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Abstract

In this paper, we introduce the Non—Euclidean Ring Data Scram-
bler public—key cryptosystem, NERDS. This cryptosystem consists of
efficient linear algebra procedures and it’s security relies on different
problems in Algebraic Number Theory over orders of number fields,
such as the non—existence of division algorithms (nor efficient factor-
ization algorithms) over noneuclidean domains.

Keywords: Public-key Cryptography, Number fields, Computational Alge-
braic Number Theory.

1 Introduction

We deal with a specific task in cryptography, that of the construction and
discussion of a new public—key encryption scheme. NERDS was created to be
a secure encryption scheme and of a greater efficiency than the one achieved
by the public-key encryption schemes in use. The underlying idea towards
this end was that only a few multiplications (of height—controlled integers)
are needed for both the encryption and decryption processes. This feature
makes our scheme very efficient. In the construction of NERDS, and on this
account, we focused only on the security issue —while having the efficiency
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issue in mind. That is, the algorithms of encryption, decryption and key
generation we give are efficient but not optimally efficient.

Public—key cryptosystems where introduced in 1976 by Diffie and Hell-
man ([DH76a, DH76b|) and have been widely used ever since (see the survey
[Dif92] for a complete account). A public-key encryption scheme consists of
three algorithms: key generation, encryption and decryption. It is further-
more asked that the scheme consists of efficient procedures, and that it is
infeasible to violate the scheme’s security feature (see [Gol99]).

As for the efficiency issue, we measure the complexity of our algorithms
in number of arithmetic operations op € {+, —, x,+} over the ring of ra-
tional integers Z. We will not state the bit complexity of our algorithms.
However the bit complexity analysis can be easily derived from our results.
The encryption algorithm in NERDS can be carried out in 4D? arithmetic
operations (2D? multiplications and 2D? additions), and the decryption pro-
cess in 2D? + log, D arithmetic operations. The key generation cost will be
analyzed later on.

As for the security issue on our public-key encryption scheme, we can
only but point out infeasible ways of breaking our scheme to synthetize the
scheme’s impending security. Let us be more explicit. The cryptographic
tools in use nowadays rely on the intractability of different intractable compu-
tational problems (see [GJ79] for an introduction to intractability), with ex-
ception perhaps to the upcoming Quantum Cryptography protocols —if ever
implemented— such as the key—exchange protocol of [BB84| and [Wie83|.
This means that to tackle these cryptographic schemes it is sufficient (but
not necessary) to solve certain intractable problems. For example, the RSA
public-key cryptosystem [RSA78| is a widely used public-key encryption
scheme relying on the difficulty of factoring large integers, the McEliece cryp-
tosystem [McET78| relies on a problem in Algebraic Coding Theory, and Finite
Fields and Elliptic Curve cryptosystem, such as El Gammal (see [E1G85] and
|Kob87, Mil86]) rely on different variants of the Discrete Logarithm Problem.
The NERDS cryptosystem relies on (e.g., can be broken by solving efficiently)
one of different problems in Algorithmic Algebraic Number Theory such as
norm equation solving, or factorization in an order. We shall get deeper into
this in the Subsection 3.2.

This paper lurks with concepts in the realm of Cryptography and Al-
gebraic Number Theory, we refer the unschooled reader to the textbooks
[Sti95], [Gol99] or [Sch95] in the case of Cryptography and [Coh96| or [PZ98]
for (the algorithmic aspects of) Algebraic Number Theory.

We now give a concise introduction to the key generation, encryption and
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decryption procedures in the NERDS encryption scheme. In fact we give a
concise but slightly different explanation of the encryption and decryption
procedures. The NERDS underlying algorithms, together with that of key
generation, will be thoroughly explained in the next section.

A ring of algebraic integers A is made public. This ring A is chosen to
be isomorphic to the order Z[X]/(p(X)) of the number field @ [ X]/(p(X)),
where p € Z[X] is an irreducible (in @ [X]) univariate monic polynomial
with integer coefficients and of degree degp(X). We also ask of p(X) to
make Z[X]/(p(X)) a noneuclidean domain. Each element in A is represented
(in the basis induced by X in Z[X]/(p(X))) by a unique vector of rational
integers of a fixed length, namely of length degp(X). The cleartext, the
ciphertext, the private key, and the public key will all be elements belonging
to A. The public key consists of the elements M and b in A, where M is
such that b is not invertible in the quotient ring A/(M). The private key
consists of an element n in A, such that n is a divisor of the element M
in the public key, and b is invertible in the quotient ring A/(n). We note
that, under our hypotheses, A is noneuclidean and thus no algorithm for
calculating factorizations or common divisors (if existing) are known. So
that n cannot be efficiently recovered by an attacker.

We now describe how to encrypt and decrypt messages. The key gen-
eration method will be explained in Section 2.1 and studied in detail in
Section 3.1. Let m € A be the cleartext. To get the ciphertext ¢ we make
the multiplication b-m in A and then “take modules” in A/(M), i.e. c is
a pseudo-random representative in A of the class induced by b - m in the
quotient ring A/(M).

The recovery of the cleartext from the ciphertext is done as follows. Let ¢
denote the ciphertext. Since —by hypotheses— n divides M in A, it follows
that any congruence holding modulo (M) also holds modulo (n), and hence
the congruence ¢ = b-m modulo (n) holds in A. Being b invertible modulo (n),
the homothety endomorphism a — a - b of A/(n) induced by multiplication
by b is in fact a monomorphism.

Suppose that a representative b~ in A of the inverse b~1 of the class
b induced by b in A/(n) is also known by the private party. (Else it can
be calculated from b and n; see Lemma 1). To decrypt the ciphertext we
multiply ¢ by b~! in A, obtaining thus an element in A which belongs to the
class induced by the cleartext m in A/(n), i.e. b=' - ¢ = m modulo (n). The
conditions imposed to the previous objects (more specifically to n and m)
will ensure us that there is —and we can calculate— a unique representative
of m in a certain subset to which m belongs, hence we get m. Furthermore
we will show that m can be efficiently computed by linear algebra procedures
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and modular arithmetic (in 7).

We also remark that b is not invertible in the quotient ring A/(M), which
in turn implies that the homothety endomorphism of A/(M) induced by the
multiplication by b is not injective. Even more, to enhance the scheme’s
security, the parameters are chosen so that the fiber of every a € A/(M)
under the homothety homomorphism induced by multiplication by b from
A/(n) to A/(M) has a large number of elements.

2 The NERDS Cryptosystem

To make a detailed description of the NERDS encryption scheme we first
need to make some definitions and fix the notation. Let Z denote the ring
of rational integers, () denote the rational numbers field, and let C denote
the complex numbers field. Let X be an indeterminate over the field Q of
the rational numbers.

Let p(X) € Z[X] be an univariate monic polynomial with integer coef-
ficients, irreducible in Q [X]. Let D := degp(X) denote the degree of the
polynomial p(X). Suppose that the ring Z[X]/(p(X)) is a noneuclidean do-
main. Let & € Cbe any solution of the equation p(X) = 0. Let A :=7Z[¢] C C
be an order (not necessarily maximal) of the field defined by an embedding
of Q [X]/(f(X)) in C. Fix p(X), and subsequently the ring A, for the re-
mainder of this section. A discussion on the election of p(X) will be held in
the Subsection 3.1.

The ring A = ZZ[¢] is the plaintext, ciphertext space, and key space, as
well. Note that taking the order A as the plaintext set is not a cumbersome
choice, since A is Z-isomorphic (as a Z-module) to Z”. So that we may
construct efficient encoding and decoding functions Z” < A.

The elements in A (algebraic integers) are represented symbolically, and
not as approximations to the complex numbers they represent. We use
two different representation methods (see [Coh96]|). The first one, called
the standard representation in the literature, is the following. Let E :=
{1,€,...,6P71} denote the Z-module basis of A = Z[£] induced by the
primitive element £ of the extension Q [£]/Q . An element ¢« € A can
be expressed in this basis as a = ag +a; - € + -+ + ap_1 - P71, where
ag, - - .,ap_1 € Z are rational integers, then the standard representation of a
is (a)g = (ag,--.,ap_1)g. Secondly, the matriz (or regular) representation.
Let a be in A, then the homothety endomorphism of A induced by multipli-
cation by a is a Z-homomorphism, and can then be represented by a ZP*P
matrix in the basis F, which we call the matrix representation of A and de-
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note by [a]z. Notice that if we use the basis {1,...,£”~'} then the columns of
the matrix representation [a]g of a, are exactly (a)g, (a-&)g, .- ., (a-E°7Y)g.
Also, note that the determinant of this matrix [a|g is precisely the norm
det([a]g) = Norm(a).

2.1 Key Generation

The public and private keys will be represented by their matrix representa-
tion, that is matrices in Z”*”. To construct these matrices we want to chose
elements M, n,b in A, such that

e 1 is a divisor of M,
e b is invertible in the quotient ring A/(n), and

e b is not invertible in the quotient ring A/(M).

These elements (their representations) will be typically of a large height,
e.g. height 512 or 1024 depending on the security required. To make this
election, we generate random elements n, ¢, ¢ in the ring A of the required
height. Then, using the Lemma 1 bellow we check if ¢ and ¢ are invertible
in the quotient ring A/(n). If any of them is not invertible, say ¢, a new
element is chosen and its invertibility is tested (this process is repeated until
the two elements pass the invertibility test). Finally, we generate a random
element e in A and define M :=n-qg-eand b:=¢q-q.

Suppose that n =ng+---+np_1-£P~! is already chosen, and let [n]g de-
note its matrix representation. By Smith’s Normal Form theorem ([Smi61]),
there exist unimodular matrices U,V in Z”*P such that U[n]zV ! is a di-
agonal matrix U[n]gV ™" = diag(dy,...,dp), where di,...,dp € Z are pos-
itive integers uniquely determined by n, and such that d; divides d;y; for
1 < i < D. The elementary divisors di,...,dp of [n]xz and the transforma-
tion matrices U, V! can be calculated from the entries of the matrix [n]g
using the algorithmic techniques [HM91| (e.g., as in [Coh96]).

Once the elements n,q,q are elected, we define the private key to be
[n)g,U,dy,...,dp. And define the matrices [M]g and [b]g - U™ of Z"*P as
the public key, where U~ is the inverse of the transformation matrix U and
[b]g - U™! denotes the matrix multiplication of these matrices (the purpose
of this election will be clear in the section “Decryption"). Notice that the
elements ¢ and § are only used for this construction, but are no longer used for
encryption nor decryption. Furthermore, we may want to store additional
information, which can be derived from [n|g,U,ds,...,dp, as the private
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key to facilitate the decryption process. This additional information will be
specified in the “Decryption" (Section 2.3).

We now show how to make the invertibility test for ¢ and ¢. Further
indications for the selection of ¢ and ¢ will be given in the subsection “Pa-
rameters" (Subsection 3.1). Let n € A be fixed, and consider the quotient
ring A/(n). We need to answer whether an element in this quotient ring is
or is not invertible, i.e. if given b in A there exists an element a in A such
that the congruence a - b = 1 modulo (n) holds; in that case we also want to
calculate a representative in A of the element a.

The decision question can be easily tackled, for 6 will have an inverse
in A/(n) if their respective norms Norm(n), Norm(b)Z are relatively prime
rational integers. The representation question needs a little more care and
will be the treated in the next lemma.

Lemma 1 Let b be an element in A given by its matrix representation, and
let n be an element in A such that its norm Norm(n) is known. Suppose
furthermore, that the norms Norm(b) of b, and Norm(n) of n in the ex-
tension Q — Q [£] are relatively prime rational integers, i.e. in symbols
gcdz(Norm(b), Norm(n)) = 1.

Then b is invertible in A/(n), and we can calculate, from input [blrp and
Norm(n), the matriz representation [b='|n € Z of an element b= € A
such that b-b~' = 1 modulo (n) holds in A. This process can be done in
log? h + 3D3% arithmetic operations where h is an upper bound for Norm(b)
and Norm(n).

PROOF.— Calculate the determinant det([b]g) = Norm(b) of the matrix [b]g.
Since by hypothesis, Norm(n) and Norm(b) are relatively prime integers,
there exist integers s, ¢ € Z such that the identity s- Norm(b)+t-Norm(n) =
1 holds in Z. Thus, the congruence s - Norm(b) = 1 mod (n) holds in 7
(and then in A D 7).

Let w := [[,;4 0(b) be the product of all the conjugates of b (in a Galois
closure of Q [¢]) different from b itself. Then the identity b - w = Norm(b)
holds in @ [¢]. (Hence w belongs to A.) And in particular, it follows that
blg - [wlg = diag(Norm(b), ..., Norm(b)) = Norm(b) - Id. Note that the
matrix Norm(b) - Id is the matrix representation of the element Norm(b) of
A, where Id denotes the identity matrix. So that (s-w)-b=1—1t- Norm(n)
and in particular (s-w)-b= 1 mod (n), since Norm(n) is a multiple of n in
A.



Let [Adj(b)] denote the adjoint matrix of [b]z. The matrix [Adj(b)] verifies
the equality
[Adj(b)] - [b]g = Norm(b) - Id

in ZP*P_ So that [Adj(b)] = [w]z must hold in Z”*P  and then s-[Adj(b)] is
the matrix representation of an element ! in A which represents the inverse
of b modulo (n).

Algorithmically we calculate the determinant of the matrix [b]p with
O(D3?) arithmetic operations. We apply the extended Euclidean algorithm
to the norms Norm(b) and Norm(n), computing s in log(Norm/(b)) log(Norm(n)) <
log®(h) operations. We calculate the adjoint [Adj(b)] of [b] by Paterson-
Stockmeyer’s strategy [PS73| using no more than 3D arithmetic opera-
tions. Thus, this procedure results in the announced complexity. [

2.2 Encryption

A cleartext m is called valid if ||(m)gl||c < k := di. Let m € A be the (valid)
cleartext we want to encrypt. And let [M]g the matrix representation of M,
and [b]z - U~', the product of [b]g and U, be the public key. We define the
procedure for taking congruences modulo (M) in A.

Remark 2 (Taking congruences mod (M) in A) Let be given two ele-
ments M and a in A by their matriz [M|g and standard (a)gp represen-
tation respectively. Then we can calulate a pseudo-random element a =
Go+---+ap_1-EP71 € A in the class induced by a in AJ/(M). The standard
representation (@)g of @ can be calculated in 2D? arithmetic operations.

We now explain how is this done. Let [M]g stand for the matrix of the
homothety induced by M in Z[£] in the canonical base. Then by taking
congruences we mean calculating the vector (a)g = (Go,---,ap-1) = (a)g +
[n|g(r)E, where (r)g is a vector of randomly chosen integers. Hence, only
a vector-to-matrix multiplication is needed, and thus the process can be
executed in the stated complexity. (We do not count the complexity needed
for random number generation.)

To produce the ciphertext out of the cleartext using public key [b]z- U1,
[M]g, let m' be the unique element in A with standard representation (m')g :=
U~'(m)g, then we scramble the cleartext by calculating a representative
c € A of b-m' modulo (M) in A as explained in Remark 2, e.g., such that

¢=b-m' mod (M) (1)
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Specifically, the encryption process consists of the determination of a vec-
tor of random integers (r)g = (r0,-..,7p_1), and the subsequent calculation
of the integer vector (¢)g = (co,---,cp_1) = ([b]gU™")(m)g+[M]g(r)g which
can be done with 4D? arithmetic operations.

2.3 Decryption

Let [n]|g,U,ds, ..., dp be the private key and suppose calculated for once and
for all the matrix U[b~!]g (this task can be fulfilled following Lemma 1). And
let (c)g denote the ciphertext.

To recover the cleartext, first the decrypter calculates U[b~!|g(c)g. Let
m' denote the unique element in A with standard representation (m')g :=
U~'(m)g as in the previous subsection. Since n divides M =n-q-ein A,
and ¢ = b - m' modulo (M) holds in A, the congruence ¢ = b-m’ mod (n)
also holds. Then we have that

bloc=b"1t- (b-m') =m' mod (n)

holds in A. So we deduce that c¢-b~! is an element in A congruent to m’
modulo (n). That is, there exists an element 7 in A such that

blec= b'b-m' +n-r)
= m’_f_nf

and then, multiply the standard /matrix representation of these identity to
the left by U, we get

U™ 's(c)e = (m)p + Uln]e(f)s (2)

Hence, recalling the Smith Normal Form U[n]gV ! = diag(d; . ..,dp) of
[n|g, we have

UbMe(c)e = (m)e+Un]e()s
=  (m)e+ UV )V(")e
= (m)E+diag(d1,...,dD)(7g)E

A
A

(where V(#)g = (7)g in Z".) In particular, for 1 < i < D, the i-th entry
of the vector diag(dy,...,dp)(7)g is a multiple of d;. Recall that (m)g was
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chosen so that ||(m)gllee < & = di = min{dy,...,dp}. Hence, for 1 <
i < D, the decrypter computes the i—th entry of the vector (m)g by taking
congruences in the i—th entry of the vector U[b™'|g(c)g modulo d; therefore
computing their respective representatives in 0 < m; < d;.

Following the above procedures we are able to decrypt a given ciphertext
in 2D? + Dlog D.

3 Implementation and Cryptanalysis

3.1 Choosing the Parameters

There are two stages in the choosing of parameters. First the election of p(X)
(and thence A), and second the selection of the private and public keys.

In choosing the polynomial p(X) (and A) we consider both the efficiency
issue and the security issue as well. Recall that p(X) € Z[X] is chosen
to be an univariate polynomial with integer coefficients, monic and irre-
ducible in Q [X]. We asked furthermore, that the ring Z[X]/(p(X)) turns
to be a noneuclidean domain. As previously seen, the elements in the ring
A = 7Z[X]/(p(X)) are represented by integer vectors of size D = deg p(X)
(or integers matrices of size D x D alternatively). Hence, polynomials p(X)
of low degree D are preferable. Namely, because the complexities of the algo-
rithms used in NERDS (key generation, encryption and decryption) depend
polynomially on D.

Another parameter to be taken into consideration is the signature (rq,79)
of the field Q [X]/(p(X)). (By signature we understand a pair of integers
(r1,79), 1 being the number of real embeddings of Q [X]/(p(X)) in C,
and 27, being the number of non-real embeddings of Q [X]/(p(X)) in C.)
We remark that it is preferable to have a polynomial p(X) with the largest
possible amount r; of real roots, since the group of units of Z[X|/(p(X)) =
A is isomorphic to the direct product of a finite cyclic group (the torsion
subgroup) and 7, 4+ ro — 1 infinite cyclic groups. Because the larger r, the

more elements having the same norm occur in A (see Subsection 3.2).

A further characteristic which can also be asked for from p(X) is having
large discriminant, or rather that the splitting field of Q[X]/(p(X)) has large
discriminant, since the complexity of some algorithms in Algebraic Number
Theory (that might tackle NERDS) also depend on this discriminant.

Polynomials p(X) satisfying our requirements can be chosen from existing
number fields tables (see [Coh96], [PZ98| and [Lem99]), or by building new



tables (see op. cit.).

A discussion on the election of n was held in the Section 2.1. We shall only
ask of n to have a large norm, since the security of our scheme (also) relies in
this parameter, and that the resulting normal form consists in large integers
d;, since kP = dP =< d, -...-dp is the amount of encryptable/decryptable
cleartexts.

Finally, a word on the elements ¢, § and e. Since the quotient rings A/(n)
and A/(M) have Norm(n) and Norm(M) elements respectively, we note that

each element in A/(n) has ]z\iffr%(ﬂrf)) =

in A/(M). Hence g will be chosen so that Norm(q) is a large integer and
it is invertible in the quotient ring A/(n). The elements § and ¢ are chosen
randomly subjected to the constrain that ¢ is invertible in A/(n).

Norm(q - e) distinct representatives

3.2 Cryptanalysis

In this section we introduce two cryptanalytic unsuccessful attacks around
the which the security of NERDS was built.

The following attacks on NERDS retrieve the private key if successful.
By any of these attacks, the problem of recovering the private key can be
reduced to solving norm equations of the type

find z € A such that NOTmQ(s)/Q(“T) =t, where t is a (typically
large) given integer.

The first attack goes as follows. Given the public key [M]g,[b]zU ",
an attacker can calculate the norms Norm(M) of M and Norm(b) of b as
the determinants Norm(M) = det([M]g) and Norm(b) = det([b]gU™") =
det([b]g). Then the norm Norm(q) of ¢ can be calculated as a divisor of the
greatest common divisor gedg(Norm(M), Norm(b)). Note that Norm(n)
cannot be directly calculated, we only know that Norm(n) is an (integer)
factor of Norm(M)/gcdz(Norm(b), Norm(M)), which in turn is a divisor
of Norm(n-e). We point out that Norm(M) is typically a large integer, and
thus it is computationally intractable to factorize. However, we shall show
that even if the norm of n is known, this attack remains fruitless.

Suppose, for what follows in this attack, that the norms Norm(n), Norm(q)
and Norm(§) of the elements n, ¢, § in the private key are known to an at-
tacker. Then the attacker is (actually, would be) able to compute the ele-
ments in the private key from their norms, using an efficient norm equation
solver. That is, an attacker might calculate all the possible solutions z of
the equation Norm(z) = Norm(n) (of a bounded height) and then check
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if x+ = n. To check this, the attacker uses the standard SNF algorithm to
calculate the the elementary divisors dgw), ce dg), the matrix U[b~ 1]z, and
then encrypt a message using the public key and attempt decryption using
the proposed private key [z]g.

The question raised then is, how good are norm equation solvers? To this
end we point out the paper |[FJP97| and the book [PZ98|. The algorithms
introduced in the cited works are inefficient to tackle the problem with the
parameters used in NERDS. Roughly, the algorithm of Fieker, Jurk and
Pohst needs O (TT/3+4)\T/4UT/ 2(3 — %W)T) arithmetic operations to
find one element of a given norm, where r = r; + ro — 1, v is a number
depending on the number of conjugates of & and Furthermore, in the event
of Norm(n) being calculated (which need not be so), the attacker will need to
calculate the matrix representation U[b~1]g, and for each possible solution
(z)g of a norm equation solver for Norm(z) = Norm(n), also calculate
the matrix representation [z]g, it’s Smith Normal Form, only to endevour a
decryption. Notice furthermore, that the number of solutions of the norm
equation is large —making these attack even less efficient.

An other word on norm attacks. We describe an alternate procedure for
calculating n. Let G denote the Galois group of the extension K/Q, where K
is the normal closure of Q [¢]. Since the field Q €] is public and thence K can
be calculated; since [K : Q| might be low, we might suppose that the Galois
group G is known to the attacker. However the ring A = ZZ[¢] has an infinite
set of units which form a group of order r; + 5, and are not computationally
easy to calculate. Let x € A be a solution of Norm(z) = Norm(n). Then
there exist a unit p of A, and a group element ¢ in G such that

n=o(p-z)

Hence, we can first calculate only one solution x of the equation Norm(z) =
Norm(n), and then, use the knowledge of G and the units group, to calculate
all the elements

o(p- Norm(n))

of a bounded norm, where y is a unit of A and ¢ € G, are candidates
for n. Furthermore, by [FJP97, Lemma 3.1| it suffices to find a solution
of absolute value bounded by Norm(n)'/(1+r2=Yegp(3 |loge|) where the

sum is over a set of fundamental units. This procedure has a complexity of

) (TT/3+4)\7"/4U7"/2(3 _ 4logsn1\lfoogi\n(n)) )r)

11



This work was done at the laboratories CORELABS at CORE-S.D.I.

URL http://www.core-sdi.com

Florida 141 piso 7
Capital Federal (C1005AAC)
Buenos Aires, Argentina.

References

[BB84]

[Coh96|

[DH76a]

[DH76D)

[Dif92]

[E1G85]

[FIP97|

[GJ79]

[Gol99]

[HIM91|

[Kob87]

C. H. Bennett and G. Brassard. Quantum cryptography: public key
distribution and coin tosing. In Proc. Internat. Conf. Computer Systems
and Signal Processing, pages 175-179. Bangalore, 1984.

Henri Cohen. A Course in Computational Algebraic Number Theory,
volume 138 of Graduate Texts in Mathematics. Springer, 1996.

W. Diffie and M.E. Hellman. Multiuser cryptographic techniques. vol-
ume 45, pages 109-112. AFIPS Conference Proceedings, 1976.

W. Diffie and M.E. Hellman. New directions in cryptography. IEEE
Transactions of Information Theory, 22:644-654, 1976.

W. Diffie. The first ten years of public-key cryptography. In Contem-
porary Cryptology, The Science of Information Integrity, pages 135-175.
IEEE Press, 1992.

T. ElGammal. A public key cryptosystem and a signature scheme based
on the discrete logarithm. [EEE Transactions of Information Theory,
31:469-472, 1985.

C. Fieker, A. Jurk, and M. Pohst. On solving relative norm equations in
algebraic number fields. Math. Comput., 66:399-410, 1997.

M. Garey and D. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman, San Francisco, 1979.

O. Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudo—
randomness, volume 17 of Algorithms and Combinatorics. Springer, 1999.

J. Hafner and K. McCurley. Asymptoticaly fast triangulation of matrices.
SIAM Journal of Computing, 20:1068-1083, 1991.

N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation,
48:203-209, 1987.

12



[Lem99|

[McET8]

[Mil86]

[PST73]

[PZ98]

[RSATS]

[Sch95]

[Smi61]

[Sti95]

[Wie83]

Franz Lemmermeyer. The euclidean algorithm in algebraic numberfields.
Update of a survey published by the author in 1995 in Expo. Math. now
published on the author’s webpage, 1999.

R. McEliece. A public—key cryptosystem based on algebriac coding the-
ory. Technical Report 42-44, DNS Progress Report, 1978.

V. Miller. Use of elliptic curves in cryptography. Lecture Notes in Com-
puter Science, 13:300-317, 1986.

M. S. Paterson and L. J. Stockmeyer. On the number of nonscalar multi-
plications necessary to evalutate polynomials. SIAM J. Comput., 2:60—66,
1973.

M. Pohst and H. Zassenhaus. Algorithmic Algebraic Number Theory.
Cambridge Press, 1998.

R.L. Rivest, A. Shamir, and L.M. Adelman. A method for obtaining
digital signatures and public-key cryptosystems. Communications of the
ACM, 21(2):120-126, 1978.

Bruce Schneier. Applied Cryptography, Protocols, Algorithms and Source
Code in C (second edition). John Wiley and sons, 1995.

H.J.S. Smith. On systems of linear indeterminate equations and con-
gruences. Philosophical transactions of the royal society of london (A),
151:293-326, 1861.

D.R. Stinson. Cryptography: theory and practice. Discrete Mathematics
and its applications. CRC Press, 1995.

S. Wiesner. Conjugate coding. Sigact News, 15(1):77-88, 1983.

13



