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Abstract

Anomaly detection is a key element of intrusion-
detection and other detection systems in which pertur-
bations of normal behavior suggest the presence of in-
tentionally or unintentionally induced attacks, faults,
defects, etc.  Because most anomaly detectors are based
on probabilistic algorithms that exploit the intrinsic
structure, or regularity, embedded in data logs, a fun-
damental question is whether or not such structure in-
fluences detection performance. If detector perfor-
mance is indeed a function of environmental regularity,
it would be critical to match detectors to environmental
characteristics. In intrusion-detection settings, however,
this is not done, possibly because such characteristics
are not easily ascertained.  This paper introduces a
metric for characterizing structure in data environments,
and tests the hypothesis that intrinsic structure influen-
ces probabilistic detection.  In a series of experiments,
an anomaly-detection algorithm was applied to a
benchmark suite of 165 carefully calibrated, anomaly-
injected datasets of varying structure.  Results showed
performance differences of as much as an order of mag-
nitude, indicating that current approaches to anomaly
detection may not be universally dependable.

Keywords: Anomaly detection, benchmarking, com-
puter security, empirical methods, intrusion detection.

1. Introduction
Detection of anomalies in data is a core technology
with broad applications:  detection of clandestine
nuclear blasts using seismic data [17], detection of
cardiac arrhythmias in ECG data [1], detection of
bridge failures (e.g., cracks, structural deteriorations,
etc.) from vibration data, discovering semiconductor
defects from plasma-etch data, detecting network
faults from traffic data [11], ascertaining user-
interface design defects from user data [10], etc.
Over the last dozen years, another application has
emerged: detection of unauthorized or malicious
users on computer hosts and networks, often called
intrusion detection.

Intrusion-detection systems have become available
commercially over the past few years [2, 4, 14]). Al-
though their deployment in the marketplace suggests
that these systems benefit their users, there is almost
no data measuring their effectiveness. The same
paucity of evaluation results plagues the research
arena [7, 8, 13, 20].

Evaluating detection systems is a difficult undertak-
ing, complicated by several common practices.  For
example, most evaluations are done according to a
black-box testing regime (e.g., [7]). While black-box
testing can demonstrate the overall performance
capabilities of a detection system, it reveals almost
nothing about the performance of components inside
the black box, such as how phenomena affecting the
components (e.g., a feature extractor or an anomaly
detector) or the interactions among them will in-
fluence detection performance.  If the performance
aspects of components like anomaly detectors are not
fully understood, then the performance aspects of any
system composed of such elements cannot be under-
stood either.

This paper proposes benchmarking as an approach
toward understanding the performance characteristics
of anomaly-detection algorithms applied to categori-
cal data. Because operational environments are un-
likely to be identical in their characteristic signal and
noise structures across different application en-
terprises, the benchmarking scheme incorporates
datasets that vary in these characteristics, as measured
by entropy, across a continuum from zero to one. The
paper shows how a series of benchmark datasets was
constructed, both for training and test data, and il-
lustrates how the datasets were varied across a con-
tinuum of intrinsic structure to reveal the influence of
that structure on the performance of an anomaly
detector.

2. Problem and approach
The principal problem addressed here is the expec-
tation that an anomaly detector will perform
uniformly, irrespective of the environment in which it
is deployed. Benchmarking seeks to address the
problem of evaluating detectors across different en-
vironments.
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Environment variation. All anomaly-detection al-
gorithms operate on data drawn from some kind of
computing domain or environment, e.g., a process-
control environment, an e-commerce environment, an
air force base environment, etc. Embedded in each
type of environment is a particular structuring of the
data that is a function of the environment itself.  Be-
cause most, if not all, anomaly-detection algorithms
depend on the intrinsic structure embedded in the data
upon which they operate, it seems reasonable to as-
sume that differences in such structure would in-
fluence detector performance.  Structure can be con-
ceptualized as regularity, or the extent to which a se-
quence is either highly redundant or highly random.
High-regularity data contain redundancies that
facilitate predicting future events on the basis of past
events; low-regularity data impede prediction.

Approach. Benchmarking is proposed as a
methodology that can provide quantitative results of
running an anomaly detector on various datasets con-
taining different structure.  Sets of benchmark data,
each set with its own regularity, measured in ten
equal steps from 0 to 1, were constructed and used to
test anomaly-detection capabilities. Calibrated
anomalies were injected into test sets at specified in-
tervals.

Hypotheses. The work described in this paper tests
the hypotheses that (1) differences in data
regularities, do influence detector performances, and
(2) such differences will be found in natural environ-
ments. If the working hypotheses are true, there are
certain implications for anomaly detection, par-
ticularly in an information-assurance regime such as
intrusion detection. First, the common practice of
deploying a particular anomaly detector across
several environments may have unintended con-
sequences on detection outcomes, such as increasing
false-alarm rates; second, detecting masqueraders by
training on a user’s behavior in one time period, and
testing against that same user’s behavior in another
time period, may encounter difficulties if the environ-
mental characteristics differ significantly among the
several time periods. The extent to which such dif-
ferences influence detector outcomes may be a func-
tion of the environment itself.

Anticipated results. If the first hypothesis is true
(differences in data regularities do influence detector
performances), then testing an anomaly detector
across a range of environmental or behavioral
regularities should produce a range of relative operat-
ing characteristic (ROC) curves; otherwise, the ROC
curves should all be superimposed upon one another.
If the second hypothesis is true (characteristic dif-
ferences will be found in natural environments), then
there is convincing evidence that a given anomaly
detector cannot be moved arbitrarily from one en-
vironment to another without accommodating the dif-
ferences in regularity (provided that the first
hypothesis is true).

3. Structure in categorical data
The idea of intrinsic structure, or regularity, in a
categorical data sequence is intuitive. A structured
sequence has a definite organizational pattern.  That a
sequence’s structure is intrinsic means that it is the
essential nature of the sequence to contain such struc-
ture, on the basis of regularities in the process that
generated the sequence. Such structure spans a con-
tinuum from highly irregular (e.g., random, no ap-
parent structure) to highly regular (e.g., perfectly sys-
tematic, readily apparent structure).  Examples of se-
quences with systematic, or regular, structure are: A
A A A A ... or A B A B A B ... .  The most interesting
examples lie somewhere between the extremes of
perfect regularity and perfect randomness.

The usual measure of randomness (uncertainty) in a
sequence, X, of categorical data, is entropy, some-
times called the Shannon-Wiener Index [18]. Be-
cause entropy has no upper bound (in terms of bits),
and because it is desirable to measure the randomness
of a sequence on a 0-1 scale, relative entropy is used.
Relative entropy is simply the entropy of the se-
quence divided by the maximum entropy for that se-
quence.

Some events in data sequences necessarily precede
others, introducing a notion of sequential dependence
amongst the elements of the sequence. Conditional
relative entropy reflects this sequential dependency
by accounting not only for the probability of an event,
but also for the probability of its predecessor.  These
concepts are covered in most texts on information
theory, such as [3]. Conditional relative entropy is
used to measure the structure present in the
benchmark datasets presented in this paper.

Many anomaly-detection systems depend on the
presence of regularities in data (e.g., [5, 6, 15, 20]).
In the remainder of this paper, the terms regularity or
regularity index refer to the sequential dependencies
of sequences as measured by entropy. A regularity
index of 0 indicates perfect regularity (or redun-
dancy); an index of 1 indicates no regularity, i.e., ran-
dom.

4. Constructing the benchmark datasets
This section provides details of the benchmarking
process, followed by an experiment validating the
hypothesis that detector performance is influenced by
intrinsic structure in background data.

In general, three kinds of data need to be generated:
training data (normal background), testing data (back-
ground plus anomalous events), and the anomalies
themselves. In benchmarking parlance, the training
and testing data constitute the anomaly-detector
workload. Several factors influence the composition
of a sequence: alphabet size, alphabet symbols,
regularity or randomness, sequential dependencies
among symbols or subsequences, and length.  This
section describes how the datasets were generated
and subsequently combined with anomalies to form
the benchmark datasets.
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4.1. Defining the sequences
The benchmark training datasets are made up of five
suites of eleven files each, totaling 55 files. Each
suite used a predetermined alphabet size whose con-
stituency was held constant within the suite. Each
suite contained eleven unidimensional datasets with
regularities (conditional relative entropies) equally
spaced at 0.1 intervals, from 0 to 1 inclusive.

Alphabet size. Alphabet sizes were 2, 4, 6, 8, and
10, yielding the five aforementioned suites. Low-
order alphabets have the advantage that almost all
operations on them are computationally easy; high-
order alphabets, e.g., 10 or more, require significantly
more computation, and hence the experiment was
limited to a maximum alphabet size of 10.

Alphabet symbols. Symbols for categorical data can
be almost anything.  In this experiment, symbols were
drawn from the standard English alphabet (e.g., A, B,
C, D, E, F for alphabet size 6) for simplicity’s sake.
The symbols could have been system kernel-call
names, but such names are longer than a single ele-
ment, and hence slightly clumsier to handle.

Regularity. Regularity (conditional relative entropy)
for a sequence is determined by the transition matrix
from which the sequence is generated.  There were
eleven such matrices, one for each regularity level
from 0 to 1 in steps of 0.1.

Sequence length. Because the detector (described
later) used in this experiment is based on a moving
window that encompasses n sequence elements at
once, the datasets needed to be long enough to con-
tain all possible n-grams for a given alphabet to
guarantee equiprobable occurrence of n-grams.
When the sequence does not contain all possible n-
grams, empirical regularity (calculated from the data)
will reflect this, and the equiprobable case will be im-
possible to obtain. For this reason, all datasets con-
tained 500,000 characters (or events).

4.2. Defining the anomalies
An anomalous event is a surprising event.  An event
is a subsequence of one or more symbols.  The extent
to which an anomaly is considered surprising is deter-
mined by the anomaly detector itself, often on the
basis of the expected probability of encountering the
event. The anomalous events defined here are con-
sidered to be juxtapositional anomalies -- events jux-
taposed in unexpected ways.  Another type of
anomaly, not considered here, is the temporal
anomaly, which manifests as unexpected
periodicities. Benchmark datasets could be built for
either type of anomaly.  Several types of juxtaposi-
tional anomalies are defined for this study:

Foreign-symbol anomalies. A foreign-symbol
anomaly contains symbols not included in the
training-set alphabet. For example, any symbol, such
as a Q, not in the training-set alphabet comprised of
A B C D E F would be considered a foreign symbol.
Detection of such anomalies should be relatively
simple.

Foreign n-gram anomalies. An n-gram that contains
a sequence not found in any n-gram in the training
dataset (but not containing a foreign symbol) is con-
sidered a foreign n-gram, because it is foreign to the
training dataset. A foreign n-gram anomaly contains
n-grams not present in the training data. For example,
given an alphabet of A B C D E F, the set of all
bigrams would contain AA AB AC ... FF, for a total
of 62=36 (in general, for an alphabet of α symbols
and an n-gram of size n, total possible n-grams = αn).
If the training data contained all bigrams except CC,
then CC would be a foreign n-gram.  Note that if a
foreign symbol appears in an n-gram, that would be a
foreign-symbol anomaly, not a foreign n-gram
anomaly. In real-world data it is quite common that
not all possible n-grams are contained in the data,
partly due to the relatively high regularity with which
computers operate, and partly due to the large al-
phabets in, for example, kernel-call streams.

Rare n-gram anomalies. A rare n-gram anomaly
contains n-grams that are infrequent in the training
data. In the example above, if the n-gram AA con-
stituted 96% of the events in the sequence, and the
n-grams BB and CC constituted 2% each, then BB
and CC would be rare n-gram anomalies.  An n-gram
whose exact duplicate is found only rarely in the
training dataset is called a rare n-gram.  The concept
of rare is determined by a user-specified threshold.
A typical threshold might be .05, which was the
threshold used to generate the data sets for the present
work. A threshold of .05 means that a rare n-gram
would have a frequency of occurrence in the training
data of not more than 5%.  The selection of this
threshold is arbitrary, but should be low enough for
"rare" to be meaningful.

4.3. Generating the training and test data
The training data are generated from 11 transition
matrices that produce the desired regularities for the
sequences such that the regularity indices of the se-
quences run, in increments of .1, from 0 to 1 in-
clusive. The transition matrix is entered at a random
point, determined by a random number generator.
Once inside the transition matrix, each transition is
determined by a random number between 0 and 1.
To permit using any random number generator, par-
ticularly one that has been certified to be as random
as technically possible [9], the 500,000 random num-
bers are computed first, stored in a table, and then
used in determining the matrix transitions.  In this
way, the random-number sequence can be retained, if
need be, to enable perfect repetition of the ex-
perimental sequence.  The seed used for generation is
different from the one used to enter the table, simply
to go as far as possible to eliminate dependencies in
the generation scheme. A single seed is used to
generate data for all regularities.  The seed is a 4-digit
random integer produced from the Perl rand() func-
tion. Test data were generated in the same way in
which the training data were generated, except that
different random-number-generator seeds were used
for generating the test data.  Using new seeds for the
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test data guarantees that the generated sequences will
retain the same intrinsic structure as seen in the train-
ing data, while ensuring that the specific order of
symbols is not identical to that in the training data.

4.4. Generating the anomalies
A pool of anomalies is generated independent of
generating the test data.  A separate pool is generated
for each anomaly type. After the pool is prepared,
anomalies are drawn from the appropriate pool, and
injected into the test data in accordance with the plan
detailed in Section 4.5. Each of the anomaly types is
generated in a different way, although the size of each
anomaly is selected according to common criteria that
reflect experimental goals.  In the present case, the
anomaly size was chosen to be 4, because the window
parameter of the detector was set to 4.  The paragraph
below details the injection process for the various
anomaly types.

4.5. Injecting anomalies into test data
The test data were generated without anomalies, as
described in Section 4.3, and anomalies were injected
into the test data later.  The system determines the
maximum number of anomalies to inject.  This num-
ber is arbitrary, but is kept low enough so that the
injected anomalies do not change the regularity of the
test data.  In practice, a heuristic is used that limits
the number of injection replacements to not more
than .24% of the uninjected test data.  As a simple
example, if the test data contains 500,000 elements,
then .24% of these would be 1200 events which could
be replaced by anomalies.  If the anomaly size is 4,
then only 300 4-gram anomalies could be injected
into the test data.  An injection interval is selected
that determines the minimum and maximum spacing
between anomalies. An anomaly is selected at ran-
dom, with replacement, from the anomaly pool
(foreign symbol, foreign n-gram or rare n-gram) and
injected according to the constraints imposed by the
injection interval. Each injected n-gram anomaly
replaces n elements of the test sequence. After the
injections have been done, the regularity of the test
sequence is recalculated.  If the recalculated
regularity differs from the target regularity by more
than .05, the injections are backed out, and the
process is repeated using a broader spacing interval.
Of course it is expected that the change in regularity
will be larger when injecting foreign symbols.

5. Experiment one: synthetic benchmarks
This experiment tests the hypothesis that the perfor-
mance of an anomaly detector is influenced by intrin-
sic structure (i.e., regularity as measured by con-
ditional relative entropy) in data sequences; that is,
the hypothesis that the nature of "normal" back-
ground noise affects signal detection. If the
hypothesis is correct, then the same anomalies, in-
jected into datasets that differ only in regularity,
would be expected to generate different hit, miss and
false-alarm rates; i.e., the ROC curve for a given
regularity should not be superimposed on the ROC

curve for any other regularity.  If the hypothesis is not
true, then all ROCs should be superimposed on one
another. A noteworthy implication of this hypothesis,
if true, is that if intrinsic structure does influence
anomaly-detection capability, the performance of a
given anomaly detector will vary across datasets of
differing regularity, and as such it cannot be expected
that the observed performance on one dataset will ex-
tend to datasets of other regularities, even if the
detector is retrained. This means that one cannot use
the same detector in different computational environ-
ments (e.g., research enterprises, educational en-
terprises, commercial enterprises, military bases, etc.)
where different dataset regularities prevail, and ex-
pect to obtain results of the same level of accuracy for
each environment.  Simple retraining will not suffice.
This is in absolute contrast to current practice.

5.1. Data sets
The data used were the calibrated benchmark datasets
described in Section 4.  The rare-4-gram anomalies
had less than 5% occurrence in training datasets.  For
each alphabet size, all variables were held constant
except for dataset regularity. There were 275
benchmark datasets total, 165 of which were
anomaly-injected.

5.2. Description of anomaly detector
The anomaly detector used in this experiment was
designed to detect anomalous subsequences em-
bedded in longer sequences of categorical data.  The
choice of anomaly detector was arbitrary among the
class of detectors that are probabilistically based.  It
works in two phases: a learning phase and a detection
phase. Simply described, in the learning phase it con-
structs an internal table containing the probability of
occurrence of every unique n-gram in the training se-
quence (e.g., normal background data), where n is
user-specified. In the detection phase, it is given a
test sequence consisting of normal background data
(noise) mixed with injected anomalous-event sub-
sequences (signal.)  As the detector scans the test se-
quence, it raises an alarm each time it encounters an
unusual event.  The extent to which an event is un-
usual is the extent to which the probability of an
event (i.e., subsequence) exceeds the probability of
that event as stored in the table constructed during the
training phase.  A user-specified threshold between 0
and 1 determines the boundary above which an event
is considered anomalous. The tunable parameters of
the anomaly detector are window size (set to 4) and
anomaly threshold (varied through the range 0-1). A
window size of 4 means that the detector determines
the level of surprise at a particular event, given the
three events that preceded it; i.e., the detector is sen-
sitive to sequential dependency in the data. A similar
anomaly detector was reported by Nassehi [15]. Note
that this kind of detector is designed to detect jux-
tapositional anomalies; it may be blind to certain
kinds of temporal anomalies, unless a different en-
coding of input data stream is used. The same
anomaly detector was used in all experiments.
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5.3. Training the detector
Training, for any probabilistically-based detector,
consists of establishing a representation of normal be-
havior in the detector’s tables or data structures.
Training the detector was done by running the train-
ing portion of the detection program on each of the 11
training datasets in each alphabet size; a total of 55
training sessions were conducted.  Resultant data
structures for each of the training sessions were
stored for later use in detection.

5.4. Testing the detector
Testing the detector on test data consists of running
the trained detector, with its data structures fully
populated from the normal (training) data, on the test
datasets. The detector is expected to indicate the
presence of the injected anomalies, without falsely in-
dicating subsequences that are not anomalous, and
without missing any of the injected anomalies. Train-
ing and testing were done on data sets of the same
regularity. Detection thresholds were swept through
the range of 0.0 to 1.0 to yield different outcomes,
depending on the detector’s sensitivity at each
threshold. For each of the 5 alphabet sizes, the detec-
tor was run on 33 test datasets, 11 for each anomaly
type. Outcomes are presented in Section 5.6.

5.5. Scoring the detection outcomes
Several aspects of scoring are considered: exact
determination of event outcomes, ground truth, detec-
tion threshold, anomaly scope, and presentation of
results.

Event outcomes. The primary scoring task is to
determine whether or not each event in the input
datastream is correctly identified by the detector out-
put in terms of hits, misses and false alarms.  This is
done by matching detector outcomes against a
ground-truth oracle, or key.

Ground truth. Ground truth is ascertained automati-
cally by the injection program, which produces a key
to be compared against detector outcomes. The key
identifies each event in the test dataset, showing the
positions of injected events, their types (foreign-
symbol, foreign n-gram, etc.), and their scope, as dis-
cussed above.

Threshold. The anomaly threshold determines the
magnitude above which the anomaly is taken
seriously (i.e., an alarm is raised), and below which
the anomaly is disregarded. The magnitude, or
surprise level, of an anomaly can vary from 0 to 1,
where 0 is completely unsurprising and 1 is astonish-
ing. In practice, one may decide that somewhere in
between is the best set point for a particular environ-
ment coupled with a particular anomaly detector.  For
the detector used in the present study, the anomaly
threshold was varied through its 0-1 range.

Scope. The scope of an anomaly refers to the loca-
tions in the test data where an anomaly would be
detected. For example, if a 4-element anomaly had

been injected at test-data location 101, then the basic
scope of the anomaly would cover the four locations
actually covered by the injected anomaly (101, 102,
103, and 104). For detectors that are sensitive to se-
quential dependencies, the scope of the anomaly may
extend beyond the basic scope to cover residual
anomalies. For example, the 4-gram AAAA would
not only be anomalous by itself, but also in juxtaposi-
tion with whatever followed it in the data sequence.
The residual anomalies would cover the distance that
the detector window extends past the actual injected
4-gram; if the detection window was set to 4, then the
scope would extend 3 elements beyond the actual
anomaly, for a total scope of 7.  Any detection within
the basic scope or extended scope is considered a cor-
rect detection.

A correct detection, or hit, occurs when any point in
the basic or extended scope of an injected anomaly is
identified as anomalous. A false alarm is any detec-
tion that falls outside the total scope of the injected
anomaly. A stricter scoring would count only detec-
tions in the basic scope, in which case detections in
the extended scope would be regarded as false-alarm
errors. A miss is the absence of a detection within the
basic (not extended) scope of the injected anomaly.

Presentation of results. Experimental outcomes
were analyzed graphically, using a technique from
signal detection theory called ROC analysis -- the
preferred method for measuring the accuracy of diag-
nostic systems [19]. Note that diagnosis is a clas-
sification process that assigns outcomes to predeter-
mined classes; in the current case there are exactly
two alternatives: each event in the test sequence is
either anomalous or it is not. ROC analysis compares
two aspects of detection systems: percent correct
detections and percent false detections (sometimes
called hits and false alarms, respectively, or true posi-
tives and false positives).  The methodology, based
on statistical decision theory, was originally
developed in the context of electronic signal detection
(e.g., radar) [16]. A detector operates through a range
of sensitivities; the higher the sensitivity, the more
likely the possibility of confusing signal and noise
(e.g., anomaly and background), resulting in deci-
sions that either identify noise as signal (false alarm)
or, at the other extreme, fail to identify signal for
what it is (miss). One wishes to find the point, be-
tween these extremes, at which to set the sensitivity;
this is achieved by incrementing through a series of
operating sensitivities, thereby sweeping out a rela-
tive operating characteristic (ROC) curve, with false
alarms on the X-axis and hits on the Y-axis.  As can
be seen in Figure 5-1, the best operating point lies at
the upper left (100% detection, 0% false alarms), and
the worst at the lower right (all events falsely iden-
tified). The diagonal from [0,0] to [100,100] is the
line indicating random guessing.  Selecting the best
operating point on the ROC curve is a matter of deter-
mining the relative cost of the two kinds of errors --
false alarms vs. missed detections, but this is outside
the scope of the present work.
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5.6. Results
A total of 165 separate tests was conducted, using 5
alphabets, 3 anomaly types, and 11 regularities.
Results were graphically very similar across all al-
phabets and all regularities.  Consequently, only one
result, typical of the 165, will be presented.  Figure
5-1 shows the ROC curve family for alphabet 6.
Notice in the figure that the ROC curve for regularity
index 0 (completely regular) would be a point at
coordinate [0,100], indicating perfect performance, if
there had been any rare-n-gram anomalies at
regularity 0; by definition there could not have been.
Also, the ROC curve for regularity-index 1 (com-
pletely random) is the 45-degree diagonal that, in
signal-detection theory, represents pure guessing.
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Figure 5-1: Synthetic benchmark datasets: ROC
curve family; anomalies drawn from 5% least-
probable 4-grams; alphabet 6, detector window 4,
detector thresholds swept 0.0 to 1.0,  data
regularity (measured as entropy) indices 0.0 to
1.0. Different line types (dotted, dashed, etc.) are
for visual aid only.  Line across top appears solid
only because many lines overlap.

It is noteworthy that none of the curves overlap until
they reach the 100% hit rate, demonstrating that
regularity does influence detector performance.  If
regularity had no effect, the fan effect clearly evident
in the figure would not be present.  What appears to
be a solid line across the top of the figure is not ac-
tually solid; it’s the superimposition of several curves
at the 100% detection level.  The hypothesis that
regularity influences detector performance is con-
firmed.

Figure 5-2 shows the same results from another
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Figure 5-2: Synthetic benchmark data; false
alarms vs. regularity index; detection threshold
held constant at 0.6, 100% hit rate, no misses,
rare-4-grams, detection window 4.

perspective: the false-alarm rate rises as the regularity
index grows (i.e., the data become more and more
random). Each point on the graph indicates the false
alarm rate for each of the 11 datasets of increasing
regularity index (increasing randomness), with detec-
tion threshold held constant, using the lowest value at
which 100% hits could be achieved.  As regularity
degrades from highly regular (at the left) to highly
irregular (at the right), the false alarms rise sharply,
even though the detector did not miss any anomalous
events. The deterioration in detector performance
manifests as an increase in the false-alarm rate.  It is
important to note that the deterioration in detector
performance is attributed solely to changes in
regularity; nothing else in these experiments was
manipulated.

These results demonstrate, starkly, that training and
testing on datasets of the same regularity will
facilitate a particular hit vs.  false-alarm ratio; and
that that ratio may not be similarly achieved when the
same detector (using the same parameters) is trained
and tested on datasets of different regularities.  The
results achieved on one set of data are very different
from those achieved on another, and this difference
grows substantially as the regularity index increases.
The same detector cannot be expected to achieve the
same results when used on datasets of differing
regularities. Note that if regularity in a single dataset
is nonstationary, detector performance will vary even
within the dataset. This suggests that regularity needs
to be tracked in real time, possibly changing either
the nature of the detector in response to changes in
regularity, or shifting confidence in the detector’s
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results. Although these particular results are for the
probabilistically-based detector used in this work,
other detector architectures may produce similar dif-
ferences, possibly manifested in different ways.

6. Experiment two: using real-world data
Experiment one demonstrated that intrinsic structure
in data, as indicated by the regularity index, influen-
ces anomaly-detection performance.  The results,
however interesting, are of little use unless they can
be grounded in naturally-occurring data; i.e., if
natural data show differences in regularities, then per-
haps regularity can be used as one predictor of detec-
tion performance.  The results shown in this section
demonstrate clearly, based on data obtained from a
natural domain, that regularity is a characteristic of
natural data, and that regularities can be different
even within a single environment.

6.1. Natural dataset: undergraduate machine.
BSM1 audit data were taken from an undergraduate
student computer running the Solaris operating sys-
tem. System-call events were extracted for each user
session in the 24-hour monitoring period. Most users
produced only a single session, but in cases for which
multiple sessions existed for the same user, these ses-
sions were concatenated into one session for the pur-
pose of calculating regularities over a 24-hour period.
These data were examined with the objective of
determining whether or not data in different user en-
terprises exhibit different regularities.

Results. The regularities of the 58 user sessions ac-
tive on one day are illustrated in Figure 6-1.  The
regularities differ considerably with respect to one
another, illustrating that different users have different
behaviors, at least with respect to the regularities of
their system-call streams. Although there has long
been an intuitive understanding that user behaviors
differ, measures of regularity show these differences
quantitatively. Note that the range of differences
among user-session regularities equates to a dif-
ference in detector performance in the synthetic data
in terms of a false-alarm range of about 10%, sug-
gesting that using the same detector in different con-
ditions may not yield the expected results.

7. Conclusion
The principle objective of this paper has been to show
that intrinsic structure in data, as measured by con-
ditional relative entropy, will affect the performance
of anomaly detectors. This has been demonstrated
experimentally through the use of synthetic
benchmark datasets, generated so that each dataset
had a different, carefully measured regularity.
Regularity was manipulated in these datasets so that
anomaly detectors could be evaluated at the com-

1BSM is the Sun SHIELD Basic Security Module; it provides a
security-auditing subsystem for Solaris-based computers.
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Figure 6-1: Natural dataset: Solaris BSM data;
undergraduate machine; regularity indices for 58
undergraduate users.

ponent level, not at the system level.  In the experi-
ments conducted here, all variables were held con-
stant except regularity, and it was established that a
strong relationship exists between detector accuracy
and regularity.

Both of the main hypotheses were affirmed:
regularity does influence the performance of a
probabilistic detector in that false alarms rise sharply
as the regularity index rises; and regularity differen-
ces were found to occur in natural data.  There are
important implications of this work.  First, an
anomaly detector cannot be evaluated on the basis of
its performance on a dataset of one regularity, and be
expected to perform similarly on datasets of different
regularities, in contrast to current practice. Second,
differing regularities do not necessarily occur only
between different users or different environments;
they also occur within user sessions and among users,
indicating that shifting regularities may prevent effec-
tive anomaly-detection performance even within one
dataset. Overcoming this obstacle may require a
mechanism to swap anomaly detectors or change the
parameters of the current anomaly detector whenever
regularity changes.

Although it is beyond the scope of this paper, it can
be shown [12] that other types of anomaly detectors
(e.g., decision trees, neural networks, etc.) are
similarly affected by shifts of intrinsic structure in
data. In general, at least one of the quadrants of sig-
nal detection theory (hits, misses, false alarms or cor-
rect rejections) is affected by changes in regularity.
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