

1
Copyright ©2001 by Christopher Abad

IP Checksum Covert Channels and Selected Hash Collision
Christopher Abad

aempirei@ucla.edu

A fundamental flaw in the design of the Internet checksum, the primary data checksum
facility for network data, can allow a malicious user to embed covert channel data in the
checksum field itself using a hash collision. What I will demonstrate is the two-way
nature of this facility and a covert channel scheme for sending data through the Internet
checksum.

The Internet checksum works on a set of 16-bit words (referred to as WORDS), for
example a protocol header broken into two-octet chunks. We use the one-place Σ(X)
function symbol to mean the sum of all elements in the set X of WORDS. Because this
sum may exceed the capacity of a WORD, 0

�
 w < 216, we will express this sum as in

terms of two WORDS, c, the carry bits, and m, which later will be our secret message.
First we express the sum of all WORDS in W, a selected set of WORDS, in the form

ΣW = 216c + m ; 0 � m < 216

This holds true due to the division theorem. We use the one-place ¬(x) function symbol
to mean the one’s-compliment of the integer value x with trimming to a maximum width
of 16-bits. The Internet checksum is defined as the 16-bit one’s-compliment of the sum of
all WORDS plus the carry bits. To calculate the checksum we would take

S = ¬(c + m)

If we choose an insignificant member of W to be a pivotal value w*, which will be
dependant on our message m, and define

W0 = W - {w*}

This will allow us to work with w* , adjusting it to fit our selected secret message. To
facilitate this, we allow w* to occur as a dependant variable in

ΣW = w* + ΣW0 = 216c + m � w* = 216c + m – ΣW0

We can now define m to be our message we would like to send over our covert channel.
We know that 0 � m < 216 and therefore if

0 � w* < 216 � 0 � 216c + m – ΣW0 < 216

holds true, meaning a WORD sided w* can be calculated, any arbitrary message may be
sent and a hash collision will be guaranteed. We must only insure that c can always be
chosen to meet the required restraints of the inequality above, due to the fact that m and �

W0 are known constants. Now ΣW0 – m is set as constant because m and ΣW0 are
known at time of calculation, so simply

2
Copyright ©2001 by Christopher Abad

let k = ΣW0 – m = 216k0 + r ; 0 � r < 216

which can be expressed in terms of k0 and r due to the division theorem, therefore we can
express the w* inequality in the form

216k0 + r � 216c < 216 + 216k0 + r

and show it to hold true for any value of r and k0. The case where r = 0 would be

216k0 � 216c < 216 + 216k0 � k0 � c < k0 + 1

which holds when c = k0 for any value of k0. Otherwise, if r > 0 then

let c = k0 + 1
216k0 � 216k0 + 216 - r < 216k0 + 216 � 0 � 216 – r < 216

which holds when 0 < r < 2 16 for any value of k0, which agrees with the prior restraints
on r for this case, therefore values for c and w* can generated for any arbitrarily selected
value of our message m.
QED

What follows is a method for message generation, and an example dataset.

W0 = { 32531, 12431, 1421, 15236, 31511 }
Select a message, m | 0

�
 m < 65536 m = 6534

Calculate ΣW0 ΣW0 = 93130
Let k = ΣW0 – m k = 86596
Find k0, r | k = 216k0 + r k0 = 1, r = 21060
Solve for c | k

�
 216c < 216 + k c = 2

Let w* = 216c + m – ΣW0 w* = 44476
Let S = ¬(c + m) S = 58999

A case-specific verification of our example dataset:

W = W0 ∪ w*
Therefore W = { 32531, 12431, 1421, 15236, 31511, 44476 }
ΣW = 137606 = 216(2) + 6534
m = 6534
S = ¬(2 + 6534) = ¬6536 = 58999

An example of how this can be used in the IP header would be the following: Set up an
IP header with an additional 4 octets for IP options, set the first WORD of the options to
0 (end-of-options), and allow the second octet to be w*, which will be calculated later.
Allow W 0 to be the set of WORDS in the IP header, not including w*. Allow for S to be

3
Copyright ©2001 by Christopher Abad

the IP checksum, not yet calculated. Apply the method for message generation, selecting
m to be our 16-bit message. Calculate w* and S.

This method can be used for any protocol that uses the Internet checksum, including
ICMP, UDP, TCP, as well as many others. The most interesting use though comes from
the IP header, because the fact that upon forwarding the packet to the gateway, and along
each intermediate router, the TTL is decremented, and the checksum is recalculated,
therefore losing the immediate covert-channel checksum. The end destination, in order to
retrieve the original checksum, must replace the TTL with the original TTL and calculate
the sum in the normal fashion, and then retrieve m. An extension to this would be to use
the IP ID field as a 32-bit ‘key’, which the target node must also replace in order to
retrieve the message.

In conclusion, this paper should have clearly demonstrated the fact that the internet
checksum fails to be a secure method for validating data integrity because of the ability
for a user to arbitrarily create a selected collision in the hashing mechanism in a trivial
period of time, and because the fact that the original message can be retrieved from the
hash, this demonstrates the two-way characteristic of the checksum function. As an
alternative to the Internet checksum, a lightweight one-way hash function might want to
be standardized during the integration of widespread IPv6.

