
Securing e-business
applications using
smart cards

by E.-M. Hamann
H. Henn
T. Schäck
F. Seliger

As the Internet is used increasingly as a platform
for business transactions, security becomes a
primary issue for Internet applications. Some
applications are too sensitive for software-only
security mechanisms. Higher levels of protection
can be achieved with smart-card-based
authentication schemes and transaction
protocols. In this paper, we provide examples of
typical banking applications implemented with
smart cards using symmetrical (DES) and
asymmetrical (RSA) cryptography. We present a
pure JavaTM architecture for such applications,
which is intended for use on standard Web
application servers and client devices enabled for
Web browsing and the Java language. It employs
applets on the client side to access smart cards
via the OpenCard Framework. The applets
communicate with authentication servlets or
application servlets on the server side and act as
a mediator between the smart card and the
application logic on the server.

Initially, the Internet was used for academic re-
search and military defense applications. Several

years later, the first commercial use was to dissem-
inate information such as company profiles, adver-
tising, product catalogs, and specifications. All bus-
iness transactions were still performed outside the
Internet by means of traditional media—voice, fax,
and paper forms. After several more years, interac-
tion with businesses through the Internet became
possible. Companies started to allow their custom-
ers to order goods or request services via the Inter-
net. Banks introduced home banking and on-line
brokerage applications using basic security functions
for the Internet such as server authentication and
the Secure Sockets Layer (SSL). For identification and
authentication, the user had to enter an identifica-

tion string and a password. However, this traditional
level of security is not sufficient for such sensitive
business transactions on the Internet as payments
and legally binding contracts.

The European Union and the United States have
passed legislation to establish the conditions for mak-
ing a digital signature the legally binding identifica-
tion and authentication mechanism for contracts on
the Internet.1–3 The legislation requires that the tech-
nology employed not allow secret keys to be copied
or used by nonauthorized parties. The consequence
of this requirement is the need for a secure secret-
key storage, if the digital signature is based on public
key cryptography.

Smart cards are an ideal means to provide the re-
quired level of security. In recent years, smart card
technology has quickly advanced and by now reached
a state where smart cards easily integrate into public
key infrastructures. Today’s smart cards provide
memory up to 64 KB to store keys, certificates, and
information, and they have cryptographic coproces-
sors that allow them to generate digital signatures
using the RSA (encryption algorithm named for its
creators: Rivest, Shamir, and Adleman) or DSA (Dig-
ital Signature Algorithm) algorithms with key lengths
up to 1024 bits or 19844 bits. The Global System for
Mobile Communications, derived from the Groupe
Spécial Mobile (GSM) standard, uses smart cards as

rCopyright 2001 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 40, NO 3, 2001 0018-8670/01/$5.00 © 2001 IBM HAMANN ET AL. 635

Subscriber Identification Modules (SIMs) for user and
service provider identification and authentication.
Smart cards are used as an ID (identification) card
for banking and credit card customers, company em-
ployees, or citizens. Standardized access methods
such as PC/SC (Personal Computer/Smart Card) for
Microsoft Windows** and OpenCard Framework
(OCF) for Java** facilitate integration of smart cards
in applications.

In this paper, we first present examples of smart-card-
secured applications. To explain the architecture for
such applications, we then introduce authentication
protocols involving smart cards as cryptographic to-
kens. Next, we briefly describe the major smart card
types that adhere to these protocols and present the
OpenCard Framework that enables Java-based ap-
plications to use smart cards. Finally, we present a
pure Java architecture for development of smart-
card-secured Web applications that use smart cards
for user authentication and to protect individual
transactions.

Examples of new secure Web applications

Many of the existing Web applications protect the
confidentiality of communication through encryption
using the well-established SSL, Transport Layer Se-
curity (TLS), or Wireless Transport Layer Security
(WTLS) protocols. This protection of confidentiality
is efficient and considered adequate.

For user authentication, the currently established
method employs a user identifier and password. A
password provides only limited security because it
can be stolen in many ways. An additional means of
authentication, for example, through biometry
(“what you are”) or through additional cryptographic
hardware (“what you possess”), provides additional
protection. A smart card used as a mobile personal
cryptographic token is optimally suited for this pur-
pose.

To secure an individual transaction, a password by
itself is not sufficient. Less common methods have
been applied in using passwords so far, for example,
one-time passwords (as provided by the SecurID**
token from RSA) or TANs (Transaction Authoriza-
tion Numbers), both of which have to be manually
fetched and entered by the user. To secure individ-
ual transactions and to achieve nonrepudiation, a
smart card is an attractive option.

In the following subsections, we present two exam-
ples of sensitive Web applications in which individ-

ual transactions are protected through digital signa-
tures generated on a smart card and in which the
users are authenticated using the same smart card.

Obviously, Trojan horse attacks are a threat in both
scenarios, especially when smart cards are used on
PCs, which allow uncontrolled installation of software
by users. However, the use of smart cards decreases
the likelihood of successful fraud significantly. A Tro-
jan horse might be able to obtain a PIN (personal
identification number) for a smart card, but it can
only use that PIN in the presence of the smart card.
Two common approaches to deal with the Trojan
horse threat are the use of trusted devices to display
and sign data and appropriate risk management.

Trusted devices used to display and sign data can
entirely eliminate the risk of successful Trojan horse
attacks. Such devices are usually tamper-evident,
have their own display and PIN pad, and do not al-
low software updates at all or at least not by unau-
thorized parties. To generate a signature, the trusted
device receives the transaction to be signed, e.g., from
a PC, and displays the relevant part of the data to
the user. It prompts the user to enter the PIN, passes
the PIN to the smart card, and lets the smart card
generate the signature. The trusted device ensures
that the PIN is never visible to the external world and
that the user signs what he or she sees.

To avoid the higher cost for trusted devices, the pro-
vider of the system can decide to manage a higher
risk instead. After identifying the threats and assess-
ing the likelihood of fraud, he or she can calculate
the amount of money at risk and reserve that amount
to cover the risk. Because use of smart cards typ-
ically decreases the likelihood of fraud significantly,
less risk has to be covered. Another option is to set
up contracts so that the users of the system have to
take the risk, that is, require users to control any soft-
ware installed on their clients and make them re-
sponsible for any fraud that may happen if they fail.

Our solution examples were developed together with
the Deutsche Bank AG, a member of the Identrus
LLC global e-commerce trust organization.5 The pub-
lic key infrastructure (PKI) solutions have been based
on the guidelines published by Identrus. This allows
digital certificates and digitally signed documents cre-
ated by these solutions to be exchanged with all Iden-
trus member financial institutions.

The db-markets eTrade Project. The db-markets
eTrade Project that an IBM Global Services team im-

HAMANN ET AL. IBM SYSTEMS JOURNAL, VOL 40, NO 3, 2001636

plemented in February 2000 is a typical example of
a Web application for highly secure transactions for
the money market. It provides the function of an elec-
tronic currency market and addresses the following
requirements.

All currency brokers worldwide must be enabled to
participate in a worldwide network using a standard
Internet browser on their personal Windows-based
systems. For accessing the central trading applica-
tion, the broker must be identified by a highly se-
cure authentication scheme. All transfer of data must
be encrypted using the secure variant of the Hyper-
Text Transfer Protocol (HTTP). In initiating an or-
der, for example, to trade 458000.00 euros for
412965.32 U.S. dollars, all details of the transaction
must be digitally signed by the broker together with
the correct date and time. The eTrade application
must send the data and the associated digital signa-
ture to the central bank trading site. At the central
trading site, the order has to be validated and an ac-
knowledgment sent to the broker within 10 seconds.
Thus, both trading partners can be sure that the trade
has been successfully processed. The client-side soft-
ware for the application must be installable from a
central server at the bank. The required hardware
must be easy to deploy.

The required highly secure authentication scheme
and digital signature call for the use of a crypto-
graphic token. The eTrade system uses the IBM Dig-
ital Signature for the Internet (DSI) solution6 with
the IBM MFC (Multi-Function Card) 4.22 smart card.
DSI provides smart-card-based generation and ver-
ification of digital signatures supporting the two pre-
dominant Internet browsers, Netscape Communi-
cator** and Microsoft Internet Explorer**. The
application logic executed on the client side is a Java
applet that uses the Java Native Interface to access
the smart card through PC/SC and Windows-specific
functions.

In order to initiate an eTrade transaction, a broker
inserts his or her personal smart card into a smart
card reader. Then the broker starts an Internet
browser of choice and selects the db-markets eTrade
Web page (www.db-markets.de). If a client certifi-
cate is found on the smart card, this information is
transmitted to the server and the log-in process be-
gins. The server uses this certificate for client authen-
tication as described later within the next section of
this paper. After successful client authentication, the
broker receives an input mask, or screen, for a cur-

rency trade, which he or she has to complete (see
Figure 1).

When the broker has filled in the data for a trade
order, the applet creates a message digest of the data
and digitally signs this message digest on the smart
card using the “signing private key.” The order data
and the signature are transferred via the encrypted
communication channel to the server,7 where the sig-
nature is verified. If it is correct, the business trans-
action is completed and an acknowledgment is sent
back to the broker. For each transaction, a record
together with the signature is filed in a database at
the server. The record, including the validation and
display of the digital signature, can be viewed by the
bank and the broker.

Both trading parties benefit from the following ad-
vantages when using an e-business solution with dig-
ital signatures and certificates: A currency trade is
settled within 10 seconds. All details are stored on
the server in signed format. Both sides accept the
basic terms of the trade and cannot repudiate them
at a later time.

Trojan horse attacks are possible although quite
complex to mount. Appropriate risk management
must consider this risk.

The e-Safe Project. The e-Safe Project that an IBM
Global Services team implemented for Deutsche
Bank as a prototype and showcase for the CeBIT 2000
Fair in Hannover, Germany, is another typical exam-
ple of a Web application that requires use of smart
cards. The purpose of the project was to prototype
a secure Internet payment system relying on a trusted
third party who is responsible for accepting payments
on behalf of shops on the Internet. Because the e-
Safe system handles all payment-related tasks, there
is no need to ever provide the payment information
to the shops. The address information of a consumer
can be provided to the shops on a need-to-know basis.

Figure 2 shows how the e-Safe system works. Before
a consumer can use the e-Safe payment system, he
or she has to be registered. Registration will usually
be done at the banks that also provide the e-Safe
smart cards to consumers.

Once a consumer has been registered and has ob-
tained a smart card, he or she can make e-Safe pay-
ments via the Internet. The consumer navigates to
a shop site and selects the goods that he or she wants
to buy. After filling the “shopping cart,” he or she

IBM SYSTEMS JOURNAL, VOL 40, NO 3, 2001 HAMANN ET AL. 637

presses a button to start the payment process and
is redirected to the payment page of the e-Safe Web
site. The payment page summarizes the goods to be
bought and shows a payment applet that asks the
consumer to enter a PIN to approve the payment.
The payment applet then sends the PIN to the smart
card to activate the capability of the smart card to
generate a digital signature. In the next step, the pay-
ment applet requests a challenge from the server,
provides it to the card, and lets the card generate a
digital signature over the payment transaction record
and the challenge. Finally, the payment applet sends
the payment record and the digital signature back
to the e-Safe server. The server verifies the signa-
ture, submits the payment transaction record for

clearing, and generates and stores a digital receipt.
In addition, it generates a payment confirmation for
the shop and redirects the consumer’s browser back
to the shop site on the Web. The shop receives the
payment confirmation and can initiate delivery of the
goods.

The consumer can review and check his or her pre-
vious payment transactions and digital receipts at any
time. To do this, the consumer logs in to the e-Safe
server using the smart card. The log-in page contains
an authentication applet that uses a protocol similar
to the one described in the next section. After success-
ful authentication, the consumer has access to pay-
ment transaction statements and digital receipts.

Figure 1 An eTrade client application window

HAMANN ET AL. IBM SYSTEMS JOURNAL, VOL 40, NO 3, 2001638

Trojan horse attacks against this system are theo-
retically possible, but since the result of a transac-
tion is always a transfer from a customer’s bank ac-
count to a merchant’s bank account, only registered
merchants would be able to obtain money through
fraudulent transactions. Because the concept is based
on money transfers that can be canceled, customers
could reject fraudulent transactions as soon as they
realize inconsistencies exist on their bank account
statements. In such a case of fraud, the merchant(s)
who obtained money deceitfully could easily be iden-
tified.

Optionally, trusted devices could be used to display
and sign transactions to technically prevent Trojan
horse attacks.

Smart-card-based security

As we have seen in the preceding examples of Web
applications with smart-card-based security, the
smart card provides two types of security services in
both cases, user authentication and digital signature
generation. Being essentially a tamper-resistant cryp-

tographic token, the smart card is specifically de-
signed to perform these services with a high level of
security.8,9

Authentication. Authentication of users means prov-
ing that users are who they say they are. There are
various ways to implement authentication using a
smart card; we describe two of them in more detail
here.

Authentication using smart cards without public key
cryptography. Although the use of public key cryp-
tography allows a more straightforward authentica-
tion scheme, smart cards without public key cryp-
tography capability are widely used. These simpler
cards have considerably lower prices because they
do not require a cryptographic coprocessor that is
needed for executing public key cryptographic op-
erations with reasonable speed.

The server gives a random challenge to the smart
card and requests a message authentication code
(MAC, a kind of signature) generated over the card
ID (identifier) and the challenge. Often, a password

Figure 2 The e-Safe system

ADDRESS INFORMATION
PAYMENT INFORMATION
 (CREDIT CARD OR BANK ACCOUNT)
TRANSACTION RECORDS
DIGITAL RECEIPTS

BROWSE PAY VIEW
SC

REGISTER

WEB SHOP

CONFIRM

e-Safe
SERVER

DEUTSCHE BANK

IBM SYSTEMS JOURNAL, VOL 40, NO 3, 2001 HAMANN ET AL. 639

provided by the user has to be given to the smart
card before the card generates the MAC. This pro-
cedure ensures that a thief or finder of a card can-
not use it without knowledge of the password.

The smart card uses a key to generate the MAC over
the card ID and the challenge obtained from the
server. It sends both the ID and the MAC back to the
server. The server uses the card ID to derive the card
key from a master key and uses that card key to ver-
ify the MAC sent from the card. Figure 3 depicts this
protocol.

Authentication using public key smart cards. With
smart cards capable of public key cryptography, au-
thentication can be performed as follows: The server
sends a random challenge to the smart card. The

smart card uses its private key to generate a digital
signature over the challenge. The digital signature
and the certificate associated with the private key of
the smart card are sent to the server. The server ver-
ifies the certificate and then uses the public key con-
tained in the certificate to verify the signature (see
Figure 4).

Digital signature using smart cards. As we have seen
from the two application examples, the eTrade trans-
actions in the money market and the e-Safe trans-
actions of the consumers are digitally signed to pro-
tect those transactions against modification and
repudiation. Any change to the transaction data
would cause the verification of the signature to fail.
The person who initiated the transaction cannot rea-
sonably repudiate his or her action, because only the
person holding the smart card and knowing the pass-
word to unlock the signature generation capability
of the card can have initiated the transaction.

A smart-card-based digital signature requires public
key cryptography to be installed on the smart card.
For any data to be digitally signed, a cryptographic
one-way function, for example, SHA-1 (Secure Hash
Algorithm-1), is used to create a hash that is signed by
the card using the private signature key stored in-
side the card. Only the cardholder can sign an order
or a statement, yet everyone can check the signature
using the corresponding public key.

To guarantee nonrepudiation10 and message integ-
rity, the private key must be stored securely so that
only the rightful user can access it. If any other per-
son could obtain a copy of the private key, he or she
could impersonate the rightful user’s signature.

The most secure place to store such a private key is
within a cryptographic hardware unit. A smart card
is the most convenient and most portable crypto-
graphic hardware unit. Public key smart cards are
able to perform the signing operation inside the card.
At the same time, it is not possible to obtain the pri-
vate signature key without a prohibitively high tech-
nical effort. Usually, smart-card-based systems are
designed so that obtaining a private signature key
would be so expensive that fraud does not pay. To
ensure that the private key never exists outside the
smart card, legislation in some countries requires that
it must be generated inside the smart card.

The emerging legislation for digital signatures has
significant regional differences. Several countries re-
quire that the device used for the signature must be

Figure 3 Authentication protocol for smart cards without
public key cryptography

SMART CARD SERVER

CHALLENGE

GENERATE
CHALLENGE
STORE CHALLENGE

DERIVE CARD KEY
FROM MASTER KEY,
GENERATE MAC M'
OVER CHALLENGE
AND ID, CHECK
WHETHER M = M'

PASSWORD

GENERATE MAC M
OVER CHALLENGE
AND CARD ID

CARD ID + MAC M

Figure 4 Authentication protocol for public key smart
 cards

SMART CARD SERVER

CHALLENGE

GENERATE
CHALLENGE
STORE
CHALLENGE

VERIFY
CERTIFICATE,
VERIFY
SIGNATURE S

PASSWORD

GENERATE
SIGNATURE S
OVER CHALLENGE

SIGNATURE S +
CERTIFICATE

HAMANN ET AL. IBM SYSTEMS JOURNAL, VOL 40, NO 3, 2001640

tamper-resistant or at least tamper-evident. This re-
quirement not only includes the storage of the pri-
vate key, but also the hardware and software that
displays the content to be signed and prompts the
cardholder to initiate the signing by entering the sig-
nature PIN.

Common smart card types. In recent years, many
brands and types of smart cards have come to mar-
ket. We can identify several major categories: sim-
ple file-system-oriented smart cards without public
key capability, advanced file-system smart cards with
public key capability, Java Cards**, Windows-pow-
ered smart cards, and MULTOS** (multi-application
operating system) cards.

Simple file-system smart card. File-system smart cards
provide a file system where reading and writing of
files can be protected by various access conditions.
These cards support only symmetric cryptographic
algorithms such as DES (Data Encryption Standard)
or Triple DES, for example.

To use such a simple file-system smart card for au-
thentication, a file containing the card ID can be cre-
ated on the card with special access conditions. These
access conditions must allow that file to be read in
a way that the result is returned together with a MAC
of the result combined with a random challenge
passed to the card. This allows running a protocol
as explained earlier and shown in Figure 3. Exam-
ples of simple file-system smart cards are the IBM MFC
4.1 and the German GeldKarte. Cards of this cat-
egory are available from every major smart card man-
ufacturer.

File-system card with public key cryptography. File-
system cards with public key cryptography capabil-
ity can store private keys and associated certificates.
Key pairs are usually created in the card, and the
private key never leaves the card. It is only used in-
ternally for generating digital signatures or decrypt-
ing session keys or small amounts of data.

To use file-system cards with public key capability
for authentication, a private key and an associated
certificate must be present in the card. This allows
use of a protocol as explained earlier and shown in
Figure 4. Examples of file-system smart cards with
public key capability are the IBM MFC 4.22, IBM MFC
4.3, Gemplus GPK4000**, Gemplus GPK8000**, and
others from Schlumberger, Giesecke & Devrient, etc.

Java Card. A Java Card allows the creation of cus-
tom commands on the card. The programs imple-

menting the custom commands are card applets.
They are implemented using a subset of the Java pro-
gramming language, relying on Java libraries tailored
for use in smart cards.

A Java Card can host several applets.11 Off-card ap-
plications can select an applet on the card by spec-
ifying the application ID of the applet. After that,
the off-card applications communicate directly with
the selected applet.

To use a Java Card for authentication, the card must
contain an applet that exposes an appropriate inter-
face to the external world, e.g., a command that can
be parameterized with a challenge, returning a dig-
ital signature over the challenge and a command to
obtain certificates stored in the card. This function-
ality allows running the kind of protocol explained
earlier and shown in Figure 4.

For an in-depth description of the Java Card archi-
tecture see Reference 12. An example of a Java Card
is the Gemplus GemXPresso** card. A contactless
Java Card has recently been developed in the IBM
Zurich Research Laboratory.

Windows for Smart Card. Smart cards with the op-
erating system “Windows for Smart Card”13 allow
the implementation of custom commands. It is pos-
sible to implement commands that use functions
from the internal cryptographic library of the card
to provide a function for generating digital signa-
tures, storing, and reading certificates. This function-
ality also allows for PKI authentication protocols as
explained earlier and shown in Figure 4. Windows
for Smart Card was developed by Microsoft; cards
implementing this operating system will be available
from Schlumberger and several other providers.

MULTOS smart card. A MULTOS smart card14 pro-
vides a file system interface and, in addition, an ex-
ecution environment for custom applications. Ap-
plication developers can create these custom
applications using a new language called MEL
(MULTOS Executable Language). Assembler lan-
guage can be used with MEL; for C and the Java lan-
guage, a translator to MEL is provided. The MULTOS
specification is licensed and controlled by the
MAOSCO Consortium.14

The OpenCard Framework. An important base for
the pure Java architecture that we present in this pa-
per is the OpenCard Framework (OCF), which has
become the standard interface for smart card appli-

IBM SYSTEMS JOURNAL, VOL 40, NO 3, 2001 HAMANN ET AL. 641

cations written in Java. IBM developed the first pro-
totype of the framework in 1997. Also in 1997, IBM,
Sun Microsystems, Netscape Communications Cor-
poration, and others founded the OpenCard Con-
sortium to establish the OCF as a de facto standard
for accessing smart cards from Java. In 2000, the con-
sortium released OCF Version 1.2 and OpenCard for
Embedded Devices 1.2. With version 1.2, OCF has
reached comprehensive functionality and stability.

OCF permits smart card applications to be imple-
mented in Java. It makes these applications inde-
pendent from the details of whatever smart card is
used and of the device that is used to access the smart
card (usually referred to as smart card terminal,
smart card reader, smart card acceptance device, or
interface device). To achieve this independence, OCF
encapsulates the details of diverse smart cards with
equivalent function in the abstraction CardService
and details of diverse access devices (physical card
terminals) in the abstraction CardTerminal (see Fig-
ure 5).

Every OCF CardTerminal provides the functions re-
quired when accessing a smart card, for example, re-
setting the card, obtaining the answer-to-reset, send-
ingdatapackets to thecard,andobtaining theresponse.
There are OpenCard card terminal drivers for vir-
tually all PC smart card readers on the market. For
several smart card readers, there is a pure-Java card

terminal implementation available. All readers that
can be used on Win32** platforms through PC/SC15

can be used from OCF via a generic PC/SC CardTer-
minal for OpenCard that provides a bridge to the
PC/SC card terminal interface.

To achieve independence from the specifications of
particular card manufacturers, CardServices are
used. Card service interfaces can be defined for par-
ticular sets of smart card functions. Two interfaces
that are defined in the OpenCard Framework itself
are the File Access Interface and the Signature In-
terface; the first allows files to be accessed on a smart
card, the latter allows digital signatures to be gen-
erated. Once a card service interface has been de-
fined, various card service implementations that im-
plement this interface can be developed for different
makes of cards.

The main purpose of the OpenCard Framework is
for use on the client side of Web applications, run-
ning in a Java applet. The most advantageous way
to deploy the OpenCard Framework in such an ap-
plication is to install the OpenCard Framework and
the required card terminal classes locally on the cli-
ent by adding the OpenCard JAR (Java archive) files
and executables to the paths of the browser. The card
services to be used are usually packaged with the ap-
plet JAR file that is deployed on the application
server.

The OpenCard Framework is available from the
Web site http://www.opencard.org. The Web site also
provides up-to-date information on OpenCard, doc-
umentation and user guides,16 and links to papers
and books about the OpenCard Framework. For
comprehensive information on developing smart
card applications in Java, see Reference 17.

Application architecture

Earlier in this paper, we gave two examples of Web
applications that achieve a high level of security
through the use of a smart card on the client side,
eTrade and e-Safe. Both applications use smart-card-
based authentication and digital signatures. Both ap-
plications use Java applets on the client side.

The architecture of both applications differs in sev-
eral respects, however. The eTrade application does
not require portability of the client part to operat-
ing systems other than Windows. Consequently it
uses an architecture that exploits components that
are found in Windows operating systems, most no-

PHYSICAL
CT

Card-
Terminal

Figure 5 The OpenCard Framework

Card-
Service

OpenCard FRAMEWORK

PHYSICAL
CT

SMART
CARD

SMART
CARD

Card-
Terminal

Card-
Service

• • •

• • •

• • •

APPLICATION APPLICATION

PHYSICAL
CT

Card-
Terminal

SMART
CARD

Card-
Service

HAMANN ET AL. IBM SYSTEMS JOURNAL, VOL 40, NO 3, 2001642

tably the smart card access layers provided by PC/SC.15

The eTrade application uses the IBM Digital Signa-
ture for the Internet (DSI) solution,6 which internally
uses the PC/SC application programming interfaces
(APIs). Toward the calling applications, DSI provides
the Public-Key Cryptography Standard #11 (PKCS
#11) API,18 a C-language interface that is used by
Netscape Communicator and Netscape Messen-
ger**. The PKCS #11 interface is also available to
applets through Java wrappers. For the Microsoft
Internet Explorer browser, DSI offers the Microsoft
Crypto API (CAPI).

The e-Safe application only uses the Java language
and does not impose any restrictions on the platform
for the clients and for the servers. Therefore, the e-
Safe application can easily be offered on such diverse
Java-powered devices as, for example, Internet ap-
pliances, communicating personal digital assistants,

or network computers. Because an HTTP-based pro-
tocol is used for communication between client and
server, the use of Java on either side does not re-
quire using Java on the other side. These decisions
are also independent of using a Java Card or any
other smart card.

In the following, we focus on this pure Java archi-
tecture, which is applicable for Web applications
based on the servlet19 and JavaServer Pages**
(JSP**)20 technologies. Such applications use the fol-
lowing pattern: The browser sends a request for an
HTML (HyperText Markup Language) document and
displays it to the user. In the document, there may
be links or forms that refer to servlets. When the user
clicks on such a link or submits such a form, the
browser sends a request to the appropriate servlet.
The servlet processes the request and invokes a sin-
gle JSP to display the result to the user. The HTML

Figure 6 Architecture overview

HTTP
SESSION OR
AUTHENTICATION
SERVER

WEB SERVER/
APPLICATION
SERVERWEB BROWSER

PHYSICAL CT

SMART
CARD

SECURITY
STATE

HTTP

LO
A

D
E

D
 F

R
O

M
 S

E
R

V
E

R
LO

C
A

LL
Y

 I
N

S
TA

LL
E

D

AUTHENTICATION
CARD SERVICE

OpenCard FRAMEWORK

CARD TERMINAL CLASS

FORMS

APPLET

APPLICATION SERVLETS

AUTHENTICATION
SERVLET

JAVASERVER PAGES

HTML PAGES

IBM SYSTEMS JOURNAL, VOL 40, NO 3, 2001 HAMANN ET AL. 643

page generated by the JSP is displayed in the brows-
er; it may contain further links or forms. Clicking on
these links or submitting these forms starts a new
cycle. A page generated by a JSP may contain applets,
which in turn can initiate communication with the
server from which they originate.

Figure 6 shows a component overview with respect
to the smart-card-based authentication. A user who
wants to use a smart card for authentication to Web
applications must have a smart card reader con-
nected to his or her client device. The client device
can be a personal computer or an Internet appliance,
for example. The Web browser of the device must
be enabled for smart card access. For the Java-based
architecture discussed here, the Web browser needs
to support Java applets and to enable the applets to
access the smart card. The OpenCard Framework
or OpenCard for Embedded Devices provides this ac-
cess for applets. It can be part of the preinstalled

software stack of the device, provisioned via the
service management framework of the device (as,
for example, specified by the Open Services Gateway
Initiative OSGi21), or user installed. In addition, the
device must have appropriate driver software in-
stalled to make the card reader available to appli-
cations. This software will in most cases be the as-
sociated pure Java CardTerminal. For PCs running
one of the Win32 operating systems, alternatively
PC/SC plus a PC/SC interface device can be installed.

Card services that encapsulate the application pro-
tocol of the smart card are packaged in a JAR file,
together with the applets that use them. This JAR
file is deployed on the Web application server and
will be downloaded on demand.

On the server side, in addition to the application serv-
lets (see Reference 19), HTML pages, and JSP (see
Reference 20), an Authentication Servlet must be de-

Figure 7 Secure access to a Web application

SECURITY
STATE

SMART
CARD

SECURE
SERVLET

CONTENT

JAVASERVER PAGES,
HTML,
VXML,
WML,

...

SECURITY
POLICIES

SMART CARD
USERID/PASSWORD/TANs
CHALLENGE/RESPONSE...

SESSION

APPLICATION

SECURITY
STATE

CONTENT
DELIVERY

AUTHENTICATION
SERVLET

DBDB

APPLICATION

DB

APPLICATION

BEAN

?

HAMANN ET AL. IBM SYSTEMS JOURNAL, VOL 40, NO 3, 2001644

ployed. This servlet implements the server-side au-
thentication protocol logic and provides a Security
State upon successful authentication of a user, for
example, by putting it into the HTTP session. Security-
aware application servlets can then access the Se-
curity State before performing sensitive functions.
Figure 7 shows the mechanism that is executed.

When the user logs in, a page with the authentica-
tion applet is displayed in his or her browser. If the
smart card requires a password, the authentication
applet prompts the user to enter the password and
provides it to the card before starting the actual au-
thentication protocol. The authentication protocol
is executed between the smart card and the Authen-
tication Servlet, mediated by the authentication ap-
plet. If the user has been successfully authenticated,
the Authentication Servlet adds a Security State to

the session to indicate that the user has been authen-
ticated.

When the user navigates to a page that invokes a
security-aware servlet, the servlet checks whether the
Security State stored in the session is sufficient to
perform the operation. If it is, the servlet invokes
the appropriate application logic. Figure 8 shows an
example where several application servlets access the
Security State in a session once the Authentication
Servlet has established it.

WebSphere* Application Server allows for single
sign-on (SSO) using custom authentication methods.
A servlet that implements custom authentication can
call the appropriate API function to perform a single
sign-on log-in. Thus, a slight change in the authen-
tication servlet allows taking advantage of the Web-

Figure 8 Interaction between the Authentication Servlet and application servlets via the session

BROWSER

REQUEST 1

REQUEST 2

REQUEST 3

REQUEST 4

REQUEST 5

REQUEST 1

APPLET

AUTHENTICATION PROTOCOL

HTTP
SESSION

SECURITY STATE

SECURITY STATE

RESPONSE 1

RESPONSE 2

RESPONSE 3

RESPONSE 4

RESPONSE 5

LOGIN PAGE

AUTHENTICATION
SERVLET

APPLICATION
SERVLETS

SECURITY STATE

SECURITY STATE

SECURITY STATE

SECURITY STATE

IBM SYSTEMS JOURNAL, VOL 40, NO 3, 2001 HAMANN ET AL. 645

Sphere single sign-on and clustering features. Instead
of accessing the Security State in the session, the Au-
thentication Servlet would have to use the SSO API
to call on the WebSphere Lightweight Third Party
Authentication (LTPA) mechanism.

Conclusion

In this paper, we presented examples of applications
that require user authentication and transaction au-
thorization with a very high level of security. More
and more Web applications with similar security re-
quirements will emerge as the volume of financial
transactions conducted via the Internet increases
steadily. The pure Java architecture presented in this
paper allows such applications to be secured in an
elegant and flexible way, using smart cards to pro-
vide a higher level of security.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems, Inc.,
Microsoft Corporation, RSA Security, Inc., Netscape Commu-
nications Corporation, MAOSCO Limited, or Gemplus, SA.

Cited references and notes

1. Electronic Signatures in Global and National Commerce Act,
issued as United States public law 106-229 on June 30, 2000,
effective October 1, 2000, http://www.access.gpo.gov/index.
html (search for “106–229”).

2. Directive 1999/93/EC of the European Parliament and of the
Council, European Union (13 December 1999), http://
europa.eu.int/eur-lex/en/index.html.

3. Gesetz über Rahmenbedingungen für elektronische Signaturen/
Signaturgesetz (German signature law) (August 2000),
http://www.bmwi.de/Homepage/download/infogesellschaft/
Signaturgesetz.pdf.

4. Established smart card communication protocols limit the size
of data exchanged in one single command to 255 bytes, which
leads to the limitation of keys used with the single command
signature operations.

5. Identrus LLC, 140 East 45th Street, New York, NY 10017,
http://www.identrus.com/.

6. E.-M. Hamann, Digital Signature for the Internet (DSI) White
Paper, IBM Pervasive Computing Laboratory, Boeblingen
(2000).

7. Authentication of the server was done during communica-
tion setup.

8. S. B. Guthery and T. M. Jurgensen, Smart Card Developer’s
Kit, Macmillan Technical Publishing, Indianapolis, IN (1998).

9. W. Rankl and W. Effing, Smart Card Handbook, John Wiley
& Sons, Inc., New York (1998).

10. Nonrepudiation is guaranteed for an action if the actor can-
not reasonably deny having done this action.

11. Smart cards capable of hosting several applications are often
called “multiapplication smart cards.” The IBM Multi-Function
Card (MFC) family, Java Cards, Windows-powered smart cards,
and MULTOS cards are all multiapplication smart cards.

12. Z. Chen, Java Card Technology for Smart Cards: Architecture

and Programmer’s Guide, Addison-Wesley Longman, Inc.,
Reading, MA (2000).

13. Microsoft Smart Card for Windows, Microsoft Corporation,
Redmond, WA (1999), http://www.microsoft.com/smartcard/.

14. MULTOS Version 4, MAOSCO Limited, 47–53 Cannon
Street, London, EC4M 5SQ, United Kingdom, http://www.
MULTOS.com/.

15. Interoperability Specification for ICCs and Personal Computer
Systems 1.0 (1997), http://www.pcscworkgroup.com/.

16. OpenCard Programmer’s Guide, OpenCard Consortium
(2000), http://www.opencard.org/.

17. U. Hansmann, M. S. Nicklous, T. Schäck, and F. Seliger, Smart
Card Application Development Using Java, Springer-Verlag,
Berlin (1999).

18. PKCS #11—Cryptographic Token Interface Standard, Version
2.10, RSA Laboratories, RSA Security, Inc., http://www.
rsasecurity.com/rsalabs/pkcs/pkcs-11/index.html.

19. Java Servlet Specification Version 2.2, Final Release, Sun Mi-
crosystems, Inc., Palo Alto, CA (1999).

20. JavaServer Pages Specification Version 1.1, Final Release, Sun
Microsystems, Inc., Palo Alto, CA (1999).

21. Open Services Gateway Initiative (OSGi) Specification 1.0
(January 2000), http://www.osgi.org/.

Accepted for publication April 6, 2001.

Ernst-Michael (Mike) Hamann IBM Pervasive Computing Di-
vision, Schoenaicher Strasse 220, 71032 Boeblingen, Germany (elec-
tronic mail: mhamann@de.ibm.com). Mr. Hamann is a consul-
tant solutions architect in the Pervasive Computing Division. He
is responsible for digital signature solutions using public key tech-
niques. He developed the architecture of IBM’s Digital Signa-
ture for the Internet (DSI) solution using PKI smart cards. He
is currently specializing in the security components of the Wire-
less Application Protocol (WAP) and represents IBM at the WAP
Forum’s Security Group (WSG). He has worked in the devel-
opment laboratories of IBM for the last 33 years in various po-
sitions in software and hardware development. During this time
he developed IT solutions in a wide range from large hosts
(System/390w) and networking products (IBM 3270, IBM Token
Ring, Systems Network Architecture) to smart cards and mobile
equipment. Mr. Hamann received an engineering degree (Diplom
Ingenieur) in applied physics from the PTL Wedel/Hamburg, Ger-
many, in 1968. He holds several patent submissions in the area
of IT security components.

Horst Henn IBM Pervasive Computing Division, Schoenaicher
Strasse 220, 71032 Boeblingen, Germany (electronic mail:
hhenn@de.ibm.com). Dr. Henn is lead consultant in the Perva-
sive Computing Division. He received his diploma in computer
science and his Ph.D. in electrical engineering from the Univer-
sity of Stuttgart. He joined IBM in 1975, working on design soft-
ware development for System/370TM and 801 system development.
He managed a series of hardware, software, and system design
projects in the areas of System/390 CMOS sysplex, communica-
tion adapters, image processing, and neural-network-based sig-
nature validation, as well as the initial development of the IBM
MFC smart card. Dr. Henn was involved in standardization ac-
tivities for PC/SC, OCF, Java Card, and G8 health card. In his
current position he is working with development teams and cus-
tomers to create first-of-a-kind multimode portal systems. He has
published a series of papers and filed many patents.

HAMANN ET AL. IBM SYSTEMS JOURNAL, VOL 40, NO 3, 2001646

Thomas Schäck IBM Pervasive Computing Division, Schoe-
naicher Strasse 220, 71032 Boeblingen, Germany (electronic mail:
schaeck@de.ibm.com). Mr. Schäck is an architect in the Perva-
sive Computing Division. He started working for IBM in 1996
after obtaining his diploma in computer sciences from the Uni-
versity of Karlsruhe. After joining IBM, he worked in Java and
C11 development projects centered on the smart card technol-
ogy. These projects include the OpenCard Framework that be-
came the standard API for smart card applications in Java, pay-
ments via the Internet, and work on a PKCS #11-based digital
signature solution. He was the architect of a first-of-a-kind e-busi-
ness project for a large German bank and is now working as a
portal architect in the Pervasive Computing Division. He has pub-
lished various papers in his field and filed numerous patents. His
prior publications include the book Smart Card Application De-
velopment Using Java.

Frank Seliger IBM Pervasive Computing Division, Schoenaicher
Strasse 220, 71032 Boeblingen, Germany (electronic mail:
seliger@de.ibm.com). Mr. Seliger is currently a security architect
in the Pervasive Computing Division. In 1978, he joined IBM,
where he has been active in various areas of software and firm-
ware development. His latest focus has been on object-oriented
software development and on security technology. Since 1990,
he has worked on a C11 collection class library, on a Java frame-
work for smart card applications, as consultant in the IBM Ob-
ject Oriented Technology Center, and as architect in various ap-
plications of mobile computing. With his colleagues he captured
his experience in Developing Object-Oriented Software—An Ex-
perience-Based Approach, published by Prentice Hall in 1997, and
in Smart Card Application Development Using Java, published by
Springer-Verlag in 1999.

IBM SYSTEMS JOURNAL, VOL 40, NO 3, 2001 HAMANN ET AL. 647

