-
ronment, a name-to-representation map, which takes
names (chosen from a countable set of labels L) and, if
they are defined, obtains their corresponding programs
or other data: E:R → (L 7→ R). The domain of E(r),
names r = dom E(r), is finite and computable and (as
is made clear below) will normally include some fixed
names independent of r.

Note that ‘names’ are a very general concept, and
include, for instance, locations on a graphical user in-
terface screen, or textual names in a conventional file
store. In practice, the environment will have structure
that may have security implications, but this is not re-
quired for our framework.

Programs may be run, and running programs usually
changes the state of the computer. We say that the
meaning of a program is what it does when it is run.
If r ∈ R is a representation that includes a program
p, then [[p]] is its meaning: [[·]]:R → (R → R). The
meaning of a program is that, when run, it transforms
representations into representations. Note that our ap-
proach admits everyday complexities such as operat-
ing systems, virtual machines, spreadsheet macro pro-
grams, dynamically loaded Java applets, and so forth —
but it is not necessary to model communication, non-
determinism or concurrency to capture what viruses do.
A more thorough definition of programs and represen-
tations could certainly be developed (and would be a
useful research project), but for our purposes we do not
think it would provide any additional clarity to do so —
as more structure is introduced, it is very hard to avoid
implementation bias, and the associated obscurities of
‘real’ machines.

Where no ambiguity arises, we abbreviate the struc-
ture Ω = [R; E; [[·]]] by R.

Our framework does not require a virus to reside in ‘a’
program; conceivably it could reside in two or more co-
operating fragments, none of which alone behave like
a virus. A trivial way to do this is by threading the
virus code around the representation, but more subtle
techniques are possible: see §4.4.

Crucial to a framework for examining infection is that
programs appear, perhaps for long periods of time, to
be other than what they really are. A user may find two
programs to be indistinguishable even though they are
not equal. We define these terms precisely as follows:

Two programs p and p′ are equal when

∀r ∈ R: [[p]]r = [[p′]]r

However, unlike identity, equality is not a computable

relation,5 and even to check equality of program outputs
for a small collection of inputs would require the exhaus-
tive examination of the entire state of the computer.
More practically, in an attempt to take account of the
amount of time one is prepared to devote to checking
an output is what is required, we define similarity to
be a poly log computable relation on R (see below),
denoted ∼.

We do not assume similarity is an equivalence rela-
tion. In particular, similarity is not transitive: we may
know a ∼ b and b ∼ c but also that a 6∼ c, given the
poly log time restriction. Since ∼ is computable it must
be that either a ∼ c or that a 6∼ c, and that this result
is known in finite time: the computation of similarity
may make ‘mistakes.’ There then arises the possibility
that unequal programs are similar: although two pro-
grams are different, we may not be able to decide that
in the time available. The key point is that similarity
(∼) of programs is not equality (=) of programs, for if
it was there would be no serious problem in detecting
different programs.

We define poly log, and a related quantifier, for most :

Poly log computable Poly log computable is a re-
striction that a function can be computed in less
than linear time on the total size of its arguments.
Poly log is a requirement that a function of repre-
sentations can be evaluated without examining the
entire computer representation (which can be done
in linear time). If the entire computer representa-
tion could be examined at every step in a process a
number of detection questions become trivial; fur-
thermore it would implausibly suggest the user is
aware of the entire configuration of the computer,
including boot sectors, operating systems and so
forth.6

M (for most) We need to introduce a new quantifier,
for most, written M. A technical definition of this
notion is not required in what follows; a definition
that captures the intuition and the relation with
poly log computable (or some other measure) is a
research project.

Two programs are indistinguishable when they pro-
duce similar results for most inputs. If p and p′ are
two program representations they are indistinguishable,
written p ≈ p′, if and only if

M r ∈ R: [[p]]r ∼ [[p′]]r

We need some convenient notation:

• p̂: A representation or program p̂ is an attempt to
trojan p; p̂ is to be taken as a metaname, and may,
in fact, have no relation to p.

5The program fragments 1+1 and 2, suitably interpreted, are
equal but not identical.

6For small computers, say handheld calculators, the poly log
restriction may make it feasible to examine the entire representa-
tion space.

Computer Journal, 41(7), pp444–458, 1999.



A framework for trojans and viruses 7

• r
l−→ r′: We write r

l−→ r′, iff l ∈ names r and r′ =
[[E(r)l]]r; this extends naturally to finite sequences
of program names l1l2 . . . ln ∈ L∗.

• s/c: Let s/c be the object code corresponding to s
when compiled by a compiler c. This seems intu-
itive enough, but it assumes that out of the entire
machine representation it is possible both to choose
the source code and the object code resulting from
compiling the source. In fact, just before a compiler
(or any other program is run) some other program
(e.g., the operating system) places the parameter
of the compiler in a known part of the represen-
tation; some convention in the program (no doubt
enforced when it was compiled!) then specifies the
location in the representation of its parameter. If
we label these locations Λ1, Λ2 . . . then we have (al-
low s/c to be empty in the case that s is not well
formed with respect to c):

∃Λ1, Λ2 ∈ L: ∀r ∈ R:
s/c = E[[c]]rΛ2

where s = E(r)Λ1

If cs is a compiler c in source form, c = cs/c. The
notation extends naturally to finite sequences of
applications of a compiler: sn/sn−1/ . . . s0/c.

With these preliminaries, we may now define trojan
and virus. In attempting to do this we find that we can-
not eliminate the environment from the definition. The
notion of trojan and virus can only be understood rel-
ative to their binding environment. Hence, rather than
define trojan and virus as such, we will define a recur-
sively enumerable relation to capture the method (‘in-
fection’) employed by the trojan or virus respectively.

3.1. Trojans

Trojans may corrupt something unnamed (say, a boot
sector) which when run at a later time results in an
‘obvious’ trojan effect — but even that ‘obvious’ trojan
effect cannot usually be determined except by running
a program, for example to check that certain files are
still present.

As a first approximation, we might say that pro-
grams p, p̂ would stand in the relation trojan when there
is some representation r that distinguishes their be-
haviour; informally, p trojan p̂ ⇔ ∃r ∈ R: [[p]]r 6∼ [[p̂]]r.

Notice that the trojan relation is symmetric: with-
out assuming what p or p̂ is supposed to do, we can’t
know which program is intended as a trojan of which.
We could imagine a hacker making the ironic comment
that a real login program trojanised their subversive
login program. Since it is not obvious that one can suf-
ficiently easily make a formal distinction between what
some humans mean and others mean, we will leave the
relation as symmetric — and see how far we get!

It is crucial that the trojan programs exist ‘as such’
in the particular computer as programs that the user
can run: they must have names in an environment. We
therefore introduce the concept of a trojan method that
characterises the appropriate constraints. For each type
of trojan there will be a different trojan method; but
by using the abstraction of a method, we do not con-
sider different representations (i.e., different implemen-
tations) of trojans as essentially different. Each trojan
method specifies a particular program and a computer
configuration supporting an environment in which it can
be trojaned. (This pedantry — which is implicit be-
cause Ω is ‘hidden’ in the use of R, E and [[·]] — is not
only a useful clarification, but reminds one that a tro-
jan of a Unix program sh, say, won’t necessarily be a
trojan for a different user with a different name space.)

Definition A trojan method is a non-empty recursively
enumerable relation T ⊆ R × R × L, such that if
〈r, r̂, l〉 ∈ T then:7

∧ r ∼ r̂

∧ E(r)l ≈ E(r̂)l
∧ M t ∈ L∗:

∧ [[E(r)l]]r t−→ r′

∧ [[E(r̂)l]]r̂ t−→ r̂′

∧ r′ 6∼ r̂′

The idea of this is that if 〈r, r̂, l〉 ∈ T for some trojan
method T , then r̂ has an environment which is simi-
lar to r, but in which the program named l, although
looking the same in the two environments if it is exe-
cuted for most potential inputs, eventually a difference
can emerge.

The second line of this definition (i.e., that a tro-
jan does not immediately reveal itself) is optional. The
formalism helps make explicit the choices available in
the definition of the terms. We feel, however, that it is
appropriate, for it is saying a trojan is initially indistin-
guishable to another program but eventually obviously
different.

A central contribution of our definition is the notion
of a trojan as a relation; however details in the definition
could easily be debated. For example we could replace
the uncertainty of M by requiring that ∀s ∈ L∗ (i.e., us-
ing a for all quantifier, rather than the for most quanti-
fier) there is an extension t of s with similar properties;
the uncertainty has then been pushed into the uncer-
tainty of the length of t. Since trojans generally intend
to appear at some point in the future, the majority if
not all of them would satisfy this variant definition.

Detection of trojans is built into this definition. A
trojan is defined in terms of not being distinguishable
from the original (using ∼). If a trojan was detectable
because it was different it would not be a trojan — it
would just be a “wrong program.”

7We use Lamport’s method of writing long formulas [27].

Computer Journal, 41(7), pp444–458, 1999.



8 H. W. Thimbleby, S. O. Anderson and P. Cairns

3.2. Viruses

There are, of course, good viruses and other variations,
but we define a virus to be a trojan that additionally
infects other named programs, infection being the mod-
ification or creation of some program to be a virus. In
our framework, then, we do not distinguish a program
that is a virus and a program that contains a virus:
to do so would presume an identification of the virus
‘code.’ (Of course most virus writers write such simple
viruses that the distinction has practical use even if no
general semantic basis.)8

Two representations r, r̂ are virally related on name l
if they are part of a trojan method, and if the capacity
to trojanise and infect is transmitted to other programs.
Thus a viral method is a trojan method with added
conditions requiring that the method is infectious.

Definition A viral method is a trojan method V ⊆
R×R ×L satisfying the additional condition, such
that if 〈r, r̂, l〉 ∈ V then:

∧ M r1, r2 ∈ R: r1 ∼ r2

∧ ∃l′ ∈ (names r1 ∩ names r2):
〈[[E(r)l]]r1, [[E(r̂)l]]r2, l

′〉 ∈ V

This additional clause is a closure property, saying
that evolving two similar representations by virally re-
lated programs results in virally related representations.
Given a viral method V and a ‘normal’ representation
r, then r̂ is infected by V at l if 〈r, r̂, l〉 ∈ V .

It is useful to distinguish an infected system from an
infected program, since the cost of establishing whether
a system is infection-free is much higher than to estab-
lish whether a program is infected.

The definitions do not require a virus to infect with
a copy of itself, and in particular they allow a virus to
encrypt itself in different ways when it infects. Thus
we do not require infection to be transitive, since the
definition of a virus does not require it to infect with
itself (a typical encrypting virus would choose to infect
with a differently encrypted variant of itself).

There is nothing in the above definition which re-
quires some syntactic relation to hold between the ‘nor-
mal’ and ‘infected’ program. This is appropriate, since
one could easily imagine a virus incorporating a simple,
semantics-preserving re-write system that could be used
to transform the combination of the viral code and the
new host into some equivalent but syntactically quite
different form.

3.3. Summary

An important difference between virus and trojan is
now clear: a virus requires to modify the name space of
the representation, thus suitable precautions on naming

8Some authors would distinguish a virus that only modifies
existing programs from a worm that can also create programs,
typically on another node in a distributed system.

could inhibit viral spread (under suitable assumptions),
whereas a trojan in some sense makes the user do its
work, and therefore cannot be identified or inhibited if
the user is anyway permitted to perform such opera-
tions. Trojan compilers form an interesting case where
a user may be tricked into performing an evaluation
step that can then behave as a virus (§4.1.1).

The definitions clearly do not require Ω to be Turing
Complete in order to support trojan or viral methods.
It would be possible for a machine to support programs
of viral methods only. Such an apparently limited ma-
chine might be of interest for investigations in artificial
life [28].

In considering any formal framework of artificial sys-
tems, there is always a balance between formalising
what is and formalising what should be. Our frame-
work does not handle certain concrete aspects of vi-
ruses explicitly: is this a shortcoming in our frame-
work, or is it an indication that the complex systems
that support them should not exist? We think, while
it would be a significant achievement to handle more
virus behaviour within an elegant framework, it would
be a greater achievement to eliminate the possibility of
certain sorts of behaviour by better system design.

4. APPLICATIONS OF THE FRAMEWORK

In this framework, where the notion of trojan and virus
is inextricably bound up with the environment and the
realistic time complexities of testing, the questions one
can ask about these phenomena differ from the usual
questions. We might consider the following:

• Given a representation r, and a viral method V ,
it is semi-decidable to check whether some other
representation r̂ is virally related to r in V .

• Given some finite number of infected/non-infected
pairs of environments in some unknown viral
method V it is impossible to ‘infer’ V from the
data.

• The question, assuming we have to hand a puta-
tive virus, “is p a virus?” makes no sense. For many
reasonable notions of ∼, even deciding p ≈ p̂ is un-
decidable. For very restricted notions of infection
(e.g., syntactic modification) limited decidability
results are obtainable.

• Is it possible, by elaborating the model of the com-
puting system, to provide a system which resists,
detects, or is tolerant to viral spread? The affir-
mative answer changes our attitude to third-party
anti-virus products, and suggests a requirement,
antitrust notwithstanding, that anti-virus compo-
nents be integrated into operating systems.

• Following from the previous point: if a (particular)
viral method can be recognised, can the represen-
tation including it be disinfected, where we take
‘disinfected’ to mean some more conservative oper-
ation than deletion of all programs overlapping the
virus?

Computer Journal, 41(7), pp444–458, 1999.



A framework for trojans and viruses 9

• Many programs are constructed out of modules.
Our framework does not address this since any col-
lection of modules is just part of the representation.
However, in practical terms, there is a difference in
convenience or efficiency if we can reliably check
modules individually. Most anti-virus products do
just this: they normally only check the parts of the
representation that are known to change through
interaction with the rest of the world — such as
when a floppy disc is inserted. The problem does
not arise in our framework, but any framework that
did model modules (or access rights) would have to
beware of the problem that trojan methods need
not be in the modules where they “should” be —
see §4.1.1.

• Because anti-virus products are commercial, there
are industry tests and league tables. League tables
encourage simplistic comparisons, such as ‘percent-
age of wild viruses recognised.’ However, hit rates
assume a classification of viruses, typically a syn-
tactic one — which arguably inflates the apparent
scale of the problem, and the efficacy of the anti-
virus programs. How should anti-virus products be
compared?

4.1. Detectability of trojans

The problem of detecting trojans is at least as hard
as determining whether functions are equal, which is
undecidable.

There is, of course, a difference between detecting a
trojan and resisting the installation of a trojan: secu-
rity measures are aimed at the latter problem. How-
ever, as regards security assumptions precluding an ar-
bitrary program p̂ from, in some sense, being related to
a program p, by assumption the program p̂ is explicitly
constructed to trojanise p.

Trojans are not effectively detectable. In fact most
trojan and virus detection programs attempt to detect
classes of program: the importance of the following re-
sult is that many detectors search program represen-
tations for patterns (equivalent in biological terms to
antigenic epitopes) and attempt to detect any program
in the class with that characteristic pattern.

Assuming the classification process is computable and
that detection is undecidable, the decidability of detect-
ing classes of trojan would be a contradiction; if the
classification process is not computable, then there are
trojans that cannot be classified, and hence cannot be
detected. This has implications for trojan detector pro-
grams that attempt to identify specific trojans by their
known structure, such as by using a signature.

In many computer environments it is also possible
for trojans to dynamically change their code (‘mutate’):
this would mean that a recently acquired trojan could
have a different form than the standard recognised by
the trojan detector. By considering the equivalence
classes of the behaviours of trojans, we immediately

conclude that trojans are not detectable by inspect-
ing their behaviour: this result is of consequence for
so-called gatekeeper detectors that hope to detect tro-
jans or viruses by their (presumably forestalled) actions.
They cannot work in general. In practice a useful but
insufficient measure of protection is achieved by inter-
preting primitive operations (such as operating system
calls) and intercepting certain computable classes of op-
eration (such as low level formats); there may be options
to enable an operation to proceed if the user deems it to
be safe. Inevitably, such methods presuppose a human
is able to make decisions that we have proven undecid-
able. Inevitably, human mistakes will be made.

Recall that Cassandra, the Trojan prophetess, though
correctly warning what the Trojan Horse was, was
doomed not to be believed!

4.1.1. Thompson’s trojan
The intention of Thompson’s construction is to use the
trapdoor effect of compiling to conceal a trojan from ef-
fective detection: r/c ↔ r is not bijective, and r cannot
be recovered from r/c (unless c is specially constructed
to make this possible). In fact, it may be much worse,
there may be no s derivable from {c, r/c} such that
r/c = s/c. This is the well-known ‘disappearance’ of
semantics in metainterpreters (virtual machines) [20];
in Thompson’s trojan the semantics that disappear are
trojan methods.

Normal compiler bootstrapping is expressed as cs/c =
c, where the subscript s conveniently denotes the appro-
priate source code. Bootstrapping is typically achieved
by constructing, by hand or by some other means, an
executable program p such that cs/p = cs/ . . . cs/p (it
is not necessary that cs/p = p); once p has been suc-
cessfully applied to cs, p can be discarded — although
this is risky, as is made clear below. The source code cs,
too, may be discarded or made unavailable (perhaps for
commercial reasons). Yet it is still possible to compile
all programs. The language c compiles will be complete
in some sense (the properties described are not sufficient
for Turing completeness).

To follow Thompson’s argument it is necessary to in-
troduce conditionals, notated x ⇒ y : z; we assume
that the language processed by c can implement the in-
tended semantics, x ⇒ y : z

def= if x then y else z. It
will be sufficient to consider only top-level conditionals
and (computable) tests based on identity.

Thompson’s discussion is based in C, C compilers,
Unix and Unix’s login program. We will assume: a
non-trivial security-critical program u (say, a login pro-
gram), and its compiler c, also capable of compiling
itself (cs). We wish to construct a trojan û that is un-
detectable, even given the assumption of the presence of
source code us of u, which would have provided oracles.

The intention is to leave cs and us unchanged but to
have replaced c and u by ĉ and û such that cs/ĉ = ĉ and
us/ĉ = û, and for ĉ otherwise to behave as c. Once this

Computer Journal, 41(7), pp444–458, 1999.



10 H. W. Thimbleby, S. O. Anderson and P. Cairns

has been achieved, the trojans will be self-preserving:
the trojan method cannot be eliminated easily since ev-
erything apart from the behaviour of û will be indistin-
guishable from normal and it will probably be indistin-
guishable for ‘long enough’ from its expected behaviour.

First note that a trojan û of u is easy to detect given
us, since û 6= us/c and we know what u is by applying
us/c. In other words, with the source us we can deter-
mine that û is a trojan. In practice one must check all
(or only suspect) u ∈ names r; however, names r is finite
and each test is linear.

Suppose now that a compiler c′ is constructed, where
s/c′ def= s = us ⇒ û : s/c. When applied to us, c′

trojanises it to û. Note that the test s = us is an
unproblematic test of identity of representations. Since
in all other respects c′ = c, c can be surreptitiously
replaced.

At this stage, there is an undetectable trojan, but
the tampering with the compiler is still readily detected
since cs 6= c′

s and c′ 6= c. The final stage of Thompson’s
argument removes this loophole.

A further compiler c′′ is constructed, where s/c′′ def=
s = u ⇒ û : (s = cs ⇒ c′′ : s/c). This compiler has
the remarkable property that it compiles the original cs

to itself, c′′, and compiles the target program us to a
trojan û. Since cs and us are original, the new trojan
is undetectable. The compiler c′′ is bootstrapped as
follows:

1. c′′
s is constructed. This is easy, given cs and the

definition of c′′ (above).
2. c′′

s is compiled using the original compiler: c′′
s /c 7→

c′′.
3. The original compiler’s object code c is discarded

and replaced by ĉ = c′′.
4. The source program c′′

s is discarded.

Then the following ensues:

s/ĉ =





ĉ, s = cs

û, s = us

s/c, otherwise

The source program us can now be compiled by us/ĉ
giving û as required.

We now have a trojan ĉ and a trojan û and no source
code other than what is expected, us and cs which have
been restored to their originals. All programs compile
correctly, except cs and us themselves, but these two
cases compile consistently, since the compiler has been
trojanised to ĉ = c′′. The only way to show that û
is not in fact u is to find some r: [[û]]r 6= [[u]]r — but
there is no u available to do this, and even if there was,
finding r would be exponentially hard. Login programs
such as we have supposed u to be often have features in
them specifically to make such operations difficult, since
trying to find representations with particular properties
has security implications. This trojan will be as difficult

to detect as desired by its author.9

One can construct a system resistant to the Thomp-
son attack by requiring s/c ↔ s to be bijective; indeed,
this is readily achieved in a system where representa-
tions are directly interpreted and/or there is no direct
access to compiled forms. Alternatively, denial of ac-
cess to the source of the compiler is sufficient, with the
(awkward) proviso that the source is still required to
determine whether the compiler is ever trojaned.

To show that Thompson’s construction is sufficient
to implement a trojan method, we need to consider his
criteria for distinguishability. Having defined this, we
must prove that the subverted representation is indistin-
guishable from the original representation. Thompson’s
trojan can then be a singleton trojan method provided
it guarantees to manifest itself. As Thompson has not
specified that it will manifest itself, we come to some-
thing of an impasse solved only in that trojans that do
not manifest themselves are not a problem!

Thompson distinguishes programs by saying that two
programs are indistinguishable if their source code is
identical. This sounds constructive, but it is not quite
in our framework. So we define two representations to
be identical provided the source code of the program
under the name of u is identical for both representa-
tions. This is poly log computable as the source for u
is constant for all representations (given sensible defini-
tions of representations). Unfortunately, this idea fails
immediately — the trojan attacks the compiler and you
can have identical source code on both representations
but different object code. So two representations can
be indistinguishable but have different object code for
u and therefore be a trojan.

So we add another criterion: the source code for the
code for u is the same on both representations, and
the source code for the compiler is the same for both
representations. (This is still poly log.) But this scheme
fails with a trojan that attacks the compiler in a more
sophisticated way.

In our terminology, Thompson gave two definitions
of ∼ and both admitted trojans. The conclusion is
not that Thompson trojans are not detectable but that
reasonable-sounding definitions of distinguishability do
not prevent there being trojans.

The theorem to prove is, given any poly log distin-
guishing relation, there is a trojan method for that re-
lation. (There has to be some condition like poly log
because comparing memory representations without re-
striction will clearly always show up trojans.) We will
take up this challenge in a subsequent paper.

9Anyone who has bootstrapped compilers will know that dis-
carding independent compilers (the initial p and the subsequent
version history of compilers) is foolish: once bugs are introduced
— not just deliberate trojans — they can remain even though
subsequent compilations remove all signs of them in source code.

Computer Journal, 41(7), pp444–458, 1999.



A framework for trojans and viruses 11

4.2. Detectability of viruses

Is virus detection decidable? If we were to define a
relation p virus p̂ just when p̂ is virally related to p for
some name l in some viral relation V , we cannot decide
the relation because it is at least as hard as function
equivalence.

Is virus activity detection decidable? This depends
on the computational model assumed, but we can show
the infection process can be inhibited under reasonable
assumptions. If the environment is fixed, detection is
trivial, there being no viruses to detect.

4.2.1. Cohen’s proof of virus undetectability
The Cohen proof [9] of the non-computability of detec-
tion of viruses is a direct variant of the Halting Prob-
lem of Turing Machines, and is therefore subject to the
limitations of Turing computability frameworks, as out-
lined above. The Cohen proof relates to the detection
of viruses (i.e., assumed as defined objects), not their
methods or behaviour, and it implicitly assumes a fixed
Ω. Here we show that this standard proof (widely re-
peated, for instance in [8, 29] and elsewhere) about the
detectability of virus infection is inadequate for a more
interesting reason. (In criticising a proof the intention is
to determine exactly what was proved, and whether ad-
vancements may be made by tightening the proof itself,
its assumptions, or the theory in which it is expressed.)

We quote Cohen’s central argument, then discuss a
shortcoming:

“In order to determine that a given program P is
a virus, it must be determined that P infects
other programs. This is undecidable since P
could invoke any proposed decision procedure
D and infect other programs if and only if D
determines that P is not a virus. We conclude
that a program that precisely discerns a virus
from any other program by examining its ap-
pearance is infeasible. In the following [pro-
gram CV, shown below], we use the hypotheti-
cal decision procedure D which returns “true”
iff its argument is a virus, to exemplify the
undecidability of virus detection.

contradictory-virus :=
{ ...
main-program :=
{ if ¬ D(contradictory-virus) then

{ infect-executable;
if trigger-pulled then

do-damage;
}
go next;

}
}

[. . . ] we have assured that, if the decision pro-
cedure D determines CV to be a virus, CV will

not infect other programs and thus will not act
like a virus. If D determines that CV is not a
virus, CV will infect other programs and thus
be a virus. Therefore, the hypothetical deci-
sion procedure D is self-contradictory, and pre-
cise determination of a virus by its appearance
is undecidable.”

We infer that D does not necessarily evaluate its ar-
gument when it attempts to determine whether it is
a virus: clearly, to do so would run the risk of acti-
vating the virus itself. Cohen implicitly assumes this,
since a conventional eager evaluation of his code would
abort:10 evaluating contradictory-virus would not
terminate, and indeed would never progress beyond the
conditional expression! Instead, D must examine its ar-
gument in some safe way which is not specified — the
proof is assuming a syntactical representation of a virus.
Cohen would like to prove that D cannot work however
it is specified.

However, the code infect-executable or
do-damage is not actually used in the proof, and
therefore have only rhetorical value in making the
program fragment look like a virus. Since, without af-
fecting the proof scheme, any program code (say, x:=0)
can be substituted (with the corresponding trivial
changes to the specification of D) the putative proof is
seen to be about the undecidability of program equality
— not, more specifically, about virus detection.

We have here, then, an informal proof of a standard
result, plus the unjustified assumption that viruses are
modelled in the formalism of that proof, whereas here
they have only been named. We agree that to prove
that there is no decision procedure, one only needs
to exhibit a counter example, but we do not agree
that contradictory-virus is in fact an actual exam-
ple of a virus. What has happened is that the names
infect-executable and do-damage appeal implicitly
to a virus method that may — or may not — be bound
to these names in the computer’s representation. The
viral and trojan methods V, T such that

〈·, ·, infect-executable〉 ⊆ V

〈·, ·,do-damage〉 ⊆ T

are not specified.

4.2.2. Restricted environments
Viruses require to be able to re-bind identifiers in the
environment in order to propagate and cause damage.
The obvious solution to this problem is to construct a
system which never re-binds names. Though this might
seem like a radical proposal it is common in many prac-
tical systems.

10In a programming language like Pascal, the parameters
of a function call are evaluated before the function can be
called. In Cohen’s example, this would require invoking
contradictory-virus.

Computer Journal, 41(7), pp444–458, 1999.



12 H. W. Thimbleby, S. O. Anderson and P. Cairns

It is worth making a small technical point here. In
most operating systems, a file is bound not to its data
(which is what we are modelling), but to where data
may be located. In this case, a binding need not change
even though the data is changed — for example, text
editing a file still leaves it the same file, but with differ-
ent content. We are deliberately not modelling where
data is held, and therefore restricting an environment
(in our model) to be non-rebinding is an effective restric-
tion on changing the contents of a particularly-named
file.

Non-rebinding would require that if r
l−→ r′, where

obviously l ∈ names r, then E(r) ⊆ E(r′). From this
restriction it is immediate that viruses can only infect
‘new’ name bindings introduced by their execution.

Many task-specific systems such as calculators, ded-
icated word processors, and personal organisers have
fixed environments. Even for general purpose comput-
ers, many users might be happy to lock the environ-
ment so that no names can be rebound; this solution
is implemented in a rather crude way in a number of
proprietary hardware devices that write protect all of,
or parts of discs, though the idea can be generalised
[41]. As our framework indicates, though disc locking
stops subsequent virus infection, it does nothing to help
detect existing infections.

On many computers, the address space of a com-
puter acts as an environment: it maps numbers (very
easily generated names!) into representations. Hard-
ware memory protection schemes are practical ways of
restricting the address environment so that programs
cannot generate names that are mapped into represen-
tations in other address spaces. This is quite conven-
tional, but it is a useful example of a restricted envi-
ronment whose use does not restrict higher level oper-
ations — indeed, the reliability and additional confi-
dence about the behaviour of programs that it confers
is highly desirable.

If a system includes a version number in the file
names, then no name is ever re-bound, therefore it is
impossible for a virus to ‘infect’ a system unobserved.
The user should be able to tidy up the environment
from time to time, but this could be a restricted facility
requiring direct interaction with the user. The stan-
dard advice to users to make backups is no more than a
manual (hence unreliable!) procedure to maintain such
a non-rebinding environment.

Such a naming proposal seems to go a long way to
protecting against viral damage provided the file system
functions11 are effectively virus-proofed. But this ne-
glects a major component of our framework, namely ob-
servation (formalised by the ∼ notion that captures the
idea that two representations cannot be distinguished
by an observer). In many file systems using version
numbers, the human interface to the unique names in
the file system is constructed to make differences in

11More precisely, . . . functions on R.

version number unobservable, for example typically the
most recent version of a file will be used by default. In
order for the naming scheme to be effective the reverse
must be the case — the user must see name changes
when they are potentially damaging. This clearly re-
quires major changes in the way user interfaces are con-
structed.

Turing Complete operations on environments (e.g.,
being able to compute names in an infinite domain) en-
sure that detection of infection is again undecidable.
However, remaining within computability, we can ar-
range the environment so that certain computations
are infeasible without passwords: for example, by using
trapdoor functions. The relevance of trapdoors is that
(under the appropriate security conditions) the observer
and the virus stand on opposite sides of the trapdoor.

Suggested by the framework is the creation and use of
names within a system: one can restrict the free use of
names usually allowed in current systems. The names
in the domain of the environment mapping can be en-
crypted, but accessed at the observer level via their un-
encrypted form, thereby making it arbitrarily harder for
the virus to find bindings which could be changed unob-
served. For example, a programmer writing a program
to access a file server demands a key from the envi-
ronment by supplying a name and password. This key
accesses the binding of that name. Such a scheme would
permit programs to compute names (in the encrypted
domain of keys), but the probability of computing an
unauthorised, but valid, name in the domain of the en-
vironment can be limited.

A variety of possible naming schemes might help: in-
deed it is possible to have an unbounded number of
schemes, dynamically created. Various kinds of name
servers which impose a management discipline on the
creation and use of names could contain the spread of
viruses to within any particular set of naming schemes.
An obvious application of this is to ensure security when
a system changes owner (e.g., when it is first or sub-
sequently sold). A special case is when the naming
schemes each contain precisely one binding.

It is often suggested that write-protected executa-
bles are immune from infection [33] (who claim that
they are immune but impractical). This forgets the en-
vironment. If an executable program is unmodifiable
that does not imply its access to the environment is
unmodifiable: for example, a fixed program may com-
pute names as arguments to the environment. A virus
could therefore change the behaviour of a program by
affecting this computation (e.g., by initialising it with
different data). A realistic case of this situation is that
of a program that runs some background server or other
process: it computes a name to access the environment
(e.g., in the simplest case, by reading a data file of server
names) to load the background program, but a virus
might simply cause it to load the wrong program.

The what-might-be-called ‘the write-protected exe-
cutable fallacy,’ that one is supposedly safe when exe-

Computer Journal, 41(7), pp444–458, 1999.



A framework for trojans and viruses 13

cutable programs are write protected, confuses the secu-
rity of the program for the security of the environment.

4.2.3. Viral resistance
In the practical use of a computer, the user only ob-
serves some of the outputs of a computation and only
provides some of its inputs. The problem of viruses is
that they are primarily concerned with inputs and out-
puts that the user normally ignores at the time of the
computation. For example, the program code itself is
not normally considered one of its own inputs, but this
is precisely where most viruses reside, and how they di-
rectly affect the input of the program; a virus’s output
may alter files containing other programs, of which the
user is unaware of.

A virally resistant system can be constructed by in-
troducing observations O, which are to be communi-
cated to the user. We extend E:R → (L 7→ R×O) and
[[·]]: R → (R → R) × (R → O). Names are now bound
to pairs 〈p, o〉 and the meaning of the pair is a pair of
functions, one of which computes the result of doing the
command and the other ‘observes’ the result to see it
passes some checks. Observes, in the sense we are using
it, means “prepared in some way that can be tested by
a user.”

In running a program 〈p, o〉 the system runs p as be-
fore to obtain the results and the new environment and
runs o to observe the result, presenting the observation
to the user. Programs have lots of inputs and results
over the representation space, but a user’s tests don’t
explore the domain uniformly, being only interested in
conventional inputs — likewise, they only examine con-
ventional outputs, say on the screen, not outputs that
change files. The component o makes it clear that all
the output must be observed.

By definition, a virus changes a binding of some name
from 〈p, o〉 in the environment to some new 〈p̂, ô〉. In
general it is clearly not possible to compute ô from 〈p, o〉
to ensure that in an arbitrary environment ô computes
the same value after a run of p̂ as o does after a run of
p. The value of o must be interpreted by the observer;
it is insufficient for o to yield a specific token (say true)
for any authenticated binding, since any predetermined
token can easily be computed by ô. Thus given some
notion of an external observer (e.g., the user) eventu-
ally any virus can be detected. Astute choices of o and
observer make the likelihood of prompt detection much
higher — the observer can be hardware (the range of o
can be digital signatures).

A more intriguing idea is for the result of o to be a
pattern (e.g., a video bitmap) and to rely on the hu-
man skill of recognising patterns and changes in pat-
terns [34] — maybe a virus would show up as, say, an
irritating line across the screen. This is an attempt at
distribution free testing [30], aided by human sense per-
ception. Distribution free testing is a more mechanical
process that systematically samples the input/outputs

so that o gives a ‘fair’ (distribution free) sample of the
program’s complete effect, though doing this depends
on some properties of the program, but does not de-
pend on knowing what the correct output should be.
(Good cryptographic detection techniques are to some
extent attempts to find suitable distribution free sam-
pling functions.) Finally, so that it cannot be compro-
mised, o may be implemented by hardware.

Implementations of such schemes must be undertaken
very carefully, and some obvious implementations are
suspect, simply because an implementation that (say)
provides programs as pairs (E → R × E) × (E → O)
may accidentally provide operations that compromise
the system. Thus, an unadorned Turing Machine can
readily implement this scheme, but does not ensure that
access functions for the pairs 〈p̂, ô〉 are excluded: which,
of course, would defeat the whole object of the distinc-
tion — it would be possible to construct an ô that sim-
ply replayed the output of o. See §4.3 for further dis-
cussion.

The invention of asymmetric (public key) cryptogra-
phy challenged a central assumption, that security could
be achieved through secrecy and obscurity. (Equally,
the secrecy could conceal incompetence.) Now, new
cryptographic algorithms have been widely published
and widely scrutinised [50], and this scrutiny increases
confidence in their effectiveness. It is interesting, then,
to note that many discussions of viruses (e.g., [6]) do
not wish to reveal anti-virus methods. Perhaps we need
a similar breakthrough in viral resistance?

4.3. Virtual machines

Many programs (such as spreadsheets, language inter-
preters like TEX and commercial word processors)12 in-
troduce virtual machine environments. These virtual
machines may be ‘vectors’ for infecting with viruses
even though they run on otherwise secure operating
systems. Virtual machine environments overcome at-
tempts at protecting the implementation machine.

Since some programs written in a system L (BASIC,
Java, Microsoft Word macros . . . ) need to (say) delete
files, or have other permissions, then L needs those ca-
pabilities. An L system runs on a system which may
itself be protected from virus activity, but the L sys-
tem creates an environment for running L programs.
This not only enables rebindings but changes the ob-
served behaviour of the computer — of course, it must,
since one wants to run the system L! Thus L creates
a virtual machine: a L-machine simulated by the PC-
machine. Clearly, our framework applies at each level
of virtual machine and this has significant repercussions
for the sort of virtual machine one would like to sup-
port in a secure system. In particular, the user interface

12Some authors call such viruses macroviruses; however, the
viral methods typical of macroviruses (see [6]) are not restricted
to macro languages per se. We suggest this terminology is mis-
leading.

Computer Journal, 41(7), pp444–458, 1999.



14 H. W. Thimbleby, S. O. Anderson and P. Cairns

must make an observable distinction between each vir-
tual machine (otherwise they could alias each other).
Even in Java, which is designed with networked pro-
gramming in mind, this distinction is made by libraries,
not intrinsically.

The severity of the problem introduced by virtual ma-
chines is shown by Thompson’s demonstration that ex-
plicit code (including code containing viral methods) in
a virtual machine can be made to disappear from one
level of the virtual machine by embedding it in an ap-
propriate form in the implementation machine (§4.1.1).
If the virtual machine supported is Turing complete
and supports actions such as modifying the environ-
ment map (e.g., by permitting writing to files), then
it is not possible to detect viral methods. All ‘useful’
virtual machines meet these two conditions.

4.4. A note on object-orientation

The increasing popularity of object-oriented program-
ming and icon-based user interfaces (where there are
very many observable objects in the environment) is
based on claims on their efficiency and convenience of
programming. Although the run time systems of object-
oriented systems (Java being an example) may take
steps to be secure, object-orientation itself is at odds
with secure computation. To the extent that object-
orientation has an impact on programmer convenience,
it is clearly dependent on large numbers of computation-
ally simple bindings. Inheritance is a problem because
it provides a recursive environment. Indeed, Java has
recently suffered from the Strange Brew virus, which
infects the Java environment — and Java, being plat-
form independent, ensures that the virus can run on
almost any type of computer 19.

In systems that have inheritance, operations have de-
fault behaviour. Bontcher [6] gives several concrete ex-
amples based on a macro language. We give an ab-
stract characterisation of one of his examples: suppose
there is an easily recognised virus consisting of a set of
macros, S. (Typically, one of the components will be
activated by user activity, such as opening a file, and
on running it will install another component as its pay-
load.) A virus writer modifies S to make a variant.
Now anti-virus software may recognise only the origi-
nal components of this new virus, and eliminate them;
however what remains may be an intact virus because
the ‘missing’ components inherit default implementa-
tions. Ironically, this third, new, virus was created by
the anti-virus procedure!

A thorough analysis of these issues is beyond the
scope of this paper, except to note that any correct
formal computation expressible in an object-oriented
paradigm is expressible in another, possibly more se-
cure, paradigm — but the real issue here is actually the
trade-off between observable properties, the relation-
ships of names in the environment and other aspects of
usability and security.

5. KOCH’S POSTULATES

Robert Koch, the distinguished bacteriologist, con-
tributed four criteria, known as Koch’s Postulates, for
identifying the causative agent of a particular biological
disease.

1. The pathogen must be present in all cases of the
disease;

2. The pathogen can be isolated from the host and
grown in pure culture;

3. The pathogen from the culture must cause the dis-
ease when inoculated into a healthy, susceptible
host;

4. The pathogen must be isolated from the new host
and shown to be the same as the original.

To make sense of Koch’s Postulates in our framework
we may equate pathogen with viral method. It follows
that a biological-type ‘isolation’ (Postulate 2) is non-
computable. To the extent, then, that Koch’s Postu-
lates capture biological criteria, biological metaphors
cannot be applied with any felicity to computer virus
phenomena. Possibly Koch would have had a different
view if biological pathogens were better able to mutate
rapidly and maintain their (viral) method.13 Because
biological pathogens do not do this, Koch’s Postulates
can be usefully expressed with respect to representa-
tions rather than interpretations. A more appropriate
biological metaphor for computer viruses is Dawkins’s
meme [13], for this corresponds to a software configu-
ration running in the virtual machine provided by the
hardware of a brain. (Dawkins makes explicit the con-
nection with computer viruses.)

Given current interest in prions and transgenic in-
fections (e.g., via xenotransplants) a formal framework
for biological applications would be desirable. The way
in which semantics in metainterpreters disappears (ex-
ploited in Thompson’s trojan) obviously has profound
implications, and may help understand prions. In any
case, such results would certainly apply to replication
using DNA. Unfortunately our framework makes cer-
tain assumptions that apply specifically to what might
be called typical electronic digital computers: whilst
certain sorts of computation can be performed to order
(e.g., to detect infection), one is not prepared to devote
excessive resources to this. In a biological context, the
resources available and how they can be recruited are
very different. Immune systems are massively parallel
and autonomous, yet they are very slow to produce new
antigens (vaccination is a rehearsal for the immune sys-
tem). Biological replication, whilst comparatively slow,
occurs in parallel at a molecular or species level but
serially at an individual level. Computer viruses typi-
cally do not mutate using genetic algorithms, but rather
use more specialised techniques (e.g., encryption) that
guarantee viable replication. Thus there are significant

13Biological viruses mutate rapidly (in biological terms) but do
not evolve rapidly [22].

Computer Journal, 41(7), pp444–458, 1999.



A framework for trojans and viruses 15

differences, which are beyond the scope of this paper to
explore satisfactorily.

Notwithstanding the fundamental biological differ-
ences, there is of course promise in biologically-inspired
techniques for detecting and fighting viruses. See [17]
for an insightful general discussion, and [25] which de-
scribes a prototype ‘digital immune system.’ (Coinci-
dentally, the preceding article in the same journal gives
examples of biological viruses that successfully suppress
their hosts’ immune systems [4]!)

6. CONCLUSIONS

A new framework has been introduced that appears to
be better than previous attempts at addressing trojan
and viral issues. Its main merit is that it is productive
in raising and helping clarify the sorts of issues that
need addressing. Although it abstracts away from the
richness of the phenomena, it accounts for most of the
concrete features: it makes clear that viruses are a very
complex notion — involving the naming of objects, their
behaviour and the observation of that behaviour.

Our framework for computer virus infection show
that Koch’s postulates are inadequate for the phenom-
ena of computer viruses; in other words, the medi-
cal/biological metaphor for computer virus behaviour
is seriously misleading.

A virus is a program that, in addition to having a
trojan activity, infects other programs. We have shown
that a Turing Machine equivalent model is insufficient
to capture important details of virus behaviour. As
contributions towards a theory of computer viruses we
pointed out that formalism as such has no notion of ex-
pected behaviour, against which undesirable behaviour
can be compared. Infection is with respect to an en-
vironment and must be identified by an observer using
finitary tests. It follows that suitable constraints on en-
vironment operations can inhibit both trojan and virus
infection.

We have given a proof that trojan code in general
cannot be detected. Classes of trojan cannot be de-
tected either, and this result puts limits on what can
be expected of both pattern-matching type detectors
and detectors that rely on intercepting certain sorts of
behaviour. We have suggested various forms of obser-
vation as appropriate to control viruses.

We have shown that virus infection can be detected
and limited. It follows that the spreading of viral meth-
ods can be restricted, but once infected by a virus there
are limitations on what can be done to detect it, ei-
ther by its unwanted behaviour, its code signature or
any other characteristic. Whether users of computers
would wish to convert to a new architecture more se-
cure against infection is a question we do not address
here; necessarily such computers would be incompati-
ble with existing computers [40] — merely being discless
network computers will not be sufficient.

Finally, we admit we are not yet satisfied. Although

we have introduced and motivated important distinc-
tions, the framework itself is unwieldy and the distinc-
tions are hard to maintain in applied reasoning. It is
hard to derive interesting theorems. Nevertheless we
have successfully shown that viruses are a very complex
phenomenon, despite frequently exhibiting such utterly
banal behaviour that we would rather dispel them from
our minds — if not just from our computers. Just as
the current variety of viruses is not the last word in
deviousness, our framework is not the last word in the-
oretical work with computer viruses. We hope our last-
ing contribution will be a greater awareness amongst
system designers of the possibilities unnecessarily lib-
eral programming environments provide hackers. We
hope, too, to have challenged other theorists to pursue
some of the interesting and important formal questions
begged by taking viruses seriously.

ACKNOWLEDGEMENTS

Prof. Ian H. Witten (Waikato University, New Zealand)
made very helpful suggestions for which the authors are
grateful. The referees made useful comments that im-
proved the presentation of the paper enormously.

REFERENCES

[1] Adleman, L. M. (1988) “An Abstract Theory Of
Computer Viruses,” in Advances in Cryptology—
CRYPTO’88, Goldwasser, S., ed., Lecture Notes
in Computer Science, 403, Springer-Verlag: Berlin,
pp354–374.

[2] Anderson, J. P. (1972) Computer Security Technology
Planning Study, ESD-TR-73-51, I & II, USAF Elec-
tronics Systems Division: Bedford, Mass.

[3] Bates, J. (November 1990) “WHALE . . . A Dinosaur
Heading For Extinction,” Virus Bulletin, pp17–19. See
[47].

[4] Beckage, N. E. (1997) “The Parasitic Wasp’s Secret
Weapon,” Scientific American, 277(5), pp82–87.

[5] Bissett, A. & Shipton, G. (1998) “Envy And Destruc-
tiveness: Understanding the Impulses Behind Com-
puter Viruses,” Proceedings Fourth International Con-
ference on Ethical Issues in Information Technology,
Ethicomp’98, pp97–108.

[6] Bontcher, V. (1998) “Macro Virus Identification Prob-
lems,” Computers & Security, 17(1), 69–89.

[7] Brunner, J. (1993) “Sometime In The Recent Fu-
ture . . . ,” New Scientist, 138(1868), pp28–31.

[8] Burger, R. (1989) Computer Viruses, A High-tech Dis-
ease, 3rd. ed., Abacus: Data Becker, Düsseldorf.

[9] Cohen, F. (1987) “Computer Viruses,” Computers &
Security, 6(1), pp22–35.

[10] Cohen, F. (1989) “Computational Aspects Of Com-
puter Viruses,” Computers & Security, 8(4), pp325–
344.

[11] Cohen, F. (1994) A Short Course On Computer Vi-
ruses, 2nd. ed., John Wiley: New York.

[12] Coulouris, G. F. & Dollimore, J. (1988) Distributed Sys-
tems, Addison-Wesley: Reading.

Computer Journal, 41(7), pp444–458, 1999.



16 H. W. Thimbleby, S. O. Anderson and P. Cairns

[13] Dawkins, R., The Selfish Gene, 2nd. ed., Oxford Uni-
versity Press: Oxford, 1989.

[14] Denning, D. E. R. (1983) Cryptography And Data Se-
curity, Addison-Wesley: Reading, Mass.

[15] Ferbrache, D. (1992) A Pathology Of Computer Vi-
ruses, Springer-Verlag: London.

[16] Fokkinga, M. (1996) “Expressions That Talk About
Themselves,” Computer Journal, 39(5), pp408–412.

[17] Forrest, S., Hofmeyr, S. A. & Somayaji, A. (1997)
“Computer Immunology,” Communications of the
ACM, 40(10), pp88-96.

[18] Goodenough, O. R. & Dawkins, R. (1994) “The “St
Jude” Mind Virus,” Nature, 371(6492), pp23-24.

[19] Hancock, B. (1998) “Security Views (Java Gets a Foul
Taste — First Reputed Java Virus),” Computers & Se-
curity, 17(6), 462–474.

[20] Henderson, P. (1980) Functional Programming,
Prentice-Hall.

[21] Hoffman, L. J. (1990) Rogue Programs: Viruses, Worms
And Trojan Horses, Van Nostrand Reinhold: New York,
pxi.

[22] Huang, A. S. & Coffin, J. M. (1992) “Virology: How
Does Variation Count?” Nature, 359(6391), pp107–108.

[23] Jones, S. K. & White, C. E. Jr. (1990) “The IPM Model
of Computer Virus Management,” Computers & Secu-
rity, 9(5), pp411–418.

[24] Kanada, Y. (1997) “Web Pages That Reproduce Them-
selves By Javascript,” ACM SIGPLAN Notices, 32(11),
49–56.

[25] Kephart, J. O., Sorkin, G. B., Chess, D. M. & White,
S. R. (1997) “Fighting Computer Viruses,” Scientific
American, 277(5), pp88–93.

[26] Ladkin, P. B. & Thimbleby, H. W. (1994) “Comments
on a Paper by Voas, Payne and Cohen, ‘A Model For
Detecting The Existence of Software Corruption in Real
Time’,” Computers & Security, 13(6), pp527–531.

[27] Lamport, L. (1994) “How To Write A Long Formula,”
Formal Aspects of Computing, 6, pp580–584.

[28] Langton, C. (1988) “Artificial Life,” Artificial Life,
Santa Fe Inst. Studies in the Sciences of Complex-
ity, Langton, C. (ed.), Addison-Wesley: Reading, Mas-
sachusetts, pp1–47.

[29] Leiss, E. L. (1990) Software Under Seige, Elsevier Sci-
ence Publishers: Oxford.

[30] Lipton, R. J. (1991) “New Directions In Testing,” Pro-
ceedings DIMACS Workshop in Distributed Computing
and Cryptography, DIMACS Series in Discrete Math-
ematics and Theoretical Computer Science, 2, Feigen-
baum, J. & Merritt, M., eds., pp191–202.

[31] Meinel, C. P. (1998) “How Hackers Break In. . . And
How They are Caught,” Scientific American, 279(4),
pp70–77.

[32] Nachenberg, C. (1997) “Computer Virus–Antivirus Co-
evolution,” Communications of the ACM, 40(1), pp46–
51.

[33] Pozzo, M. M. & Gray, T. E. (1987) “An Approach To
Containing Computer Viruses,” Computers & Security,
6(4), pp321–331.

[34] Race, J. (1990) “Using Computer Graphics To Find In-
teresting Properties In Data,” Computer Bulletin, Se-
ries IV, 2(7), pp15–16.

[35] Rhodes, R. (1994) “Chain Mail,” Nature, 372(6503),
p230.

[36] Spafford, E. H. (1994) “Computer Viruses As Artificial
Life,” Artificial Life, 1(3), pp249–265.

[37] Stevens, K. (1994) “Mind Control,” Nature, 372(6508),
p734.

[38] Stevens, M. (1998) “Pest Control,” New Scientist,
159(2144), p64.

[39] Thimbleby, H. W. (1987) “Optimising Self-Replicating
Programs,” Computer Journal, 30(5), pp475–476.

[40] Thimbleby, H. W. (1991) “Can Viruses Ever Be Use-
ful?” Computers & Security, 10(2), pp111–114.

[41] Thimbleby, H. W. (1991) “An Organizational Solution
To Piracy And Viruses,” Journal of Systems Software,
25(2), pp207–215.

[42] Thimbleby, H. W. & Anderson, S. O. (1990) “Virus
Theory,” Institution of Electrical Engineers Collo-
quium, in Viruses and Their Impact on Future Comput-
ing Systems, Institution of Electrical Engineers Publi-
cation No. 1990/132, pp4/1–4/5.

[43] Thimbleby, H. W., Witten, I. H. & Pullinger, D. J.
(1995) “Concepts Of Cooperation In Artficial Life,”
IEEE Transactions on Systems, Man & Cybernetics,
25(7), pp1166–1171.

[44] Thompson, K. (1987) “Reflections On Trusting Trust,”
in ACM Turing Award Lectures, Ashenhurst, R. L.
& Graham, S., eds., Addison-Wesley: Reading, Mass,
pp171–177.

[45] Turing, A. M. (1939) “Systems Of Logic Based On Or-
dinals,” Proceedings London Mathematical Society, Se-
ries 2, 45, pp161–228.

[46] Virgil (19bc) The Aeneid, Book II.
[47] Virus Bulletin, ISSN 0956–9979.

URL: http://www.virusbtn.com/
[48] Wegner, P. (1997) “Why Interaction Is More Power-

ful Than Algorithms,” Communications of the ACM,
40(5), pp80–91.

[49] Witten, I. H., Thimbleby, H. W., Coulouris, G. F. &
Greenberg, S. (1991) “Liveware: A New Approach To
Sharing Data In Social Networks,” International Jour-
nal of Man-Machine Studies, 34(3), pp337–348.

[50] Zimmermann, P. (1995) PGP: Source Code And Inter-
nals, MIT Press.

Computer Journal, 41(7), pp444–458, 1999.


