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Abstract

Despite our best efforts, any sufficiently complex com-
puter system has vulnerabilities. It is safe to assume that
such vulnerabilities can be exploited by attackers who will
be able to penetrate the system. Intrusion tolerance at-
tempts to maintain acceptable service despite such intru-
sions. This paper presents an application of intrusion-
tolerance concepts to Enclaves, a software infrastructure
for supporting secure group applications. Intrusion tol-
erance is achieved via a combination of Byzantine fault-
tolerant protocols and secret sharing techniques.

1 Introduction

Intrusion tolerance is the application of fault-tolerance
methods to security. It assumes that system vulnerabilities
cannot be totally eliminated, and that external attackers or
malicious insiders will identify and exploit these vulnera-
bilities and gain illicit access to the system. The objective
of intrusion tolerance is to maintain acceptable, though pos-
sibly degraded, service despite intrusions in parts of the sys-
tem.

This paper discusses the intrusion-tolerant version of En-
claves, a lightweight platform for building secure group
applications. To support such applications, Enclaves pro-
vides a secure group communication service and associated
group-management and key-distribution functions. The
original Enclaves system [16] and its successor [9] have a
centralized architecture. An application consists of a set
of group members who cooperate and communicate via a
single group leader. This leader is responsible for all group-
management activities, including authenticating and accept-
ing new members, distributing cryptographic keys, and dis-
tributing group-membership information. Since the leader
plays a critical role, it is an attractive target for attackers.
Breaking into the leader can immediately lead to loss of
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confidentiality, interrupted communication, or other forms
of denial of service.

The intrusion-tolerant Enclaves architecture removes
this single point of failure by distributing the group-
management functions amongn leaders. The system uses
a Byzantine fault-tolerant protocol for leader coordination
and a verifiable secret sharing scheme for generating and
distributing cryptographic keys to group members. This
new architecture is intended to tolerate the compromise of
up tof leaders, where3f + 1 6 n. Compromised leaders
are assumed to be under the full control of an attacker and to
have Byzantine behavior, but it is also assumed that the at-
tacker cannot break the cryptographic algorithms used. Un-
der these assumptions, Enclaves ensures the confidential-
ity and integrity of group communication, as well as proper
group-management services.

The remainder of the paper describes the intrusion-
tolerant Enclaves in greater detail. Section 2 gives an
overview of the architecture and goals of Enclaves. Sec-
tion 3 presents the protocols and secret sharing schemes
used. Section 4 describes the current implementation of En-
claves. Section 5 assesses the security of the system, and
Section 6 discusses related work.

2 Overview

2.1 Enclaves Services

A group-oriented application enables users to share in-
formation and collaborate via a communication network
such as the Internet. Enclaves is a lightweight software in-
frastructure that provides security services for such applica-
tions [16]. Enclaves provides services for creating and man-
aging groups of users of small to medium sizes, and enables
the group members to communicate securely. Access to an
active group is restricted to a set of users who must be pre-
registered, but the group can be dynamic: authorized users
can freely join, leave, and later rejoin an active application.

The communication service implements a secure mul-
ticast channel that ensures integrity and confidentiality of
group communication. All messages originating from a



group member are encrypted and delivered to all the other
members of the group. For efficiency reasons, Enclaves
provides best-effort multicast and does not guarantee that
messages will be received, or received in the same order, by
all members. This is consistent with the goal of supporting
collaboration between human users, which does not require
the same reliability guarantees as distributing data between
servers or computers [16].

The group-management services perform user authenti-
cation, access control, and related functions such as key
generation and distribution. All group members receive a
common group key that is used for encrypting group com-
munication. A new group key is generated and distributed
every time the group composition changes, that is, when-
ever a user enters or leaves the group. Optionally, the group
key can also be refreshed on a periodic basis. Enclaves also
communicates membership information to all group mem-
bers. On joining the group, a member is notified of the cur-
rent group composition. Once in the group, each member
is notified when a new user enters or a member leaves the
group. Thus, all members know who is in possession of the
current group key.

In summary, Enclaves enables users to be authenticated
and to join a groupware application. Once in a group, a user
A is presented with a group view, that is, the list of all the
other group members. The system is intended to satisfy the
following security requirements:

• Proper authentication and access control:Only autho-
rized users can join the application and an authorized
user cannot be prevented from joining the application.

• Confidentiality of group communication:Messages
from a memberA can be read only by the users who
were inA’s view of the group at the time the message
was sent.

• Integrity of group communication:A group message
received byA was sent by a member ofA’s current
view, was not corrupted in transit, and is not a dupli-
cate.

2.2 Centralized Architecture

The original version of Enclaves [16] and a more recent
version with improved protocols [9] rely on the centralized
architecture shown in Figure 1. In this architecture, a sin-
gle group leader is responsible for all group-management
activities. The leader is in charge of authenticating and
accepting new group members, generating group keys and
distributing them to members, and distributing group mem-
bership information. With such an architecture, the secu-
rity requirements are satisfied if the leader and all the group
members are trustworthy, but the system is not intrusion tol-
erant. Proper service requires that the leader be trusted and
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Figure 1. Centralized Enclaves Architecture

never compromised. A single intrusion on the leader can
easily lead to denial of service. For example, a compro-
mised leader can interrupt group communication or prevent
authorized users from joining the group. Since the leader
is always in possession of the latest group key, an attacker
breaking into the leader’s computer can also gain access to
all group communication.

Increasing the resilience of the Enclaves infrastructure
requires removing this single point of failure, to guaran-
tee that group communication will remain secure even after
some components of the system have been compromised.

2.3 Intrusion-Tolerant Architecture

The architecture of the intrusion-tolerant version of En-
claves is shown in Figure 2. The group and key manage-
ment functions are distributed acrossn leaders. The leaders
communicate with each other and with users via an asyn-
chronous network. Messages sent on this network are as-
sumed to be eventually received, but no assumptions are
made on the transmission delays and on the order of recep-
tion of messages. The architecture is designed to tolerate
up to f compromised leaders, where3f + 1 6 n. Com-
promised leaders are assumed to be under the full control of
an attacker; they have Byzantine behavior and can collude
with each other.

The security requirements are the same as previously,
and assume that a fixed list of authorized participants is
specified before an application starts. The new objective
is now to ensure that these requirements are satisfied even
if up to f leaders are compromised.

For proper group management, any modification of the
group composition requires agreement between the non-
faulty leaders. These leaders must agree before accept-
ing a new member or determining that an existing mem-
ber has left. Ideally, one would like all nonfaulty leaders
to maintain agreement on the group composition. Unfor-
tunately, this requires solving a consensus problem, in an
asynchronous network, under Byzantine faults. As is well
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Figure 2. Intrusion-Tolerant Architecture

known, there are no deterministic algorithms for solving
this problem [12]. Randomized algorithms (e.g., [3]) or al-
gorithms relying on failure detectors (e.g., [4,20]) could be
applicable, but these algorithms tend to be complex and ex-
pensive. Instead, a weaker form of consistency property
is sufficient for satisfying Enclaves’s security requirements.
The algorithm we use is similar to consistent broadcast pro-
tocols such as Bracha and Toueg’s protocol [2, 18]. Com-
bined with an appropriate authentication procedure, this al-
gorithm ensures that any authorized user who requests to
join the group will eventually be accepted. Unlike Byzan-
tine agreement, this algorithm does not guarantee that users
are accepted in the same order by all leaders. However, this
does not lead to a violation of the confidentiality or integrity
properties. If the group becomes stable, all nonfaulty lead-
ers eventually reach a consistent view of the group.

As in previous Enclaves implementations, a common
group key is shared by the group members. A new key
is generated by the leaders whenever the group changes.
The difficulty is to generate and distribute this key in an
intrusion-tolerant fashion. All group members must obtain
the same valid group key, despite the presence of faulty
leaders. The attacker must not be able to obtain the group
key even with the help off faulty leaders. These two re-
quirements are satisfied by using a secret sharing scheme
proposed by Cachin et al. [3]. In the Enclaves framework,
this scheme is used by leaders to independently generate
and send individual shares of the group key to group mem-
bers. The protocol is configured so thatf + 1 shares are
necessary for reconstructing the key. A share is accompa-
nied with a description of the group to which it corresponds
and a “proof of correctness” that is computationally hard to
counterfeit. This allows group members to obtain strong ev-
idence that a share is valid, and prevents faulty leaders from
disrupting group communication by sending invalid shares.

To join an application, a userAmust contact2f+1 lead-
ers. Once in the group,A remains connected to these lead-

ers and receives key and group update messages from them.
A majority of consistent messages (i.e.,f + 1) must be re-
ceived beforeA takes any action. For example,A changes
its current group key only after receiving at leastf+1 valid
key shares from distinct leaders, and checking that these
shares correspond to the same group description. This en-
suresA that the new group key is valid and that at least one
share came from a nonfaulty leader.

Intrusion tolerance in Enclaves relies then on the combi-
nation of a cryptographic authentication protocol, a Byzan-
tine fault-tolerant leader-coordination algorithm, and a se-
cret sharing scheme. These protocols are presented in
greater detail in the section that follows.

3 Protocols

3.1 Authentication

To join the group, a userA must first initiate an authen-
tication protocol with2f + 1 distinct leaders.A is accepted
as a new group member if it is correctly authenticated by
at leastf + 1 leaders. This ensures thatf faulty leaders
cannot prevent an honest user from joining the group, and
conversely thatf faulty leaders cannot allow an unautho-
rized user to join the group.

For authentication purposes, all users registered as au-
thorized participants in an application share a long-term se-
cret key with each leader. IfLi is one of the leaders,A
has a long-term keyPa,i that is known byLi andA. In the
current implementation,Pa,i is computed fromA andLi’s
identities, andA’s password by applying a one-way hash
function. This ensures with high probability that two dis-
tinct leadersLi andLj do not have the same key forA.
Intrusion at a leaderLi can reveal keyPa,i to the attacker
but does not revealA’s password orPa,j . Thus, access to
up tof long-term keysPa,i does not enable an attacker to
impersonateA.

The following protocol is used byA to authenticate with
Li

1. A→ Li : AuthInitReq, A, Li, {A,Li, N1}Pa,i
2. Li → A : AuthKeyDist, Li, A,

{Li, A,N1, N2,Ka,i}Pa,i
3. A→ Li : AuthAckKey, A, Li, {N2, N3}Ka,i .

As a result of this exchange,A is in possession of a ses-
sion keyKa,i that has been generated byLi. All group-
management messages fromLi to A are encrypted with
Ka,i. Thus, a secure channel is set up betweenA and
Li that ensures confidentiality and integrity of all group-
management messages fromLi toA. Nonces and acknowl-
edgments protect against replay as discussed in [9]. The key
Ka,i is in use untilA leaves the group. A fresh session key
will be generated ifA later rejoins the group.
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3.2 Leader Coordination

If a nonfaulty leaderLi successfully authenticatesA, Li
does not immediately addA as a new group member. In-
stead, the leader coordination algorithm described in Fig-
ure 3 is executed. A similar algorithm is used to coordinate
leaders when a member leaves the group.

LeaderLi runs the following protocol

After successful authentication of A,
Li sends 〈Propose, i, A, ni〉σi to all leaders

After receiving f + 1 valid 〈Propose, j, A, nj〉σj
from different leaders, Li sends 〈Propose, i, A, ni〉σi
to all leaders if it has not already done so

When Li receives n− f valid 〈Propose, j, A, nj〉σj
from n− f distinct leaders, Li accepts A as a
new member

Figure 3. Leader Coordination Protocol

The notation〈. . .〉σi denotes a message digitally signed
by Li. The constantni is used to protect against replay
attacks. Each leader maintains a local integer variableni
and its local viewMi of the current group members.Mi

is updated andni is incremented every timeLi accepts a
new member or removes an existing member. The message
〈Propose, A, nj〉σj is considered valid byLi if the signature
checks, ifnj > ni, and ifA is not a member ofMi. The
pair 〈ni,Mi〉 isLi’s current view of the group. In Figure 3,
Li must include its own〈Propose . . .〉 message among the
n− f messages necessary before acceptingA.

This algorithm is a variant of existingconsistent broad-
cast algorithms[2, 18]. It satisfies the following properties
as long as no more thanf leaders are faulty.

• Consistency:If one nonfaulty leader acceptsA then all
nonfaulty leaders eventually acceptA.

• Liveness:If f + 1 nonfaulty leaders announceA, then
A is eventually accepted by all nonfaulty leaders.

• Valid Authentication:If one nonfaulty leader accepts
A thenA has been announced, and thus authenticated,
by at least one nonfaulty leader.

The last property prevents the attacker from introducing
unauthorized users into the group. Conversely, ifA is an au-
thorized user and correctly executes the authentication pro-
tocol,A will be announced byf + 1 nonfaulty leaders, and
thus will eventually be accepted as a new member by all
nonfaulty leaders.

The protocol works in an asynchronous network model
where transmission delays are unbounded. It does not en-
sure that all nonfaulty leaders always have a consistent

group view. Two leadersLi andLj may have different sets
Mi andMj for the same view numberni = nj . This hap-
pens if several users join or leave the group concurrently,
and their requests and the associatedPropose messages are
received in different orders byLi andLj . If the group be-
comes stable, that is, no requests for join or leave are gener-
ated in a long interval, then all nonfaulty leaders eventually
converge to a consistent view. They communicate this view
and the associated group-key shares to all their clients who
all also eventually have a consistent view of the group and
the same group key.

Temporary disagreement on the group view may cause
nonfaulty leaders to send valid but inconsistent group-key
shares to some members. This does not compromise the
security requirements of Enclaves but may delay the distri-
bution of a new group key.

3.3 Group-Key Management

The group-key management protocol relies on secure se-
cret sharing. Each of then leaders knows only a share of
the group key, and at leastf + 1 shares are required to re-
construct the key. Any set of no more thanf shares is insuf-
ficient. This ensures that compromise of at mostf leaders
does not reveal the group key to the attacker. In most secret
sharing schemes,n sharess1, . . . , sn are computed from a
secrets and distributed ton shareholders. The shares are
computed by a trusted dealer who needs to knows. In En-
claves, a new secrets and new shares must be generated
whenever the group changes. This must be done online and
without a dealer, to avoid a single point of failure. A further
difficulty is that some of the parties involved in the share
renewal process may be compromised.

A solution to these problems was devised by Cachin et al.
in [3]. In their protocol, then shareholders can individually
compute their share of a common secrets without knowing
or learnings. One can computes from any set off + 1 or
more such shares, butf shares or fewer are not sufficient.
The shares are all computed from a common valueg̃ that all
shareholders know. In our context, the shareholders are the
group leaders and̃g is derived from the group view using a
one-way hash function. LeaderLi computes its sharesi us-
ing a share-generation functionS, the valuẽg, and a secret
xi that onlyLi knows:si = S(g̃, xi). LeaderLi also gives
a proof thatsi is a valid share for̃g. This proof does not
reveal information aboutxi but enables group members to
check thatsi is valid.

The protocol proposed by Cachin et al. [3] requires a
trusted dealer to set up a number of public and private keys
in an initialization phase. This can be performed offline,
and the dealer is not involved in any of the subsequent
computations. The share computations are performed in-
dividually by the leaders. The share validity checks and
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group key construction are performed individually by group
members. This protocol is related to verifiable secret shar-
ing [6, 11, 19] and, more closely, to to threshold signature
schemes [7,14,23].

The secrecy properties of the protocol rely on the hard-
ness of computing discrete logarithms in a group of large
prime order. Such a groupG can be constructed by select-
ing two large prime numbersp andq such thatp = 2q + 1
and definingG as the unique subgroup of orderq in Z∗p. The
dealer chooses a generatorg of G and performs the follow-
ing operations:

• Select randomlyf + 1 elementsa0, . . . , af of Zq.
These coefficients define a polynomial of degreef in
Zq[X]:

F = a0 + a1X + . . .+ afX
f .

• Computex1, . . . , xn of Zq andg1, . . . , gn of G as fol-
lows:

xi = F (i)
gi = gxi .

The numbersx1, . . . , xn must then be distributed se-
cretly to then leadersL1, . . . , Ln, respectively. The
generatorg and the elementsg1, . . . , gn are made pub-
lic. They must be known by all users and leaders.

As in Shamir’s secret sharing scheme [22], any subset of
f + 1 values amongx1, . . . , xn allows one to reconstructF
by interpolation, and then to compute the valuea0 = F (0).
For example, givenx1, . . . , xf+1, one has

a0 =
f+1∑
i=1

bixi,

wherebi is obtained fromj = 1, . . . , f + 1 by

bi =

∏
j 6=i j∏

j 6=i(j − i)
.

By this interpolation method, one can computeg̃a0 for any
g̃ ∈ G given any subset off+1 values among̃gx1 , . . . , g̃xn .
For example, from̃gx1 , . . . , g̃xf+1 , one gets

g̃a0 =
f+1∏
i=1

(g̃i)bi . (1)

As discussed previously, leaderLi maintains a local
group view〈ni,Mi〉. Li’s sharesi is a function of the group
view, the generatorg, andLi’s secret valuexi. Li first com-
putesg̃ ∈ G using a one-way hash functionH1:

g̃ = H1(ni,Mi).

The sharesi is then defined as

si = g̃xi .

The group key for the view〈ni,Mi〉 is defined as

K = H2(g̃a0),

whereH2 is another hash function fromG to {0, 1}k (k
is the key length). Using equation (1), a group member
can computẽga0 given any subset off + 1 or more shares
for the same group view. The security of this approach is
proved in [3]. Under a standard intractability assumption, it
is computationally infeasible to computeK knowing fewer
thanf + 1 shares. It is also infeasible for an adversary to
predict the values of future group keysK even if the ad-
versary corruptsf leaders and has access tof secret values
amongx1, . . . , xn.

Equation (1) allows a group member to computeg̃a0 and
K from f + 1 valid shares of the formsi = g̃xi . However,
a compromised leaderLi could make the computation fail
by sending an invalid sharesi 6= g̃xi . Li could also cause
different members to compute differentK ’s by sending dif-
ferent shares to each. To protect against such attacks, the
sharesi is accompanied with a proof of validity. This ex-
tra information enables a member to check thatsi is equal
to g̃xi with very high probability. The verification uses the
public valuegi that is known to be equal togxi (since the
dealer is trusted). To prove validity without revealingxi,
leaderLi generates evidence that

logg̃ si = logg gi.

This uses a technique proposed by Chaum and Pedersen [5].
To generate the evidence,Li randomly chooses a numbery
in Zq and computes

u = gy

v = g̃y.

ThenLi uses a third hash functionH3 from G6 to Zq to
compute

c = H3(g, gi, u, g̃, si, v)
z = y + xic.

The proof thatsi is a valid share for̃g is the pair(c, z). The
information sent byLi to a group memberA is then the
tuple

〈ni,Mi, si, c, z〉.

This message is sent via the secure channel established be-
tweenA andLi after authentication. This prevents an at-
tacker in control off leaders from obtaining extra shares
by eavesdropping on communications between leaders and
clients.
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On receiving the above message, a group memberA
evaluates̃g = H1(ni,Mi) and

u′ = gz/gci

v′ = g̃z/sci .

A accepts the share as valid if the following equation holds:

c = H3(g, gi, u′, g̃, si, v′).

If this check fails,si is not a valid share andA ignores it.
OnceA receivesf + 1 valid shares corresponding to the
same group view,A can construct the group key. SinceA
maintains a connection with at leastf + 1 honest leaders,A
eventually receives at leastf + 1 valid shares for the same
view, once the group becomes stable.

Cachin et al. [3] prove that it is computationally infeasi-
ble, in the random oracle model, for a compromised leader
Li to produce an invalid shares′i and two valuesc andz that
pass the share-verification check.

3.4 Cryptographic Material

The following cryptographic keys and secret material
must be distributed to the leaders and registered users:

• Each leaderLi must own a private key to sign mes-
sages when executing the leader-coordination proto-
col. The corresponding public key must be known by
all the other leaders.

• Li must also hold the secretxi used to generate shares
of group keys. The corresponding verification keygi
must be known by all the registered users.

• For every registered userA and leaderLi, a secret
longterm keyPa,i is shared byA andLi. This key
is used for authentication.

4 Implementation

Enclaves is currently implemented in Java, using Sun
Microsystems’ Java 2 SDK 1.3.1 and the Cryptix 3.2 cryp-
tographic libraries.1 The source consists of around 9,000
lines of code in approximately 100 classes.

The software is organized in two main modules as de-
scribed in Figure 4. A set of classes implements the
core Enclaves functionalities, namely, the authentication,
group management, and key-management functions de-
scribed previously. On top of this basis, a user interface
is available that can be customized to support diverse ap-
plications. The interface allows users to authenticate and
log in to an Enclaves group and displays status information,
including the list of members. Applications can be easily
incorporated into this interface via a “plugin” mechanism.

1http://www.cryptix.org

Crypto
Modules

Enclaves Layer
(Authentication &
Group-management)

Plug-Ins

Core

User Interface

Communication Layer

Network Layer

Application

Figure 4. Main Software Modules

4.1 Core Enclaves

The core classes implement the protocols and algorithms
described previously. These classes are organized in an
Enclaves layer responsible for authentication and group-
management services, a cryptographic module, and a com-
munication layer that interface with Java networking func-
tions. In the current prototype, group communication (be-
tween group members) as well as communication between
leaders is implemented using IP multicast. Leader-to-client
connections rely on TCP.

Enclaves uses Cryptix 3.2 as a cryptographic module, but
other providers complying with the Java Security Architec-
ture can be used. Enclaves uses a symmetric-key encryption
algorithm (currently triple DES), a digital signature algo-
rithm (DSA), and secure hashing algorithm (SHA). These
can be easily replaced by other algorithms with similar
functionality. The secret sharing algorithm of Section 3.3
was not available off the shelf and had to be implemented.

4.2 Plugins

Enclaves provides a simple user interface that can be cus-
tomized for various applications via the use of “plugins”.
The plugins are loaded on startup and executed as the user
requires. This architecture allows several applications to
coexist and run concurrently in the same Enclaves group.
The underlying support classes transparently encrypt all ap-
plication messages and distribute them to all group mem-
bers. Conversely, messages received from the group are de-
crypted and dispatched to the relevant plugin.

Communication between an application and the under-
lying Enclaves layer must follow the interface described in
Figure 5. A plugin simply needs to implement the three
methods of abstract classPlugIn . MethodbuildGUI is
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public abstract class PlugIn
extends JFrame implements ... {

protected abstract void buildGUI();

protected abstract void
receiveMessage(Message m);

protected final boolean
sendMessage(byte[] msg);

}

Figure 5. Plugin Interface

Figure 6. Whiteboard Application

invoked by the user interface for the application to initial-
ize. Afterwards, communication between the application
and the Enclaves middleware is performed via two meth-
ods for sending and receiving messages. When a plugin is
ready to be deployed, the developer must package it and ev-
ery resource it needs into a JAR file and put it in a specific
directory. The new plugin is then loaded and available to
users.

Currently, four basic plugins have been developed for
Enclaves: a shared whiteboard application (Paint), a mes-
saging application allowing users to send text messages
(Chat), a file transfer application for multicasting data files
(FTP plugin), and aSound pluginfor multicast of streaming
audio. Figure 6 shows a screen dump of thePaint applica-
tion.

5 Assessment

Enclaves’s security requirements can be shown to theo-
retically hold if no more thanf leaders are compromised, no
group member is compromised, the attacker does not break
the cryptographic algorithms, and the network assumptions
are satisfied.2 Obviously, none of these assumptions can be
guaranteed to hold with certainty in the real world. What re-
ally matters is the effort it takes an attacker to compromise
security by making one of these assumptions fail.

We can be reasonably confident that the cryptographic
and secret sharing protocols used are hard to break. If weak-

2And, of course, the Java code correctly implements the protocols.

nesses are discovered, the Enclaves implementation makes
it easy to change cryptographic primitives.

As in any group-communication system, if an attacker
can compromise a member machine and get hold of the
group key, or if one member is nontrustworthy, then con-
fidentiality is lost. Clearly, there is no absolute defense
against this vulnerability as it is the function of the system
to distribute data to all group members. Mitigating mea-
sures could be implemented, such as requiring members to
periodically reauthenticate before sending them a new key,
or relying on intrusion detection and expel members sus-
pected of being compromised.

Enclaves can also be vulnerable to network-based denial-
of-service attacks based on flooding. This is not specific to
Enclaves, as current TCP/IP protocols make it difficult to
defend against such attacks in any system. However, the
distributed architecture of Enclaves increases the resilience
of the system to such attacks. A useful property is also that
group communication can continue even after a successful
denial-of-service attack on the leaders. Such an attack pre-
vents new users from joining an application and the group
key from being refreshed but does not immediately affect
the users already in the group.

Clearly, the intrusion-tolerant architecture of Enclaves
improves security only if it is substantially harder for an at-
tacker to penetrate several leaders than a single one. Every
attempt should then be made to prevent common vulnerabil-
ities, so that the same attack does not succeed on all leaders.
This requires diversity. Leaders should use different hard-
ware and operating systems, and, as a minimum, different
implementations of the Java Virtual Machine. It is also de-
sirable to put the different leaders under the responsibility of
different administrators, as a protection against the insider
threat.

Even with such measures, resilience is not absolute.
With enough time and resources, a determined attacker can
compromise a sufficient number of leaders to break the sys-
tem. Intrusion tolerance should be seen as the ultimate de-
fense, intended to give the defender extra time to detect and
react to attacks before too much damage is done. Intru-
sion tolerance can be effective only if combined with tradi-
tional measures to avoid and remove vulnerabilities in sys-
tem components, and with intrusion detection mechanisms
to help respond to attacks before it is too late.

6 Related Work

Early work on intrusion tolerance [8,10,13] applied fault
tolerance and dependability concepts to common services
of distributed systems, such as file storage. These ap-
proaches already used secret sharing, encryption, and re-
dundancy to maintain security and availability in the pres-
ence of compromised components. The same techniques
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are being applied, for example, for building survivable in-
formation storage [27].

Wu et al. [26] present examples of intrusion-tolerant ap-
plications that rely on threshold cryptography. A number
of servers, each holding a share of an RSA private key can
be contacted by a client for operations such as signing or
decrypting messages. Each server performs a local compu-
tation using its key share, and the individual results from
each server are combined by the client. This is similar to
the group key protocol of Cachin et al. [3] that is used in
Enclaves.

Enclaves relies on the same techniques as these other
systems, namely, secret sharing techniques and fault-
tolerant distributed algorithms. The main novelty is the type
of application supported by the intrusion-tolerant Enclaves,
that is, secure group communication.

Gong [15] describes a fault-tolerant protocol for authen-
tication and key distribution that relies on several authenti-
cation servers, some of which may be compromised. The
system provides an authentication service to establish se-
cure point-to-point connections between two usersA andB,
and distribute a shared symmetric key to both. Proper ser-
vice is guaranteed as long as the majority of the servers are
not compromised. Then leaders of Enclaves provide a sim-
ilar authentication service, but for a group rather than a pair
of users. They are also supporting other group-management
activities including renewing the group key and maintaining
the current set of group members, which requires close co-
ordination of the leaders.

Other systems such as Secure Spread [1], Ensemble [21],
or Horus [25], provide secure group communication be-
tween distributed computers. These infrastructures pro-
vide group-membership and multicast services that sup-
port a variety of network-level faults, including network
partitioning. Key-agreement or key-distribution protocols
(e.g., [24]) are implemented on top of these services, and
cryptography ensures confidentiality and integrity of group
communication. These systems typically provide security
against attacks on network traffic but are not designed for
intrusion tolerance.

Enclaves is also related to systems such as Rampart [20]
or the SecureRing [17], which use fault-tolerant protocols
for consistent operation of a set of servers. These sys-
tems implement consensus in asynchronous networks under
Byzantine fault models, but rely on some form of failure de-
tection. Enclaves chose to relax the strict consensus require-
ment to achieve a weaker, but sufficient in practice, form of
agreement between leaders. This results in a simpler and
lighter protocol that does not rely on failure detection.

7 Conclusion

A combination of fairly standard fault-tolerant algo-
rithms, secret sharing schemes, and traditional authentica-
tion protocols was used to develop an intrusion-tolerant ver-
sion of the Enclaves group communication framework. The
architecture provides secure services even if a number of
its main components are compromised. The resulting En-
claves system remains easily deployable and lightweight,
while being considerably more resilient to attacks than its
predecessors.
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