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Abstract

The access control mechanisms of existing mainstream
operating systems are inadequate to provide strong sys-
tem security. Enhanced access control mechanisms have
failed to win acceptance into mainstream operating sys-
tems due in part to a lack of consensus within the se-
curity community on the right solution. Since general-
purpose operating systems must satisfy a wide range of
user requirements, any access control mechanism inte-
grated into such a system must be capable of supporting
many different access control models. The Linux Secu-
rity Modules (LSM) project has developed a lightweight,
general purpose, access control framework for the main-
stream Linux kernel that enables many different access
control models to be implemented as loadable kernel
modules. A number of existing enhanced access control
implementations, including Linux capabilities, Security-
Enhanced Linux (SELinux), and Domain and Type En-
forcement (DTE), have already been adapted to use the
LSM framework. This paper presents the design and
implementation of LSM and discusses the challenges
in providing a truly general solution that minimally im-
pacts the Linux kernel.

1 Introduction

The critical role of operating system protection mech-
anisms in providing system security has been well-
understood for over thirty years, yet the access control
mechanisms of existing mainstream operating systems
are still inadequate to provide strong security [2, 39, 28,
17, 26, 6, 30]. Although many enhanced access control
models and frameworks have been proposed and imple-

mented [9, 1, 4, 41, 23, 10, 29, 37], mainstream oper-
ating systems typically still lack support for these en-
hancements. In part, the absence of such enhancements
is due to a lack of agreement within the security com-
munity on the right general solution.

Like many other general-purpose operating systems, the
Linux kernel only provides discretionary access controls
and lacks any direct support for enhanced access control
mechanisms. However, Linux has long supported dy-
namically loadable kernel modules, primarily for device
drivers, but also for other components such as filesys-
tems. In principle, enhanced access controls could be
implemented as Linux kernel modules, permitting many
different security models to be supported.

In practice, creating effective security modules is prob-
lematic since the kernel does not provide any infrastruc-
ture to allow kernel modules to mediate access to ker-
nel objects. As a result, kernel modules typically re-
sort to system call interposition to control kernel op-
erations [18, 20], which has serious limitations as a
method for providing access control [41]. Furthermore,
these kernel modules often require reimplementing se-
lected kernel functionality [18, 20] or require a patch
to the kernel to support the module [10, 3, 15], reduc-
ing much of the value of modular composition. Hence,
many projects have implemented enhanced access con-
trol frameworks or models for the Linux kernel as kernel
patches [29, 37, 23, 32, 27].

At the Linux Kernel 2.5 Summit, the NSA presented
their work on Security-Enhanced Linux (SELinux) [29],
an implementation of a flexible access control architec-
ture in the Linux kernel, and emphasized the need for
such support in the mainstream Linux kernel. Linus Tor-
valds appeared to accept that a general access control



framework for the Linux kernel is needed, but favored a
new infrastructure that would provide the necessary sup-
port to kernel modules for implementing security. This
approach would avoid the need to choose among the ex-
isting competing projects.

In response to Linus’ guidance, the Linux Security Mod-
ules (LSM) [45, 40] project has developed a lightweight,
general purpose, access control framework for the main-
stream Linux kernel that enables many different ac-
cess control models to be implemented as loadable ker-
nel modules. A number of existing enhanced access
control implementations, including POSIX.1e capabil-
ities [42], SELinux, and Domain and Type Enforcement
(DTE) [23], have already been adapted to use the LSM
framework.

The LSM framework meets the goal of enabling many
different security models with the same base Linux ker-
nel while minimally impacting the Linux kernel. The
generality of LSM permits enhanced access controls
to be effectively implemented without requiring kernel
patches. LSM also permits the existing security func-
tionality of POSIX.1e capabilities to be cleanly sepa-
rated from the base kernel. This allows users with spe-
cialized needs, such as embedded system developers, to
reduce security features to a minimum for performance.
It also enables development of POSIX.1e capabilities to
proceed with greater independence from the base kernel.

The remainder of this paper is organized as follows.
Section 2 elaborates on the problem that LSM seeks to
solve. Section 3 presents the LSM design. Section 4
presents the current LSM implementation. Section 5 de-
scribes the operational status of LSM, including testing,
performance overhead, and modules built for LSM so
far. Section 6 describes issues that arose during devel-
opment, and plans for future work. Section 7 describes
related work. Section 8 presents our conclusions.

2 The Problem: Constrained Design Space

The design of LSM was constrained by the practical and
technical concerns of both the Linux kernel developers
and the various Linux security projects. In email on the
topic, Linus Torvalds specified that the security frame-
work must be:

• truly generic, where using a different security
model is merely a matter of loading a different ker-
nel module;

• conceptually simple, minimally invasive, and effi-
cient; and

• able to support the existing POSIX.1e capabilities
logic as an optional security module.

The various Linux security projects were primarily inter-
ested in ensuring that the security framework would be
adequate to permit them to reimplement their existing
security functionality as a loadable kernel module. The
new modular implementation must not cause any signif-
icant loss in the security being provided and should have
little additional performance overhead.

The core functionality for most of these security projects
was access control. However, a few security projects
also desired other kinds of security functionality, such as
security auditing or virtualized environments. Further-
more, there were significant differences over the range
of flexibility for the access controls. Most of the secu-
rity projects were only interested in further restricting
access, i.e. being able to deny accesses that would or-
dinarily be granted by the existing Linux discretionary
access control (DAC) logic. However, a few projects
wanted the ability to grant accesses that would ordinar-
ily be denied by the existing DAC logic; some degree
of this permissive behavior was needed to support the
capabilities logic as a module. Some security projects
wanted to migrate the DAC logic into a security module
so that they could replace it.

The “LSM problem” is to unify the functional needs of
as many security projects as possible, while minimizing
the impact on the Linux kernel. The union set of desired
features would be highly functional, but also so invasive
as to be unacceptable to the mainstream Linux commu-
nity. Section 3 presents the compromises LSM made to
simultaneously balance these conflicting goals.

3 LSM Design: Mediate Access to Kernel
Objects

The system call interface provides an abstraction for
userspace to interact with the kernel, and is a tempting
location to mediate access. In fact, no kernel modifica-
tions are required to overwrite entries in the system call
lookup table, making it trivial to mediate this interface
using kernel modules [18, 19]. While this is an attrac-
tive feature, mediating the system call interface provides
limited value for a general purpose security framework
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such as LSM [41]. This level of mediation is not race-
free, may require code duplication, and may not ade-
quately express the full context needed to make security
policy decisions.

The basic abstraction of the LSM interface is to mediate
access tointernal kernel objects. LSM seeks to allow
modules to answer the question “May a subjectS per-
form a kernel operationOPon an internal kernel object
OBJ?”

LSM allows modules to mediate access to kernel objects
by placinghooksin the kernel code just ahead of the ac-
cess, as shown in Figure 1. Just before the kernelwould
have accessed an internal object, a hook makes a call
to a function that the LSM module must provide. The
module can either let the access occur, or deny access,
forcing an error code return.

The LSM framework leverages the kernel’s existing
mechanisms to translate user supplied data — typically
strings, handles or simplified data structures — into in-
ternal data structures. This avoids time of check to time
of use (TOCTTOU) races [8] and inefficient duplicate
look ups. It also allows the LSM framework to directly
mediate access to the core kernel data structures. With
such an approach, the LSM framework has access to the
full kernel context just before the kernel actually per-
forms the requested service. This improves access con-
trol granularity.

Given the constrained design space described in Sec-
tion 2, the LSM project chose to limit the scope of the
LSM design to supporting the core access control func-
tionality required by the existing Linux security projects.

GRANT access

REQUEST access

yes

DENY access

yes

UID match?
nono

DAC override?

Permissive LSM hook

Figure 2: Permissive LSM hook. This hook allows the security
policy to override a DAC restriction.

This limitation enabled the LSM framework to remain
conceptually simple and minimally invasive while still
meeting the needs of many of the security projects. It
also strengthened the justification for adopting the LSM
framework into the Linux kernel, since the need for en-
hanced access controls was more generally accepted by
the kernel developers than the need for other kinds of
security functionality such as auditing.

A consequence of the “stay simple” design decision is
that LSM hooks are primarilyrestrictive: where the ker-
nel was about to grant access, the module may deny ac-
cess, but when the kernel would deny access, the module
is not consulted. This design simplification exists largely
because the Linux kernel “short-circuits” many deci-
sions early when error conditions are detected. Provid-
ing for authoritativehooks (where the module can over-
ride either decision) would require many more hooks
into the Linux kernel.

However, the POSIX.1e capabilities logic requires the
ability to grant accesses that would ordinarily be denied
at a coarse level of granularity. In order to support this
logic as a security module, LSM provides some minimal
support for thesepermissivehooks, where the module
can grant access the kernel was about to deny. The per-
missive hooks are typically coupled with a simple DAC
check, and allow the module to override the DAC restric-
tion. Figure 2 shows a user access request where a failed
user ID check can be overridden by a permissive hook.
These hooks are limited to the extent that the kernel al-
ready consults the POSIX.1ecapable() function.

Although LSM was not designed to explicitly sup-
port security auditing, some forms of auditing can be
supported using the features provided for access con-
trol. For example, many of the existing Linux security
projects provide support for auditing the access checks
performed by their access controls. LSM also enables



support for this kind of auditing. Some security auditing
can also be supported via existing kernel modules by in-
terposing on system calls, as in the SNARE project [25].

Many security models require binding security attributes
to kernel objects. To facilitate this, LSM provides for
opaquesecurity fieldsthat are attached to various in-
ternal kernel objects (detailed in Section 4.1.1). How-
ever, the module is completely responsible for manag-
ing these fields, including allocation, deallocation, and
concurrency control.

Finally, module composition presented a challenge to
the LSM design. On the one hand, there clearly is a need
to compose some modules with complementary func-
tionality. On the other hand, fully generic security pol-
icy composition is known to be intractable [21]. There-
fore, LSM permitsmodule stacking, but pushes most
of the work to the modules themselves. A module that
wishes to be stackable must itself export an LSM-like in-
terface, and make calls to subsequently loaded modules
when appropriate. The first module loaded has ultimate
control over all decisions, determining when to call any
other modules and how to combine their results.

4 Implementation

This section describes the implementation of the LSM
kernel patch. It begins with an overview of the imple-
mentation that describes the types of changes made to
the kernel in Section 4.1. Sections 4.2 through 4.7 dis-
cuss the specific hooks for the various kernel objects or
subsystems.

4.1 Implementation Overview

The LSM kernel patch modifies the kernel in five pri-
mary ways. First, it adds opaque security fields to cer-
tain kernel data structures, described in Section 4.1.1.
Second, the patch inserts calls to security hook func-
tions at various points within the kernel code, described
in Section 4.1.2. Third, the patch adds a generic secu-
rity system call, described in Section 4.1.3. Fourth, the
patch provides functions to allow kernel modules to reg-
ister and unregister themselves as security modules, de-
scribed in Section 4.1.4. Finally, the patch moves most
of the capabilities logic into an optional security module,
described in Section 4.1.5.

STRUCTURE OBJECT
taskstruct Task (Process)
linux binprm Program
superblock Filesystem
inode Pipe, File, or Socket
file Open File
sk buff Network Buffer (Packet)
net device Network Device
kern ipc perm Semaphore, Shared Memory Segment,

or Message Queue
msgmsg Individual Message

Table 1: Kernel data structures modified by the LSM kernel patch
and the corresponding abstract objects.

4.1.1 Opaque Security Fields

The opaque security fields arevoid* pointers, which
enable security modules to associate security informa-
tion with kernel objects. Table 1 shows the kernel data
structures that are modified by the LSM kernel patch and
the corresponding abstract object.

The setting of these security fields and the management
of the associated security data is handled by the secu-
rity modules. LSM merely provides the fields and a set
of calls to security hooks that can be implemented by
the module to manage the security fields as desired. For
most kinds of objects, analloc security hook and
a free security hook are defined that permit the se-
curity module to allocate and free security data when
the corresponding kernel data structure is allocated and
freed. Other hooks are provided to permit the security
module to update the security data as necessary, e.g. a
post lookup hook that can be used to set security
data for aninode after a successful lookup operation.
It is important to note that LSM does not provide any
locking for the security fields; such locking must be per-
formed by the security module.

Since some objects will exist prior to the initialization
of a security module, even if the module is built into
the kernel, a security module must handle pre-existing
objects. Several approaches are possible. The simplest
approach is to ignore such objects, treating them as be-
ing outside of the control of the module. These objects
would then only be controlled by the base Linux access
control logic. A second approach is to traverse the kernel
data structures during module initialization, setting the
security fields for all pre-existing objects at this time.
This approach would require great care to ensure that
all objects are updated (e.g. an open file might be on a
UNIX domain socket awaiting receipt by a process) and
to ensure that appropriate locking is performed. A third



int vfs_mkdir(struct inode *dir,
struct dentry *dentry, int mode)

{
int error;

down(&dir->i_zombie);
error = may_create(dir, dentry);
if (error)

goto exit_lock;

error = -EPERM;
if (!dir->i_op || !dir->i_op->mkdir)

goto exit_lock;

mode &= (S_IRWXUGO|S_ISVTX);
error =

<-> security_ops->inode_ops->mkdir(dir,
dentry, mode);

if (error)
goto exit_lock;

DQUOT_INIT(dir);
lock_kernel();
error = dir->i_op->mkdir(dir, den-

try, mode);
unlock_kernel();

exit_lock:
up(&dir->i_zombie);
if (!error) {

inode_dir_notify(dir, DN_CREATE);
<-> security_ops->inode_ops->post_mkdir(dir,

dentry, mode);
}
return error;

}

Figure 3: Thevfs mkdir kernel function with one security hook
call to mediate access and one security hook call to manage the security
field. The security hooks are marked by<-> .

approach is to test for pre-existing objects on each use
and to then set the security field for pre-existing objects
when needed.

4.1.2 Calls to Security Hook Functions

As discussed in the previous subsection, LSM provides
a set of calls to security hooks to manage the security
fields of kernel objects. It also provides a set of calls to
security hooks to mediate access to these objects. Both
sets of hook functions are called via function pointers in
a globalsecurity ops table. This structure consists
of a collection of substructures that group related hooks
based on kernel object or subsystem, as well as some
top-level hooks for system operations. Each hook is de-
fined in terms of kernel objects and parameters, and care
has been taken to avoid userspace pointers.

Figure 3 shows thevfs mkdir kernel function after the
LSM kernel patch has been applied. This kernel func-
tion is used to create new directories. Two calls to secu-
rity hook functions have been inserted into this function.
The first hook call,security ops->inode ops-
>mkdir , can be used to control the ability to create new
directories. If the hook returns an error status, then the
new directory will not be created and the error status will
be propagated to the caller. The second hook call,se-
curity ops->inode ops->post mkdir , can be
used to set the security field for the new directory’s in-
ode structure. This hook can only update the security
module’s state; it cannot affect the return status.

Although LSM also inserts a hook call into the Linux
kernelpermission function, thepermission hook
is insufficient to control file creation operations because
it lacks potentially important information, such as the
type of operation and the name and mode for thenew
file. Similarly, inserting a hook call into the Linux ker-
nelmay create function would be insufficient since it
would still lack precise information about the type of op-
eration and the mode. Hence, a hook was inserted with
the same interface as the corresponding inode operation.

An alternative to inserting these two hooks into
vfs mkdir would be to interpose on thedir->i op-
>mkdir call. Interposing on internal kernel interfaces
would provide equivalent functionality for some of the
LSM hooks. However, such interposition would also
permit much more general functionality to be imple-
mented via kernel modules. Since kernel modules have
historically been allowed to use licenses other than the
GPL, an approach based on interposition would likely
create political challenges to the acceptance of LSM by
the Linux kernel developers.

4.1.3 Security System Call

LSM provides a generalsecurity system call that
allows security modules to implement new calls for
security-aware applications. Although modules can ex-
port information and operations via the/proc filesys-
tem or by defining a new pseudo filesystem type, such
an approach is inadequate for the needs of some security
modules. For example, the SELinux module provides
extended forms of a number of existing system calls that
permit applications to specify or obtain security infor-
mation associated with kernel objects and operations.

The security system call is a simple multi-
plexor fashioned after the existing Linuxsock-



etcall system call. It takes the following ar-
guments: (unsigned int id, unsigned int
call, unsigned long *args) . Since the mod-
ule defines the implementation of the system call, it can
choose to interpret the arguments however it likes. These
arguments are intended to be interpreted by the modules
as a module identifier, a call identifier, and an argument
array. By default, LSM provides asys security en-
try point function that simply calls asys security
hook with the parameters. A security module that does
not provide any new calls can define asys security
hook function that returns-ENOSYS. Most security
modules that want to provide new calls can place their
call implementations in this hook function.

In some cases, the entry point function provided by LSM
may be inadequate for a security module. For example,
one of the new calls provided by SELinux requires ac-
cess to the registers on the stack. The SELinux module
implements its own entry point function to provide such
access, and replaces the LSM entry point function with
this function in the system call table during module ini-
tialization.

4.1.4 Registering Security Modules

The LSM framework is initialized during the kernel’s
boot sequence with a set of dummy hook functions that
enforce traditional UNIX superuser semantics. When a
security module is loaded, it must register itself with the
LSM framework by calling theregister security
function. This function sets the globalsecurity ops
table to refer to the module’s hook function pointers,
causing the kernel to call into the security module for
access control decisions. Theregister security
function will not overwrite a previously loaded module.
Once a security module is loaded, it becomes a policy
decision whether it will allow itself to be unloaded.

If a security module is unloaded, it must unregister with
the framework usingunregister security . This
simply replaces the hook functions with the defaults so
the system will still have some basic means for security.
The default hook functions do not use the opaque secu-
rity fields, so the system’s security should not be com-
promised if the module does a poor job of resetting the
opaque fields.

As mentioned in Section 3, general composition of poli-
cies is intractable. While arbitrary policy composition
gives undefined results, it is possible to develop secu-
rity modules such that they can compose with defined

results. To keep the framework simple, it is aware of
only one module, either the default or the registered
module – the primary module. A security module may
register itself directly with the primary module using
themod reg security interface. This registration is
controlled by the primary module, so it is a policy deci-
sion whether to allow module stacking. With this simple
interface, basic module stacking can be supported with
no complexity in the framework.

4.1.5 Capabilities

The Linux kernel currently provides support for a sub-
set of POSIX.1e capabilities. One of the requirements
for the LSM project was to move this functionality to
an optional security module, as mentioned in Section 2.
POSIX.1e capabilities provides a mechanism for par-
titioning traditional superuser privileges and assigning
them to particular processes.

By nature, privilege granting is a permissive form of ac-
cess control, since it grants an access that would ordi-
narily be denied. Consequently, the LSM framework
had to provide a permissive interface with at least the
same granularity of the Linux capabilities implementa-
tion. LSM retains the existingcapable interface used
within the kernel for performing capability checks, but
reduces thecapable function to a simple wrapper for
a LSM hook, allowing any desired logic to be imple-
mented in the security module. This approach allowed
LSM to leverage the numerous (more than 500) existing
kernel calls tocapable and to avoid pervasive changes
to the kernel. LSM also defines hooks to allow the
logic for other forms of capability checking and capabil-
ity computations to be encapsulated within the security
module.

A process capability set, a simple bit vector, is stored
in the task struct structure. Because LSM adds an
opaque security field to thetask struct and hooks
to manage the field, it would be possible to move the
existing bit vector into the field. Such a change would
be logical under the LSM framework but this change
has not been implemented in order to ease stacking with
other modules. One of the difficulties of stacking se-
curity modules in the LSM framework is the need to
share the opaque security fields. Many security modules
will want to stack with the capabilities module, because
the capabilities logic has been integrated into the main-
stream kernel for some time and is relied upon by some
applications such asnamed andsendmail . Leaving
the capability bit vector in thetask struct eases this



composition at the cost of wasted space for modules that
don’t need to use it.

The Linux kernel support for capabilities also includes
two system call calls:capset andcapget . To remain
compatible with existing applications, these system calls
are retained by LSM but the core capabilities logic for
these functions has been replaced by calls to LSM hooks.
Ultimately, these calls should be reimplemented via the
security system call. This change should have little
impact on applications since the portable interface for
capabilities is through thelibcap library rather than
direct use of these calls.

The LSM project has developed a capabilities security
module and migrated much of the core capabilities logic
into it; however, the kernel still shows vestiges of the
pre-existing Linux capabilities. Moving the bit vector
from the task struct proper to the opaque security
field and relocating the system call interface are the only
major steps left to making the capability module com-
pletely standalone.

4.2 Task Hooks

LSM provides a set of task hooks that enable security
modules to manage process security information and to
control process operations. Modules can maintain pro-
cess security information using the security field of the
task struct structure. Task hooks provide control
over inter-process operations, such askill , as well as
control over privileged operations on the current pro-
cess, such assetuid . The task hooks also provide
fine-grained control over resource management opera-
tions such assetrlimit andnice .

4.3 Program Loading Hooks

Many security modules, including Linux capabilities,
DTE, SELinux, and SubDomain require the ability to
perform changes in privilege when a new program is ex-
ecuted. Consequently, LSM provides a set of program-
loading hooks that are called at critical points during
the processing of anexecve operation. The security
field of thelinux binprm structure permits modules
to maintain security information during program load-
ing. One hook is provided to permit security modules to
initialize this security information and to perform access
control prior to loading the program, and a second hook
is provided to permit modules to update the task security

information after the new program has been successfully
loaded. These hooks can also be used to control inher-
itance of state across program executions, for example,
revalidating open file descriptors.

4.4 IPC Hooks

Security modules can manage security information and
perform access control for System V IPC using the LSM
IPC hooks. The IPC object data structures share a com-
mon substructure,kern ipc perm , and only a pointer
to this substructure is passed to the existingipcperms
function for checking permissions. Hence, LSM adds
a security field to this shared substructure. To support
security information for individual messages, LSM also
adds a security field to themsg msg structure.

LSM inserts a hook into the existingipcperms func-
tion so that a security module can perform a check for
each existing Linux IPC permission check. However,
since these checks are not sufficient for some security
modules, LSM also inserts hooks into the individual IPC
operations. These hooks provide more detailed informa-
tion about the type of operation and the specific argu-
ments. They also support fine-grained control over indi-
vidual messages sent via System V message queues.

4.5 Filesystem Hooks

For file operations, three sets of hooks were defined:
filesystem hooks, inode hooks, and file hooks. LSM
adds a security field to each of the associated kernel
data structures:super block , inode , and file .
The filesystem hooks enable security modules to con-
trol operations such as mounting andstatfs . LSM
leverages the existingpermission function by insert-
ing an inode hook into it, but LSM also defines a num-
ber of other inode hooks to provide finer-grained control
over individual inode operations. Some of the file hooks
allow security modules to perform additional checking
on file operations such asread andwrite , for exam-
ple, to revalidate permissions on use to support privi-
lege bracketing or dynamic policy changes. A hook is
also provided to allow security modules to control re-
ceipt of open file descriptors via socket IPC. Other file
hooks provide finer-grained control over operations such
asfcntl andioctl .

An alternative to placing security fields in theinode
andsuper block structures would have been to place



them in thedentry and vfsmount structures. The
inode andsuper block structures correspond to the
actual objects and are independent of names and names-
paces. Thedentry and vfsmount structures con-
tain a reference to the correspondinginode or su-
per block , and are associated with a particular name
or namespace. Using the first pair of structures avoids
object aliasing issues. The use of these structures also
provides more coverage of kernel objects, since these
structures also represent non-file objects such as pipes
and sockets. These data structures are also readily avail-
able at any point in the filesystem code, whereas the sec-
ond set of structures is often unavailable.

4.6 Network Hooks

Application layer access to networking is mediated us-
ing a set of socket hooks. These hooks, which in-
clude the interposition of all socket system calls, provide
coarse mediation coverage of all socket-based protocols.
Since active user sockets have an associatedinode
structure, a separate security field was not added to the
socket structure or to the lower-levelsock structure.
As the socket hooks allow general mediation of net-
work traffic in relation to processes, LSM significantly
expands the kernel’s network access control framework
(which is already handled at the network layer by Netfil-
ter [36]). For example, thesock rcv skb hook allows
an inbound packet to be mediated in terms of its destina-
tion application, prior to being queued at the associated
userspace socket.

Additional finer-grained hooks have been implemented
for the IPv4, UNIX domain, and Netlink protocols,
which were considered essential for the implementation
of a minimally useful system. Similar hooks for other
protocols may be implemented at a later stage.

Network data traverses the stack in packets encapsulated
by ansk buff (socket buffer) structure. LSM adds a
security field to thesk buff structure, so that security
state may be managed across network layers on a per-
packet basis. A set ofsk buff hooks is provided for
lifecycle management of this security field.

Hardware and software network devices are encapsu-
lated by anet device structure. A security field was
added to this structure so that security state can be main-
tained on a per-device basis.

Coverage of low level network support components,
such as routing tables and traffic classifiers is somewhat

limited due to the invasiveness of the code which would
be required to implement consistent fine-grained hooks.
Access to these objects can be mediated at higher levels
(for example, usingioctl ), although granularity may
be reduced by TOCTTOU issues.

4.7 Other Hooks

LSM provides two additional sets of hooks: module
hooks and a set of top-levelsystemhooks. Module hooks
can be used to control the kernel operations that create,
initialize, and delete kernel modules. System hooks can
be used to control system operations, such as setting the
system hostname, accessing I/O ports, and configuring
process accounting. The existing Linux kernel provides
some control over many of these operations using the
capability checks, but those checks only provide coarse-
grained distinctions among different operations and do
not provide any argument information.

5 Testing and Functionality

Section 5.1 surveys modules that have been created for
LSM so far. Section 5.2 describes our performance test-
ing of LSM. While we have tested LSM kernels by boot-
ing and running them,we have not engaged in system-
atic testing. However, other members of the LSM com-
munity [45] have developed systematic LSM correctness
testing procedures [13, 14].

5.1 Modules

LSM provides only the mechanism to enforce enhanced
access control policies. Thus, it is the LSM modules that
implement a specific policy and are critical in proving
the functionality of the framework. Below are briefly
described a few of these LSM modules:

• SELinux A Linux implementation of the Flask [41]
flexible access control architecture and an exam-
ple security server that supports Type Enforcement,
Role-Based Access Control, and optionally Multi-
Level Security. SELinux was originally imple-
mented as a kernel patch [29] and was then reim-
plemented as a security module that uses LSM.
SELinux can be used to confine processes to least



privilege, to protect the integrity and confidential-
ity of processes and data, and to support application
security needs. The generality and comprehensive-
ness of SELinux helped to drive the requirements
for LSM.

• DTE Linux An implementation of Domain and
Type Enforcement [4, 5] developed for Linux [23].
Like SELinux, DTE Linux was originally imple-
mented as a kernel patch and was then adapted to
LSM. With this module loaded, types can be as-
signed to objects and domains to processes. The
DTE policy restricts access between domains and
from domains to types. The DTE Linux project
also provided useful input into the design and im-
plementation of LSM.

• LSM port of Openwall kernel patch The Open-
wall kernel patch [12] provides a collection of se-
curity features to protect a system from common at-
tacks, e.g. buffer overflows and temp file races. A
module is under development that supports a subset
of the Openwall patch. For example, with this mod-
ule loaded a victim program will not be allowed to
follow malicious symlinks.

• POSIX.1e capabilities The POSIX.1e capabili-
ties [42] logic was already present in the Linux ker-
nel, but the LSM kernel patch cleanly separates this
logic into a security module. This change allows
users who do not need this functionality to omit it
from their kernels and it allows the development of
the capabilities logic to proceed with greater inde-
pendence from the main kernel.

5.2 Performance Overhead

The LSM framework imposes minimal overhead when
compared with a standard Linux kernel. The LSM ker-
nel used for benchmarking this overhead included the
POSIX.1e capabilities security module in order to pro-
vide a fair comparison between an unmodified Linux
kernel with built-in capabilities support and a LSM ker-
nel with a capabilities module.

The LSM framework is designed to enable sophisticated
access control models. The overhead imposed by such a
model is a composite of the LSM framework overhead
and the actual policy enforcement overhead. Policy en-
forcement is outside the scope of the LSM framework,
however the performance impact of an enhanced access
control module is still of interest. The SELinux mod-
ule is benchmarked and compared against a standard

Linux kernel with Netfilter enabled to show an example
of module performance in Section 5.2.3.

5.2.1 Microbenchmark: LMBench

We used LMBench [31] for microbenchmarking. LM-
Bench was developed specifically to measure the perfor-
mance of core kernel system calls and facilities, such as
file access, context switching, and memory access. LM-
Bench has been particularly effective at establishing and
maintaining excellent performance in these core facili-
ties in the Linux kernel.

We compared a standard Linux 2.5.15 kernel against a
2.5.15 kernel with the LSM patch applied and the de-
fault capabilities module loaded, run on a 4-processor
700 MHz Pentium Xeon computer with 1 GB of RAM
and an ultra-wide SCSI disk, with the results shown in
Table 2. In most cases, the performance penalty is in the
experimental noise range. In some cases, the LSM ker-
nel’s performance actually exceeded the standard kernel,
which we attribute to experimental error (typically cache
collision anomalies [24]). The 18% performance im-
provement for AF Unix in Table 2 is anomalous, but we
have not identified the testing problem.

The worst case overhead was 5.1% forselect() ,
2.7% foropen/close , and 3.1% for file delete. The
open , close , anddelete results are to be expected
because the kernel repeatedly checks permission for
each element of a filename during pathname resolution,
magnifying the overhead of these LSM hooks. The per-
formance penalty forselect() stands out as an op-
portunity for optimization, which is confirmed by mac-
robenchmark experiments in Section 5.2.3.

Similar results for running the same machine with a UP
kernel are shown in Table 3. One should also bear in
mind that these are microbenchmark figures; for com-
prehensive application-level impact, see Sections 5.2.2
and 5.2.3.

5.2.2 Macrobenchmark: Kernel Compilation

Our first macrobenchmark is the widely used kernel
compilation benchmark, measuring the time to build the
Linux kernel. We ran this test on a 4-processor SMP
machine (four 700 MHz Xeon processors, 1 GB RAM,
ultra wide SCSI disk) using both a SMP and UP kernel.



Process tests, times inµseconds, smaller is better:
% Overhead

Test Type 2.5.15 2.5.15-lsm with LSM
null call 0.49 0.48 -2.0%
null I/O 0.89 0.91 -2.2%

stat 5.39 5.49 1.9%
open/close 6.94 7.13 2.7%
select TCP 39 41 5.1%

sig inst 1.18 1.19 0.8%
sig handl 4.10 4.09 -0.2%
fork proc 187 187 0%
exec proc 705 706 0.1%

sh proc 3608 3611 0.1%

File and VM system latencies inµseconds,
smaller is better:

% Overhead
Test Type 2.5.15 2.5.15-lsm with LSM

0K file create 73 73 0%
0K file delete 8.545 8.811 3.1%

10K file create 142 143 0.7%
10K file delete 25 27 8%
mmap latency 4874 4853 -0.4%

prot fault 0.974 0.990 1.6%
page fault 4 5 25%

Local communication bandwidth in MB/s,
larger is better:

% Overhead
Test Type 2.5.15 2.5.15-lsm with LSM

pipe 537 542 -0.9%
AF Unix 98 116 -18.4%

TCP 257 235 8.6%
file reread 306 306 0%

mmap reread 368 368 0%
bcopy (libc) 191 191 0%

bcopy (hand) 148 151 -2%
mem read 368 368 0%

mem write 197 197 0%

Table 2:LMBench Microbenchmarks, 4 processor machine

The single processor test executed the commandtime
make -j2 bzImage and the 4-processor test ex-
ecuted the commandtime make -j8 bzImage ,
with the results shown in Table 4. The result is basi-
cally zero overhead for the LSM patch, the worst case
being 0.3%.

Process tests, times inµseconds, smaller is better:
% Overhead

Test Type 2.5.15 2.5.15-lsm with LSM
null call 0.44 0.44 0%
null I/O 0.67 0.71 6%

stat 29 29 0%
open/close 30 30 0.5%
select TCP 23 23 0%

sig inst 1.14 1.15 0.9%
sig handl 5.23 5.24 0.2%
fork proc 182 182 0%
exec proc 745 747 0.3%

sh proc 4334 4333 0%

File and VM system latencies inµseconds,
smaller is better:

% Overhead
Test Type 2.5.15 2.5.15-lsm with LSM

0K file create 96 96 0%
0K file delete 31 31 0%

10K file create 157 158 0.6%
10K file delete 45 46 2.2%
mmap latency 3246 3158 -2.7%

prot fault 0.899 1.007 12%
page fault 3 3 0%

Local communication bandwidth in MB/s,
larger is better:

% Overhead
Test Type 2.5.15 2.5.15-lsm with LSM

pipe 630 597 5.2%
AF Unix 125 125 0%

TCP 222 220 0.9%
file reread 316 313 0.9%

mmap reread 378 368 2.6%
bcopy (libc) 199 191 4%

bcopy (hand) 168 149 11.3%
mem read 378 396 2.6%

mem write 206 197 4.4%

Table 3:LMBench Microbenchmarks, 1 processor machine

% Overhead
Machine Type 2.5.15 2.5.15-lsm with LSM

4 CPUs 92 92 0%
1 CPU 341 342 0.3%

Table 4:Linux Kernel Build Macrobenchmarks, time in seconds

5.2.3 Macrobenchmarks: Webstone

Using Webstone [33] we benchmarked the overhead im-
posed on a typical server application — a webserver.



Connection rate measured in connections per second.
Server Server

Number connection connection
of rate rate %

clients 2.5.7 2.5.7-lsm Overhead
8 916.56 870.98 4.97%
16 917.64 869.79 5.21%
24 917.44 872.28 4.92%
32 918.91 876.17 4.65%

Table 5:UP Webstone results comparing LSM to standard kernel.

Connection rate measured in connections per second.
Server Server

Number connection connection
of rate rate %

clients 2.5.7 2.5.7-lsm Overhead
8 1206.05 1115.29 7.53%
16 1206.74 1117.61 7.39%
24 1214.54 1130.13 6.95%
32 1207.30 1125.89 6.74%

Table 6:SMP Webstone results comparing LSM to standard kernel.

We collected data showing the overhead of both a ba-
sic LSM kernel and an LSM kernel with the SELinux
module loaded. The SELinux module uses the Netfilter
based hooks, so all three kernels have Netfilter support
compiled in, and are based on the 2.5.7 Linux kernel.

The standard kernel was compiled with Netfilter sup-
port. The LSM kernel was compiled with support for
the Netfilter based hooks and used the default superuser
logic. The SELinux kernel was compiled with support
for SELinux and the Netfilter based hooks. The SELinux
module was also stacked with the capabilities module, a
typical SELinux configuration. We ran these tests on a
dual 550MHz Celeron with 384MB RAM. The NIC was
a Gigabit Netgear GA302T on a 32-bit 33MHz PCI bus.
The webserver was Apache 1.3.22-0.6 (Red Hat 6.2 up-
date).

Netfilter is a critical issue here. The 5–7% overhead
observed in the LSM benchmarks in Tables 5 and 6 is
greater than we would like. A separate experiment con-
figured with LSM and Netfilter butwithout the Netfil-
ter LSM hooks showed the more desirable 1–2% perfor-
mance overhead. This is consistent with the worst case
5% overhead in TCP select observed in Section 5.2.1,
and identifies the Netfilter LSM hooks as critical for op-
timization.

Connection rate measured in connections per second.
Server Server

Number connection connection
of rate rate %

clients 2.5.7 2.5.7-SEL Overhead
8 916.56 766.58 16.4%
16 917.64 766.48 15.5%
24 917.44 765.56 16.6%
32 918.91 764.80 16.8%

Table 7:UP Webstone results comparing SELinux to standard ker-
nel.

Connection rate measured in connections per second.
Server Server

Number connection connection
of rate rate %

clients 2.5.7 2.5.7-SEL Overhead
8 1206.05 949.56 21.3%
16 1206.74 949.74 21.3%
24 1214.54 952.28 21.6%
32 1207.30 956.76 20.1%

Table 8:SMP Webstone results comparing SELinux to standard ker-
nel.

The UP benchmark data in Table 7 shows that SELinux
imposes about 16% overhead on connection rate, and we
found similar overhead in throughput. The SMP bench-
mark data in Table 8 shows about 21% overhead on con-
nection rate, and we found similar overhead in through-
put. The greater overhead for the SMP test is likely due
to locking issues.Notethat these overhead rates are spe-
cific to the SELinux module (a particularly popular mod-
ule) and that performance costs for other modules will
vary.

6 Discussion

Given that LSM set out to satisfy the needs of a collec-
tion of other independent projects, it is understandable
that the result produced some emergent properties.

Many security models require some way to associate se-
curity attributes to system objects. Thus LSM attaches
security fields to many internal kernel objects so that
modules may attach and later reference the security at-
tributes associated with those objects.

It is also desirable topersistentlybind security attributes



to files. To do so seamlessly requiresextended attribute
file system support, which enables security attributes
to be bound to files on disk. However, supporting ex-
tended attributes is a complex issue, requiring both sup-
port for extended attributes in the filesystem [22], and
support for extended attributes in the Linux kernel’s VFS
layer. LSM mediates all VFS extended attribute func-
tions, such as creating, listing and deleting extended at-
tributes. However, extended attribute support is new to
the Linux kernel and is not well-supported in all filesys-
tems. Modules that need persistent extended attributes
can resort to using meta-files [44, 29] when extended at-
tribute support is missing from the filesystem.

In attempting to provide a pluggable interface for secu-
rity enhancements, it is tempting to considercompletely
modularizing all security policy decisions, i.e. moveall
kernel logic concerning access control out of the kernel
and into a default module. This approach has significant
benefits beyond simple modular consistency: in particu-
lar, it would make it much easier to provideauthoritative
hooks instead ofrestrictivehooks, which in turn would
enable a broader variety of modules (see Section 3).

However, we chosenot to modularize all security deci-
sions, for pragmatic reasons. Current Linux access con-
trol decisions are not well isolated in the kernel; they
are mingled with other error checking and transforma-
tion logic. Thus a patch to the Linux kernel to remove
all access control logic would be highly invasive. Im-
plementing such a change would almost certainly entail
security bugs, which would not be an auspicious way to
introduce LSM to the greater Linux community.

Therefore, we deferred the complete modularization of
all access control logic. The current LSM implements
much less invasive restrictive hooks, providing a min-
imally invasive patch for initial introduction into the
Linux community. Once LSM is well established, we
may revisit this decision, and propose a more radical
modularization architecture.

Finally, in designing the LSM interface, we were dis-
tinctly aware that LSM constitutes an API, and thus must
present a logically consistent view to the programmer.
The LSM interface constitutes not only the set of hooks
needed by the modules we intended to support, but also
the logical extension of such hooks, such that the inter-
face is regular. Where possible, special cases were gen-
eralized so that they were no longer special.

7 Related Work

Section 7.1 describes the general area of extensible ker-
nels in the LSM context, and Section 7.2 describes work
specifically related to generic access control frame-
works.

7.1 Extensible Kernel Research

There has been a lot of operating systems research in the
last 20 years on extensible systems. Following the ba-
sic idea of microkernels (which sought to componentize
most everything in the kernel) came extensive efforts to
build more monolithic kernels that could be extended in
various ways:

• Exokernel was really just a logical extension of the
microkernel concept [16]. The base kernel pro-
vided no abstraction of physical devices, leaving
that to applications that needed the devices.

• SPIN allowed modules to be loaded into the ker-
nel, while providing for a variety of safety prop-
erties [7]. Modules were to be written in Modula-
3 [35], which imposed strong type checking, thus
preventing the module from misbehaving outside of
its own data structures. SPIN “spindles” also were
subject to time constraints, so they could not seize
the CPU. Abstractly, spindles would register to “ex-
tend” or “specialize” kernel events, and would be
added to an event handling chain, rather similar to
the way interrupts are commonly handled.

• SCOUT was designed to facilitate continuous
flows of information (e.g. audio or video streams),
and allowed CODEC stages to be composed
into pipelines (or graphs) of appropriate compo-
nents [34].

• Synthetixsought to allow applications tospecialize
the operating system to their transient needs [38].
“Specialization” meant optimization with respect to
“quasi-invariants”: properties that hold true for a
while, but eventually become false. In some cases,
quasi-invariants were inferred from application be-
havior, such as a process opening a file, result-
ing in a specializedread() system call optimized
for the particular process and file. In other cases,
quasi-invariants were specified to the kernel using
a declarative language [11, 43].



All of these extension facilities provided some form of
safety, to limit the potential damage that an extension
could impose on the rest of the system. Such safety
properties, for example, might allow a multimedia ap-
plication to extend the kernel to support better quality of
service, while limiting the multimedia extension so that
it does not accidentally corrupt the operating system.
The need for such safety in kernel extensions is anecdo-
tally confirmed by the phenomena of unstable Microsoft
Windows systems, which are allegedly made unstable in
part due to bad 3rd party device drivers, which run in
kernel space.

In contrast, LSM imposes no restrictions on modules,
which are (normally) written in C and have full, un-
typed access to the kernel’s address space. The only
“restriction” is that hooks are mostly of the “restrictive”
form, making it somewhat more difficult to erroneously
grant access when it should have been denied. Rather,
LSM depends primarily on programmer skill (modules
need to be written with the diligence of kernel code) and
root authority (only root may load a module).

It should be noted that LSM can get away with this weak
module safety policypreciselybecause LSM modules
are intended to enforce security policy. Unlike more
generic kernel extensions such as QoS, the system is en-
tirely at the mercy of the security policy. An admin-
istrator who permits an LSM module to be loaded has
already made the decision to trust the module providers
to be both well-intentioned and skilled at programming,
as bugs in a security policy engine can have catastrophic
consequences. Further sanity checks on LSM modules
are superfluous.

It should also be noted that this is the traditional view of
Linux modules: that loading modules into the kernel is
privileged for a reason, and that care should be taken in
the writing and selection of kernel modules. LSM mod-
ule developers are cautioned to be especially diligent in
creating modules. Not only do LSM modules run with
the full authority of all kernel code, but they are espe-
cially trusted to enforce security policy correctly. Third
party review of LSM modules’ source code is recom-
mended.

Finally, we note that LSM is much less intrusive to the
Linux kernel than the other large modular interface: VFS
(Virtual Filesystem). The need for support for multi-
ple filesystems in Linux was recognized long ago, and
thus a rich infrastructure was built. The VFS layer of
the kernel abstracts the features of most filesystems, so
that other parts of the kernel can access the filesystem
without what knowing what kind of filesystem is in use.

Anecdotally, the VFS layer is reported to be a nest of
function pointers that was very difficult to debug. This
difficulty may explain, in part, why the Linux commu-
nity would like the LSM interface to be as minimally
intrusive as possible.

7.2 General Access Control Frameworks

The challenge of providing a highly general access con-
trol framework has been previously explored in the Gen-
eralized Framework for Access Control (GFAC) [1] and
the Flask architecture [41]. These two architectures
have been implemented as patches for the Linux ker-
nel by the RSBAC [37] and the SELinux [29] projects.
The Medusa [32] project has developed its own general
access control framework [46] and implemented it in
Linux. Domain and Type Enforcement (DTE) [4] pro-
vides support for configurable security policies, and has
also been implemented in Linux [23].

Like these prior projects, LSM seeks to provide general
support for access control in the Linux kernel. However,
the goals for LSM differ from these projects, yielding
corresponding differences in the LSM framework. In
particular, the emphasis on minimal impact to the base
Linux kernel, the separation of the capabilities logic, and
the need to support security functionality as kernel mod-
ules distinguish LSM from these prior projects.

Additionally, since LSM seeks to support a broad range
of existing Linux security projects, it cannot impose a
particular access control architecture such as Flask or
the GFAC or a particular model such as DTE. In order to
provide the greatest flexibility, LSM simply exposes the
kernel abstractions and operations to the security mod-
ules, allowing the individual modules to implement their
desired architecture or model. Similarly, since the var-
ious projects use significantly different approaches for
associating security attributes with files, LSM defers file
labeling support entirely to the module. For systems
like SELinux or RSBAC, this approach introduces a new
level of indirection, so that even the general access con-
trol architecture and the file labeling support would be
encapsulated within the module rather than being di-
rectly integrated into the kernel.



8 Conclusions

The Linux kernel supports the classical UNIX security
policies of mode bits, and a partial implementation of the
draft POSIX.1e “capabilities” standard, which in many
cases is not adequate. The combination of open source
code and broad popularity has made Linux a popular tar-
get for enhanced security projects. While thisworks, in
that many powerful security enhancements are available,
it presents a significant barrier to entry for users who are
unable or unwilling to deploy custom kernels.

The Linux Security Modules (LSM) project exists to
ease this barrier to entry by providing a standard load-
able module interface for security enhancements. We
presented the motivation, design, and implementation of
the LSM interface. LSM provides an interface that is
rich enough to enable a wide variety of security mod-
ules, while imposing minimal disturbance to the Linux
source code, and minimal performance overhead on the
Linux kernel. Several robust security modules are al-
ready available for LSM.

LSM is currently implemented as a patch to the standard
Linux kernel. A patch is being maintained for the latest
versions of the 2.4 stable series and the 2.5 development
series. The goal of the LSM project is for the patch to
be adopted into the standard Linux kernel as part of the
2.5 development series, and eventually into most Linux
distributions.
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