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Because biometrics-based authentication offers
several advantages over other authentication
methods, there has been a significant surge
in the use of biometrics for user authentication
in recent years. It is important that such
biometrics-based authentication systems be
designed to withstand attacks when employed
in security-critical applications, especially in
unattended remote applications such as e-
commerce. In this paper we outline the inherent
strengths of biometrics-based authentication,
identify the weak links in systems employing
biometrics-based authentication, and present
new solutions for eliminating some of these
weak links. Although, for illustration purposes,
fingerprint authentication is used throughout, our
analysis extends to other biometrics-based
methods.

Reliable user authentication is becoming an in-
creasingly important task in the Web-enabled

world. The consequences of an insecure authenti-
cation system in a corporate or enterprise environ-
ment can be catastrophic, and may include loss of
confidential information, denial of service, and com-
promised data integrity. The value of reliable user
authentication is not limited to just computer or net-
work access. Many other applications in everyday life
also require user authentication, such as banking, e-
commerce, and physical access control to computer
resources, and could benefit from enhanced secur-
ity.

The prevailing techniques of user authentication,
which involve the use of either passwords and user
IDs (identifiers), or identification cards and PINs (per-
sonal identification numbers), suffer from several

limitations. Passwords and PINs can be illicitly ac-
quired by direct covert observation. Once an intruder
acquires the user ID and the password, the intruder
has total access to the user’s resources. In addition,
there is no way to positively link the usage of the
system or service to the actual user, that is, there is
no protection against repudiation by the user ID
owner. For example, when a user ID and password
is shared with a colleague there is no way for the sys-
tem to know who the actual user is. A similar sit-
uation arises when a transaction involving a credit
card number is conducted on the Web. Even though
the data are sent over the Web using secure encryp-
tion methods, current systems are not capable of
assuring that the transaction was initiated by the
rightful owner of the credit card. In the modern dis-
tributed systems environment, the traditional au-
thentication policy based on a simple combination
of user ID and password has become inadequate.

Fortunately, automated biometrics in general, and
fingerprint technology in particular, can provide a
much more accurate and reliable user authentica-
tion method. Biometrics is a rapidly advancing field
that is concerned with identifying a person based on
his or her physiological or behavioral characteristics.
Examples of automated biometrics include fingerprint,
face, iris, and speech recognition. User authentica-
tion methods can be broadly classified into three cat-
egories1 as shown in Table 1. Because a biometric
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property is an intrinsic property of an individual, it
is difficult to surreptitiously duplicate and nearly im-
possible to share. Additionally, a biometric property
of an individual can be lost only in case of serious
accident.

Biometric readings, which range from several hun-
dred bytes to over a megabyte, have the advantage
that their information content is usually higher than
that of a password or a pass phrase. Simply extend-
ing the length of passwords to get equivalent bit
strength presents significant usability problems. It is
nearly impossible to remember a 2K phrase, and it
would take an annoyingly long time to type such a
phrase (especially without errors). Fortunately, au-
tomated biometrics can provide the security advan-
tages of long passwords while retaining the speed
and characteristic simplicity of short passwords.

Even though automated biometrics can help allevi-
ate the problems associated with the existing meth-
ods of user authentication, hackers will still find there
are weak points in the system, vulnerable to attack.
Password systems are prone to brute force dictio-
nary attacks. Biometric systems, on the other hand,
require substantially more effort for mounting such
an attack. Yet there are several new types of attacks
possible in the biometrics domain. This may not ap-
ply if biometrics is used as a supervised authentica-
tion tool. But in remote, unattended applications,
such as Web-based e-commerce applications, hack-
ers may have the opportunity and enough time to
make several attempts, or even physically violate the
integrity of a remote client, before detection.

A problem with biometric authentication systems
arises when the data associated with a biometric fea-
ture has been compromised. For authentication sys-
tems based on physical tokens such as keys and
badges, a compromised token can be easily canceled
and the user can be assigned a new token. Similarly,
user IDs and passwords can be changed as often as
required. Yet, the user only has a limited number
of biometric features (one face, ten fingers, two eyes).
If the biometric data are compromised, the user may
quickly run out of biometric features to be used for
authentication.

In this paper, we discuss in more detail the prob-
lems unique to biometric authentication systems and
propose solutions to several of these problems. Al-
though we focus on fingerprint recognition through-
out this paper, our analysis can be extended to other
biometric authentication methods. In the next sec-
tion, “Fingerprint authentication,” we detail the
stages of the fingerprint authentication process. In
the following section, “Vulnerable points of a bio-
metric system,” we use a pattern recognition frame-
work for a generic biometric system to help identify
the possible attack points. The section “Brute force
attack directed at matching fingerprint minutiae” an-
alyzes the resilience of a minutiae-based fingerprint
authentication system in terms of the probability
of a successful brute force attack. The next two sec-
tions, “WSQ-based data hiding” and “Image-based
challenge/response method,” propose two methods
that address some of the vulnerable points of a bio-
metric system. The section “Cancelable biometrics”
introduces the concept of “cancelable biometrics”

Table 1 Existing user authentication techniques

Method Examples Properties

What you know User ID Shared
Password Many passwords easy to guess
PIN Forgotten

What you have Cards Shared
Badges Can be duplicated
Keys Lost or stolen

What you know and what you have ATM card 1 PIN Shared
PIN a weak link
(Writing the PIN on the card)

Something unique about the user Fingerprint Not possible to share
Face Repudiation unlikely
Iris Forging difficult
Voice print Cannot be lost or stolen
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and discusses its application to authentication. Fi-
nally, the section “Conclusions” recapitulates the is-
sues discussed and summarizes the proposed new ap-
proaches.

Fingerprint authentication

We present here a brief introduction to fingerprint
authentication. Readers familiar with fingerprint au-
thentication may skip to the next section.

Fingerprints are a distinctive feature and remain in-
variant over the lifetime of a subject, except for cuts
and bruises. As the first step in the authentication
process, a fingerprint impression is acquired, typi-
cally using an inkless scanner. Several such scanning
technologies are available.2 Figure 1A shows a fin-
gerprint obtained with a scanner using an optical sen-
sor. A typical scanner digitizes the fingerprint im-
pression at 500 dots per inch (dpi) with 256 gray levels
per pixel. The digital image of the fingerprint in-
cludes several unique features in terms of ridge bi-
furcations and ridge endings, collectively referred to
as minutiae.

The next step is to locate these features in the fin-
gerprint image, as shown in Figure 1B, using an au-
tomatic feature extraction algorithm. Each feature
is commonly represented by its location ( x, y) and

the ridge direction at that location (u). However, due
to sensor noise and other variability in the imaging
process, the feature extraction stage may miss some
minutiae and may generate spurious minutiae. Fur-
ther, due to the elasticity of the human skin, the re-
lationship between minutiae may be randomly dis-
torted from one impression to the next.

In the final stage, the matcher subsystem attempts
to arrive at a degree of similarity between the two
sets of features after compensating for the rotation,
translation, and scale. This similarity is often ex-
pressed as a score. Based on this score, a final de-
cision of match or no-match is made. A decision
threshold is first selected. If the score is below the
threshold, the fingerprints are determined not to
match; if the score is above the threshold, a correct
match is declared. Often the score is simply a count
of the number of the minutiae that are in correspon-
dence. In a number of countries, 12 to 16 correspon-
dences (performed by a human expert) are consid-
ered legally binding evidence of identity.

The operational issues in an automated fingerprint
identification system (AFIS) are somewhat different
from those in a more traditional password-based sys-
tem. First, there is a system performance issue known
as the “fail to enroll” rate to be considered. Some
people have very faint fingerprints, or no fingers at

A B

Figure 1 Fingerprint recognition; (A) input image, (B) features
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all, which makes the system unusable for them. A
related issue is a “Reject” option in the system based
on input image quality. A poor quality input is not
accepted by the system during enrollment and au-
thentication. Note that poor quality inputs can be
caused by noncooperative users, improper usage, dirt
on the finger, or bad input scanners. This has no an-
alog in a password system. Then there is the fact that
in a biometric system the matching decision is not
clear-cut. A password system always provides a cor-
rect response—if the passwords match, it grants ac-
cess but otherwise refuses access. However, in a bio-
metric system, the overall accuracy depends on the
quality of input and enrollment data along with the
basic characteristics of the underlying feature extrac-
tion and matching algorithm.

For fingerprints, and biometrics in general, there are
two basic types of recognition errors, namely the false
accept rate (FAR) and the false reject rate (FRR). If
a nonmatching pair of fingerprints is accepted as a
match, it is called a false accept. On the other hand,
if a matching pair of fingerprints is rejected by the
system, it is called a false reject. The error rates are
a function of the threshold as shown in Figure 2. Of-
ten the interplay between the two errors is presented
by plotting FAR against FRR with the decision thresh-
old as the free variable. This plot is called the ROC
(Receiver Operating Characteristic) curve. The two
errors are complementary in the sense that if one
makes an effort to lower one of the errors by varying
the threshold, the other error rate automatically in-
creases.

In a biometric authentication system, the relative
false accept and false reject rates can be set by choos-

ing a particular operating point (i.e., a detection
threshold). Very low (close to zero) error rates for
both errors (FAR and FRR) at the same time are not
possible. By setting a high threshold, the FAR error
can be close to zero, and similarly by setting a sig-
nificantly low threshold, the FRR rate can be close
to zero. A meaningful operating point for the thresh-
old is decided based on the application requirements,
and the FAR versus FRR error rates at that operating
point may be quite different. To provide high secur-
ity, biometric systems operate at a low FAR instead
of the commonly recommended equal error rate
(EER) operating point where FAR 5 FRR. High-per-
formance fingerprint recognition systems can sup-
port error rates in the range of 1026 for false accept
and 1024 for false reject.3 The performance num-
bers reported by vendors are based on test results
using private databases and, in general, tend to be
much better than what can be achieved in practice.
Nevertheless, the probability that the fingerprint sig-
nal is supplied by the right person, given a good
matching score, is quite high. This confidence level
generally provides better nonrepudiation support
than passwords.

Vulnerable points of a biometric system

A generic biometric system can be cast in the frame-
work of a pattern recognition system. The stages of
such a generic system are shown in Figure 3. Excel-
lent introductions to automated biometric systems
can be found in References 1 and 4.

The first stage involves biometric signal acquisition
from the user (e.g., the inkless fingerprint scan). The
acquired signal typically varies significantly from pre-
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Figure 2 Error trade-off in a biometric system
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sentation to presentation; hence, pure pixel-based
matching techniques do not work reliably. For this
reason, the second signal processing stage attempts
to construct a more invariant representation of this
basic input signal (e.g., in terms of fingerprint mi-
nutiae). The invariant representation is often a
spatial domain characteristic or a transform (fre-
quency) domain characteristic, depending on the
particular biometric.

During enrollment of a subject in a biometric au-
thentication system, an invariant template is stored
in a database that represents the particular individ-
ual. To authenticate the user against a given ID, the
corresponding template is retrieved from the data-
base and matched against the template derived from
a newly acquired input signal. The matcher arrives
at a decision based on the closeness of these two tem-
plates while taking into account geometry, lighting,
and other signal acquisition variables.

Note that password-based authentication systems can
also be set in this framework. The keyboard becomes
the input device. The password encryptor can be
viewed as the feature extractor and the comparator
as the matcher. The template database is equivalent
to the encrypted password database.

We identified eight places in the generic biometric
system of Figure 3 where attacks may occur. In ad-
dition, Schneier5 describes several types of abuses
of biometrics. The numbers in Figure 3 correspond
to the items in the following list.

1. Presenting fake biometrics at the sensor: In this
mode of attack, a possible reproduction of the bio-

metric feature is presented as input to the sys-
tem. Examples include a fake finger, a copy of a
signature, or a face mask.

2. Resubmitting previously stored digitized biomet-
rics signals: In this mode of attack, a recorded sig-
nal is replayed to the system, bypassing the sen-
sor. Examples include the presentation of an old
copy of a fingerprint image or the presentation
of a previously recorded audio signal.

3. Overriding the feature extraction process: The
feature extractor is attacked using a Trojan horse,
so that it produces feature sets preselected by the
intruder.

4. Tampering with the biometric feature represen-
tation: The features extracted from the input sig-
nal are replaced with a different, fraudulent fea-
ture set (assuming the representation method is
known). Often the two stages of feature extrac-
tion and matcher are inseparable and this mode
of attack is extremely difficult. However, if minu-
tiae are transmitted to a remote matcher (say,
over the Internet) this threat is very real. One
could “snoop” on the TCP/IP (Transmission Con-
trol Protocol/Internet Protocol) stack and alter
certain packets.

5. Corrupting the matcher: The matcher is attacked
and corrupted so that it produces preselected
match scores.

6. Tampering with stored templates: The database
of stored templates could be either local or re-
mote. The data might be distributed over several
servers. Here the attacker could try to modify one
or more templates in the database, which could
result either in authorizing a fraudulent individ-
ual or denying service to the persons associated
with the corrupted template. A smartcard-based

YES/NO

Figure 3 Possible attack points in a generic biometrics-based system
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authentication system,6 where the template is
stored in the smartcard and presented to the au-
thentication system, is particularly vulnerable to
this type of attack.

7. Attacking the channel between the stored tem-
plates and the matcher: The stored templates are
sent to the matcher through a communication
channel. The data traveling through this channel
could be intercepted and modified.

8. Overriding the final decision: If the final match
decision can be overridden by the hacker, then
the authentication system has been disabled. Even
if the actual pattern recognition framework has
excellent performance characteristics, it has been
rendered useless by the simple exercise of over-
riding the match result.

There exist several security techniques to thwart at-
tacks at these various points. For instance, finger con-
ductivity or fingerprint pulse at the sensor can stop
simple attacks at point 1. Encrypted communication
channels7 can eliminate at least remote attacks at
point 4. However, even if the hacker cannot pene-
trate the feature extraction module, the system is
still vulnerable. The simplest way to stop attacks at
points 5, 6, and 7 is to have the matcher and the da-
tabase reside at a secure location. Of course, even
this cannot prevent attacks in which there is collu-
sion. Use of cryptography8 prevents attacks at
point 8.

We observe that the threats outlined in Figure 3 are
quite similar to the threats to password-based au-
thentication systems. For instance, all the channel
attacks are similar. One difference is that there is no
“fake password” equivalent to the fake biometric at-
tack at point 1 (although, perhaps if the password
was in some standard dictionary it could be deemed
“fake”). Furthermore, in a password- or token-based
authentication system, no attempt is made to thwart
replay attacks (since there is no expected variation
of the “signal” from one presentation to another).
However, in an automated biometric-based authen-
tication system, one can check the liveness of the en-
tity originating the input signal.

Brute force attack directed at matching
fingerprint minutiae

In this section we attempt to analyze the probability
that a brute force attack at point 4 of Figure 3, in-
volving a set of fraudulent fingerprint minutiae, will
succeed in matching a given stored template. Fig-
ure 4 shows one such randomly generated minutiae

set. In a smart card system where the biometrics tem-
plate is stored in the card and presented to the au-
thentication system, a hacker could present these
random sets to the authentication system assuming
that the hacker has no information about the stored
templates. Note that an attack at point 2 of Figure
3, which involves generating all possible fingerprint
images in order to match a valid fingerprint image,
would have an even larger search space and conse-
quently would be much more difficult.

A naive model. For the purpose of analyzing the “na-
ive” matching minutiae attack, we assume the fol-
lowing.

● The system uses a minutia-based matching method
and the number of paired minutiae reflects the de-
gree of match.

● The image size S 5 300 pixels 3 300 pixels.
● A ridge plus valley spread T 5 15 pixels.
● The total number of possible minutiae sites (K 5

S/(T 2)) 5 20 3 20 5 400.
● The number of orientations allowed for the ridge

angle at a minutia point d 5 4, 8, 16.
● The minimum number of corresponding minutiae

in query and reference template m 5 10, 12, 14,
16, 18.

These values are based on a standard fingerprint
scanner with 500 dpi scanning resolution covering
an area 0.6 3 0.6 inches. A ridge and valley can span

Figure 4 Example of a randomly generated minutiae set
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about 15 pixels on average at this scanning resolu-
tion. The other two variables d and m are being used
as parameters to study the brute force attack. We
start with 10 matching minutiae since often a thresh-
old of 12 minutiae is used in matching fingerprints
in manual systems. Ridge angles in an automated
system can be quantized depending on the tolerance
supported in the matcher. A minimum of four quan-
tization levels provides a 45 degree tolerance, while
16 levels provides roughly an 11 degree tolerance.

Then, the number of possible ways to place m mi-
nutiae in K possible locations is

SK
mD (1)

and, the number of possible ways to assign directions
to the minutiae is d m .

Hence, the total number of possible minutiae com-
binations equals

SK
mD 3 ~d m! (2)

Note that it is assumed that the matcher will toler-
ate shifts between query and reference minutiae of
at most a ridge and valley pixel width, and an an-

gular difference of up to half a quantization bin (645
degrees for d 5 4).

Plugging these values into Equation 2, for d 5 4 and
m 5 10, the probability of randomly guessing the
exact feature set is 3.6 3 10226 5 2284.5. The log2 of
the probability of randomly guessing a correct fea-
ture set through a brute force attack for different val-
ues of d and m is plotted in Figure 5. We refer to
this measure (in bits) as “strength,” and it represents
the equivalent number of bits in a password authen-
tication system. This should convince the reader that
a brute force attack in the form of a random image
or a random template attempting to impersonate an
authorized individual will, on average, require a very
large number of attempts before succeeding.

The foregoing analysis assumes that each fingerprint
has exactly m minutiae, that only m minutiae are gen-
erated, and that all of these minutiae have to match.
A realistic strength is much lower because one can
generate more than m query minutiae, say Ntotal, and
only some fraction of these must match m minutiae
of the reference fingerprint. This leads to a factor
of about (m

Ntotal)2 or a loss of nearly 64 bits in strength
for m 5 10 with Ntotal 5 50. The equivalent strength
thus is closer to 20 bits for this parameter set. A more
realistic model, which carefully incorporates this ef-
fect, is described below.

A more realistic model. In the naive approach, we
made several simplifying assumptions. In this more
realistic model, we will make assumptions that are
more realistic and will analyze the brute force at-
tack model in more detail.

Let the reference print have Nr minutiae, and let
each feature of the minutiae include a ridge direc-
tion which takes d possible values, and a location
which takes K possible values. Then the probability
that a randomly generated minutia will match one
of the minutiae in the reference print in both loca-
tion and direction can be approximated as:

pest 5
Nr

K 3 d
(3)

A more accurate model would require that we con-
sider the probability of a minutiae site being pop-
ulated as a function of the distance to the center of
the print (they are more likely in the middle). In ad-
dition, such a model would require that the direc-
tional proclivities depend on location (they tend to

Figure 5 Bit strength in the naive model
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swirl around the core). In this model, however, we
ignore such dependencies and use the simpler for-
mulation.

While the expression above is valid for the first gen-
erated minutia, when creating the full synthetic set
it is undesirable to generate two minutiae with the
same location. So after j 2 1 minutiae have been
generated, the probability that the jth minutia will
match (assuming the previous j 2 1 minutiae all fail
to match) is bounded from above by:

Nr

~K 2 j 1 1!d
(4)

Thus, while generating Nq random minutiae we can
conservatively assume each minutia has matching
probability:

p 5 phi 5
Nr

~K 2 Nq 1 1!d
(5)

Typical parameter values are K 5 400, Nq 5 Nr 5
50 and d 5 4. Note that brute force attacks with Nq

excessively large (close to the value K) would be easy
to detect and reject out of hand. For this reason there
is an upper bound on Nq that still enables an attacker
to generate the facsimile of a real finger. Using the
values above we find pest 5 0.03125 while phi 5
0.03561 (14 percent higher). This is a relatively small
effect in itself, but important in the overall calcula-
tion.

Therefore, the probability of getting exactly t of Nq

generated minutiae to match is about:

Pthresh 5 p t~1 2 p! Nq2t (6)

This derivation breaks down for small K because the
minutiae matching probability changes depending
on how many other minutiae have already been gen-
erated as well as on how many of those minutiae have
matched. However, for the large values of K typi-
cally encountered (e.g., 400) it is reasonably close.

Now there are a number of ways of selecting which
t out of the Nr minutiae in the reference print are
the ones that match. Thus, the total match proba-
bility becomes:

Pexact 5 SNr

t Dp t~1 2 p! Nq2t (7)

But matches of m or more minutiae typically count
as a verification, so we get:

Pver 5 O
t5m

Nq SNr

t Dp t~1 2 p! Nq2t (8)

For convenience, let us assume that Nq 5 Nr 5 N,
so the above equation can be rewritten as:

Pver 5 O
t5m

N SN
t Dp t~1 2 p! N2t (9)

Since p is fairly small in our case, we can use the Pois-
son approximation to the above binomial probabil-
ity density function:

Pver 5 O
t5m

N ~Np! te 2Np

t! (10)

This summation is usually dominated by its first term
(where t 5 m). For typical parameter values the sec-
ond term is 10 to 20 times smaller than the first. Ne-
glecting all but the first term may make the overall
estimate approximately 20 percent lower, but for or-
der-of-magnitude calculations this is fine. Thus, we
rewrite the expression as simply:

Pver 5
~Np! me 2Np

m! (11)

Because m is moderately large, we can use Stirling’s
approximation for the factorial and further rewrite
the equation as:

Pver 5
~Np! me 2Np

Î~2pm! e 2mm m (12)

and regrouping to emphasize the exponential depen-
dency:

Pver 5
e 2Np

Î2pm SeNp
m Dm

(13)

The log2 of Pver (bit strength) is plotted in Figure 6
for N 5 40, d 5 4, K 5 400 with m (the number
of minutiae required to match) between 10 and 35.
For a value of m 5 10, we have about 22 bits of
information (close to the prediction of the revised
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naive model). For the legal threshold of m 5 15,
we have around 40 bits of information (represent-
ing a number of distinct binary values equal to about
140 times the population of the earth). For a more
typical value of m 5 25, we have roughly 82 bits of
information content in this representation. This is
equivalent to a 16-character nonsense password
(such as “m4yus78xpmks3bc9”).

Studies similar to ours have been reported in the lit-
erature, and these studies evaluate the individuality
of a fingerprint based on the minutiae informa-
tion.9,10 These analyses were based on the minutiae
frequency data collected and interpreted by a hu-
man expert and involving a small set of fingers. Fur-
thermore, these studies used all the ten types of Gal-
ton characteristics,11 whereas our study is based on
just one type of feature (with no differentiation be-
tween ridge endings and bifurcations). The purpose
of these studies was to quantify the information con-
tent of a fingerprint (similar to our naive method)
rather than set thresholds for matching in the face
of brute force attacks.

Examining the final equation (Equation 13), we
make two important observations. First, in both the
naive and the more realistic model, it can be seen
that adding extra feature information at every mi-
nutia (e.g., raising d) increases significantly the
strength of the system. Similarly, if the spatial do-
main extent is increased or the number of minutiae

sites K are increased, the strength also increases.
Both these factors directly affect p, the single mi-
nutia matching probability, which shows up inside
the exponential term of Pver. Second, there is a strong
dependence on N, the overall number of minutiae
in a fingerprint. For high security, this number needs
to be kept as low as possible. This is one reason why
the probability of break-ins is much smaller when
good quality fingerprint images are enrolled as op-
posed to using poor quality images with many spu-
rious minutiae (yielding a higher overall N). Often
practical systems reject a bad quality fingerprint im-
age for this reason instead of taking a hit on the ac-
curacy of the system.

It should be pointed out that the brute force attack
break-in probability is not dependent in any way on
the FAR. That is, if the FAR is 1026, this does not mean
that, on average, the system is broken into after
500000 trials. The FAR is estimated using actual hu-
man fingers and is typically attributable to errors in
feature extraction (extra or missing features) and,
to a lesser extent, to changes in geometry such as
finger rolling or skin deformations due to twisting.
The statistics governing the occurrence of these types
of errors are different from those describing a brute
force attack.

WSQ-based data hiding

In both Web-based and other on-line transaction
processing systems, it is undesirable to send uncom-
pressed fingerprint images to the server due to band-
width limitations. A typical fingerprint image is of
the order of 512 3 512 pixels with 256 gray levels,
resulting in a file size of 256 Kbytes. This would take
nearly 40 seconds to transmit at 53 Kbaud. Unfor-
tunately, many standard compression methods, such
as JPEG (Joint Photographic Experts Group), have
a tendency to distort the high-frequency spatial and
structural ridge features of a fingerprint image. This
has led to several research proposals regarding do-
main-specific compression methods. As a result, an
open Wavelet Scalar Quantization (WSQ) image
compression scheme proposed by the FBI12 has be-
come the de facto standard in the industry, because
of its low image distortion even at high-compression
ratios (over 10:1).

Typically, the compressed image is transmitted over
a standard encrypted channel as a replacement for
(or in addition to) the user’s PIN. Yet, because of
the open compression standard, transmitting a WSQ
compressed image over the Internet is not partic-

Figure 6 Bit strength in the more realistic model
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ularly secure. If a compressed fingerprint image
bitstream can be freely intercepted (and decrypted),
it can be decompressed using readily available
software. This potentially allows the signal to be
saved and fraudulently reused (attack point 2 in Fig-
ure 3).

One way to enhance security is to use data-hiding
techniques to embed additional information directly
in compressed fingerprint images. For instance, if
the embedding algorithm remains unknown, the ser-
vice provider can look for the appropriate standard
watermark to check that a submitted image was in-
deed generated by a trusted machine (or sensor).
Several techniques have been proposed in the lit-
erature for hiding digital watermarks in images.13,14

Bender et al.15 and Swanson et al.16 present excel-
lent surveys of data-hiding techniques. Petitcolas et
al.14 provide a nice survey and taxonomy of infor-
mation-hiding techniques. Hsu and Wu17 describe
a method for hiding watermarks in JPEG compressed
images. Most of the research, however, addresses is-
sues involved in resolving piracy or copyright issues,
not authentication. An exception is the invisible wa-
termarking technique for fingerprints proposed by
Yeung and Pankanti.18 Their study involves exam-
ining the accuracy after an invisible watermark is in-
serted in the image domain. Our proposed solution
is different because, first, it operates directly in the
compressed domain and, second, it causes no per-
formance degradation.

The approach is motivated by the desire to create
on-line fingerprint authentication systems for com-
mercial transactions that are secure against replay
attacks. To achieve this, the service provider issues
a different verification string for each transaction.
The string is mixed in with the fingerprint image be-
fore transmission. When the image is received by the
service provider it is decompressed and the image
is checked for the presence of the correct one-time
verification string. The method we propose here
hides such messages with minimal impact on the ap-
pearance of the decompressed image. Moreover, the
message is not hidden in a fixed location (which
would make it more vulnerable to discovery) but is,
instead, deposited in different places based on the
structure of the image itself. Although our approach
is presented in the framework of fingerprint image
compression, it can be easily extended to other bi-
ometrics such as wavelet-based compression of fa-
cial images.

Our information hiding scheme works in conjunc-
tion with the WSQ fingerprint image encoder and de-
coder, which are shown in Figures 7A and 7B, re-
spectively. In the first step of the WSQ compression,
the input image is decomposed into 64 spatial fre-
quency subbands using perfect reconstruction mul-
tirate filter banks19 based on discrete wavelet trans-
formation filters. The filters are implemented as a
pair of separable 1D filters. The two filters specified
for encoder 1 of the FBI standard are plotted in Fig-
ures 7C and 7D. The subbands are the filter outputs
obtained after a desired level of cascading of the fil-
ters as described in the standard. For example, sub-
band 25 corresponds to the cascading path of “00,
10, 00, 11” through the filter bank. The first digit in
each binary pair represents the row operation index.
A zero specifies low pass filtering using h0 on the row
(column) while a one specifies high pass filtering using
h1 on the row (column). Thus for the 25th subband,
the image is first low pass filtered in both row and col-
umn; followed by high pass filtering in rows, then low
pass filtering in columns; the output of which is then
low pass filtered in rows and columns; and ending with
high pass filtering in rows and columns. Note that there
is appropriate down sampling and the symmetric ex-
tension transform is applied at every stage as specified
in the standard. The 64 subbands of the gray-scale fin-
gerprint image shown in Figure 8A are shown in Fig-
ure 8C.

There are two more stages to WSQ compression. The
second stage is a quantization process where the Dis-
crete Wavelet Transform (DWT) coefficients are
transformed into integers with a small number of dis-
crete values. This is accomplished by uniform scalar
quantization for each subband. There are two char-
acteristics for each band: the zero of the band (Zk)
and the width of the bins (Qk). These parameters
must be chosen carefully to achieve a good compres-
sion ratio without introducing significant informa-
tion loss that will result in distortions of the images.
The Zk and Qk for each band are transmitted di-
rectly to the decoder. The third and final stage is
Huffman coding of the integer indices for the DWT
coefficients. For this purpose, the bands are grouped
into three blocks. In each block, the integer coef-
ficients are remapped to numbers between 0–255
prescribed by the translation table described in the
standard. This translation table encodes run lengths
of zeros and large values. Negative coefficients are
translated in a similar way by this table.

Our data-hiding algorithm works on the quantized
indices before this final translation (i.e., between stages
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2 and 3). We assume the message size is very small com-
pared to the image size (or, equivalently, the number
of DWT coefficients). Note, however, that the Huffman

coding characteristics and tables are not changed; the
tables are computed as for the original coefficients, not
after the coefficient altering steps described next.

Figure 7D Analysis filter h1
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As mentioned, our method is intended for messages
which are very small (in terms of bits) compared to
the number of pixels in the image. The basic prin-
ciple is to find and slightly alter certain of the DWT
coefficients. However, care must be taken to avoid
corrupting the reconstructed image. To hide a mes-
sage during the image encoding process, we perform
three (or, optionally, four) basic steps:

● Selecting a set of sites S: Given the partially con-
verted quantized integer indices, this stage collects
the indices of all possible coefficient sites where
a change in the least significant bit is tolerable. Typ-
ically, all sites in the low frequency bands are ex-
cluded. Even small changes in these coefficients
can affect large regions of the image because of
the low frequencies. For the higher frequencies,
candidate sites are selected if they have coefficients
of large magnitude. Making small changes to the
larger coefficients leads to relatively small percent-
age changes in the values and hence minimal deg-
radation of the image. Note that among the quan-
tizer indices there are special codes to represent
run lengths of zeros, large integer values, and other
control sequences. All coefficient sites incorpo-
rated into these values are avoided. In our imple-
mentation, we only select sites with translated in-
dices ranging from 107 to 254, but excluding 180
(an invalid code).

● Generating a seed for random number generation
and then choosing sites for modification: Sites from
the candidate set S, that are modified, are selected
in a pseudorandom fashion. To ensure that the en-
coder actions are invertible in the decoder, the seed
for the random number generator is based on the
subbands that are not considered for alteration.
For example, in the selection process the contents
of subbands 0–6 are left unchanged in order to
minimize distortion. Typically, fixed sites within
these bands are selected, although in principle any
statistic from these bands may be computed and
used as the seed. Selecting the seed in this way en-
sures that the message is embedded at varying lo-
cations (based on the image content). It further
ensures that the embedded message can only be
read if the proper seed selection algorithm is
known by the decoder.

● Hiding the message at selected sites by bit setting:
The message to be hidden is translated into a se-
quence of bits. Each bit will be incorporated into
a site chosen pseudorandomly by a random num-
ber generator seeded as described above. That is,
for each bit a site is selected from the set S based
on the next output of the seeded pseudorandom
number generator. If the selected site has already
been used, the next randomly generated site is cho-
sen instead. The low order bit of the value at the
selected site is changed to be identical to the cur-

Figure 8B WSQ data-hiding results; 
 (B) reconstructed image 

B

Figure 8A     WSQ data-hiding results; 
 (A) original image

A
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rent message bit. On average, half the time this
results in no change at all of the coefficient value.

● Appending the bits to the coded image: Option-
ally, all the original low order bits can be saved
and appended to the compressed bit stream as a
user comment field (an appendix). The appended
bits are a product of randomly selected low-order
coefficient bits and hence these bits are uncorre-
lated with the hidden message.

The steps performed by the decoder correspond to
the encoder steps above. The first two steps are iden-
tical to the first steps of the encoder. These steps
construct the same set S and compute the same seed
for the random number generator. The third step
uses the pseudorandom number generator to select
specific sites in S in the prescribed order. The least
significant bits of the values at these sites are extracted
and concatenated to recover the original message.

Figure 8C 64 subbands of the image in Figure 8A
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If the appendix restoration is to be included, the de-
coder can optionally restore the original low-order
bits while reconstructing the message. This allows
perfect reconstruction of the image (up to the orig-
inal compression) despite the embedded message.
Because the modification sites S are carefully se-
lected, the decompressed image even with the mes-
sage still embedded will be nearly the same as the
restored decompressed image. In practice, the er-
ror due to the embedded message is not perceptu-
ally significant and does not affect subsequent pro-
cessing and authentication. Figures 8A and 8B show
the original and the reconstructed images, respec-
tively.

Using this process only a specialized decoder can lo-
cate and extract the message from the compressed
image during the decoding process. This message
might be a fixed authentication stamp, personal ID
information which must match some other part of
the record (which might have been sent in the clear),
or some time stamp. Thus, if the bit stream does not
contain an embedded message or the bit stream is
improperly coded, the specialized decoder will fail
to extract the expected message and will thus reject
the image. If instead an unencoded WSQ compressed
fingerprint image is submitted to the special decoder,
it will still extract a garbage message which can be
rejected by the server.

Many implementations of the same algorithm are
possible by using different random number gener-
ators or partial seeds. This means it is possible to
make every implementation unique without much
effort; the output of one encoder need not be com-
patible with another version of the decoder. This has
the advantage that cracking one version will not com-
promise any other version.

This method can also be extended to other biomet-
ric signals using a wavelet compression scheme, such
as facial images or speech. While the filters and the
quantizer in the WSQ standard have been designed
to suit the characteristics of fingerprint images, wave-
let-based compression schemes for other signals are
also available.20 It is relatively straightforward to de-
sign techniques similar to ours for such schemes.

Image-based challenge/response method

Besides interception of network traffic, more insidious
attacks might be perpetrated against an automated bio-
metric authentication system. One of these is a replay

attack on the signal from the sensor (attack point 2 in
Figure 3). We propose a new method to thwart such
attempts based on a modified challenge/response sys-
tem. Conventional challenge/response systems are
based either on challenges to the user, such as re-
questing the user to supply the mother’s maiden
name, or challenges to a physical device, such as a
special-purpose calculator that computes a numer-
ical response. Our approach is based on a challenge
to the sensor. The sensor is assumed to have enough
intelligence to respond to the challenge. Silicon fin-
gerprint scanners21 can be designed to exploit the
proposed method using an embedded processor.

Note that standard cryptographic techniques are not
a suitable substitute. While these are mathematically
strong, they are also computationally intensive and
could require maintaining secret keys for a large
number of sensors. Moreover, the encryption tech-
niques cannot check for liveness of a signal. A stored
image could be fed to the encryptor, which will hap-
pily encrypt it. Similarly, the digital signature of a
submitted signal can be used to check only for its
integrity, not its liveness.

Our system computes a response string, which de-
pends not only on the challenge string, but also on
the content of the returned image. The changing
challenges ensure that the image was acquired after
the challenge was issued. The dependence on im-
age pixel values guards against substitution of data
after the response has been generated.

The proposed solution works as shown in Figure 9.
A transaction is initiated at the user terminal or sys-
tem. First, the server generates a pseudorandom
challenge for the transaction and the sensor. Note
that we assume that the transaction server itself is
secure. The client system then passes the challenge
on to the intelligent sensor. Now, the sensor acquires
a new signal and computes the response to the chal-
lenge that is based in part on the newly acquired sig-
nal. Because the response processor is tightly inte-
grated with the sensor (preferable on the same chip),
the signal channel into the response processor is as-
sumed ironclad and inviolable. It is difficult to inter-
cept the true image and to inject a fake image under
such circumstances.

As an example of an image-based response, consider
the function “x11” which operates by appending
pixel values of the image (in scan order) to the end
of the challenge string. A typical challenge might be
“3, 10, 50.” In response to this, the integrated pro-
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cessor then selects the 3rd, 10th, and 50th pixel value
from this sequence to generate an output response
such as “133, 92, 176.” The complete image as well
as the response is then transmitted to the server
where the response can be verified and checked
against the image.

Other examples of responder functions include com-
puting a checksum of a segment of the signal, a set
of pseudorandom samples, a block of contiguous
samples starting at a specified location and with a
given size, a hash of signal values, and a specified
known function of selected samples of the signal. A
combination of these functions can be used to
achieve arbitrarily complex responder functions. The
important point is that the response depends on the
challenge and the image itself.

The responder can also incorporate several differ-
ent response functions, which the challenger could
select among. For instance, the integrated proces-
sor might be able to compute either of two select-
able functions, “x11” and “x101.” The function
“x101” is similar to “x11” except it multiplies the
requested pixel values by 10 before appending them.
Financial institution A might use function “x11” in
all its units, while institution B might use “x101” in
all of its units. Alternatively, for even numbered
transactions, function “x101” might be used, and for
odd numbered transactions “x11” might be used.
This variability makes it even harder to reconstruct
the structure and parameters of the response func-
tion. Large numbers of such response functions are

possible because we have a large number of pixels
and many simple functions can be applied to these
pixels.

Cancelable biometrics

Deploying biometrics in a mass market, like credit
card authorization or bank ATM access, raises ad-
ditional concerns beyond the security of the trans-
actions. One such concern is the public’s perception
of a possible invasion of privacy. In addition to per-
sonal information such as name and date of birth,
the user is asked to surrender images of body parts,
such as fingers, face, and iris. These images, or other
such biometric signals, are stored in digital form in
various databases. This raises the concern of pos-
sible sharing of data among law enforcement agen-
cies, or commercial enterprises.

The public is concerned about the ever-growing body
of information that is being collected about individ-
uals in our society. The data collected encompass
many applications and include medical records and
biometric data. A related concern is the coordina-
tion and sharing of data from various databases. In
relation to biometric data, the public is, rightfully or
not, worried about data collected by private com-
panies being matched against databases used by law
enforcement agencies. Fingerprint images, for ex-
ample, can be matched against the FBI or INS (Im-
migration and Naturalization Service) databases with
ominous consequences.

Figure 9 Signal authentication based on challenge/response
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These concerns are aggravated by the fact that a
person’s biometric data are given and cannot be
changed. One of the properties that makes biomet-
rics so attractive for authentication purposes—their
invariance over time—is also one of its liabilities.
When a credit card number is compromised, the is-
suing bank can just assign the customer a new credit
card number. When the biometric data are compro-
mised, replacement is not possible.

In order to alleviate this problem, we introduce the
concept of “cancelable biometrics.” It consists of an
intentional, repeatable distortion of a biometric sig-
nal based on a chosen transform. The biometric sig-
nal is distorted in the same fashion at each presen-
tation, for enrollment and for every authentication.
With this approach, every instance of enrollment can
use a different transform thus rendering cross-match-
ing impossible. Furthermore, if one variant of the
transformed biometric data is compromised, then the
transform function can simply be changed to create
a new variant (transformed representation) for re-
enrollment as, essentially, a new person. In general,
the distortion transforms are selected to be nonin-
vertible. So even if the transform function is known
and the resulting transformed biometric data are
known, the original (undistorted) biometrics cannot
be recovered.

Example distortion transforms. In the proposed
method, distortion transforms can be applied in ei-
ther the signal domain or the feature domain. That
is, either the biometric signal can be transformed di-
rectly after acquisition, or the signal can be processed
as usual and the extracted features can then be trans-
formed. Moreover, extending a template to a larger
representation space via a suitable transform can fur-
ther increase the bit strength of the system. Ideally
the transform should be noninvertible so that the true
biometric of a user cannot be recovered from one
or more of the distorted versions stored by various
agencies.

Examples of transforms at the signal level include
grid morphing and block permutation. The trans-
formed images cannot be successfully matched
against the original images, or against similar trans-
forms of the same image using different parameters.
While a deformable template method might be able
to find such a match, the residual strain energy is
likely to be as high as that of matching the template
to an unrelated image. In Figure 10, the original im-
age is shown with an overlaid grid aligned with the
features of the face. In the adjacent image, we show
the morphed grid and the resulting distortion of the
face. In Figure 11, a block structure is imposed on
the image aligned with characteristic points. The

Figure 10 Distortion transform based on image morphing
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blocks in the original image are subsequently scram-
bled randomly but repeatably. Further examples of
image morphing algorithms are described in Refer-
ences 22 and 23.

An example of a transform in the feature domain is
a set of random, repeatable perturbations of feature
points. This can be done within the same physical
space as the original, or while increasing the range
of the axes. The second case provides more brute
force strength as was noted in Section 4 (this effec-
tively increases the value of K). An example of such
a transform is shown in Figure 12. Here the blocks
on the left are randomly mapped onto blocks on the
right, where multiple blocks can be mapped onto the
same block. Such transforms are noninvertible, hence
the original feature sets cannot be recovered from
the distorted versions. For instance, it is impossible
to tell which of the two blocks the points in com-
posite block B, D originally came from. Conse-
quently, the owner of the biometrics cannot be iden-
tified except through the information associated with
that particular enrollment.

Note that for the transform to be repeatable, we need
to have the biometric signal properly registered be-
fore the transformation. Fortunately, this problem

has been partially answered by a number of tech-
niques available in the literature (such as finding the
“core” and “delta” points in a fingerprint, or eye and
nose detection in a face).

Feature domain transforms. We present here an ex-
ample of a noninvertible transform of a point pat-
tern. Such a point pattern could, for example, be a
fingerprint minutiae set

S 5 $~ xi, yi, ui!, i 5 1, . . . , M% (14)

However, this point set could also represent other
biometrics, for example, the quantized frequencies
and amplitudes of a speech pattern. A noninvertible
transform maps this set S into a new set S9 in such
a fashion that the original set S cannot be recovered
from S9, i.e.,

S 5 $~ xi, yi, ui!, i 5 1, . . . , M%3 S9

5 $~Xi, Yi, Qi!, i 5 1, . . . , M% (15)

Figure 13 shows how the x coordinates of the point
set S can be transformed through a mapping x 3
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Figure 11 Distortion transform based on block scrambling
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X, or X 5 F(x). This function of x can, for example,
be a high-order polynomial

X 5 F~ x! 5 O
n50

N

an x n 5 P
n50

N

~ x 2 bn! (16)

The mapping x 3 X is one-to-one, as is seen from
Figure 13. However, it is seen that the mapping
X3 x is one-to-many. For instance, the output value
X1 could be generated from three different input x’s.
Hence, this transform is noninvertible and the orig-

inal features x cannot be recovered from the X val-
ues.

Similar polynomial noninvertible transforms

Y 5 G~ y! and Q 5 H~u ! (17)

can be used for the other coordinates of the point
set.

Encryption and transform management. The tech-
niques presented here for transforming biometric sig-

Figure 12 Distortion transform based on feature perturbation
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nals differ from simple compression using signal or
image processing techniques. While compression of
the signal causes it to lose some of its spatial domain
characteristics, it strives to preserve the overall ge-
ometry. That is, two points in a biometric signal be-
fore compression are likely to remain at compara-
ble distance when decompressed. This is usually not
the case with our distortion transforms. Our tech-
nique also differs from encryption. The purpose of
encryption is to allow a legitimate party to regen-
erate the original signal. In contrast, distortion trans-
forms permanently obscure the signal in a noninvert-
ible manner.

When employing cancelable biometrics, there are
several places where the transform, its parameters,
and identification templates could be stored. This

leads to a possible distributed process model as
shown in Figure 14. The “merchant” is where the
primary interaction starts in our model. Based on
the customer ID, the relevant transform is first pulled
from one of the transform databases and applied to
the biometrics. The resulting distorted biometrics is
then sent for authentication to the “authorization”
server. Once the user’s identity has been confirmed,
the transaction is finally passed on to the relevant
commercial institution for processing.

Note that an individual user may be subscribed to
multiple services, such as e-commerce merchants or
banks. The authentication for each transaction might
be performed either by the service provider itself,
or by an independent third party. Similarly, the dis-
tortion transform might be managed either by the

Figure 14 Authentication process based on cancelable biometrics
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authenticator or by still another independent agency.
Alternatively, for the best privacy the transform
might remain solely in the possession of the user,
stored, say, on a smart card. If the card is lost or sto-
len, the stolen transform applied to another person’s
biometrics will have very little impact. However, if
the transform is applied to a stored original biomet-
rics signal of the genuine user, it will match against
the stored template of the person. Hence “liveness”
detection techniques (such as described earlier)
should be added to prevent such misuse.

Conclusions

Biometrics-based authentication has many usability
advantages over traditional systems such as pass-
words. Specifically, users can never lose their bio-
metrics, and the biometric signal is difficult to steal
or forge. We have shown that the intrinsic bit strength
of a biometric signal can be quite good, especially
for fingerprints, when compared to conventional
passwords.

Yet, any system, including a biometric system, is vul-
nerable when attacked by determined hackers. We
have highlighted eight points of vulnerability in a ge-
neric biometric system and have discussed possible
attacks. We suggested several ways to alleviate some
of these security threats. Replay attacks have been
addressed using data-hiding techniques to secretly
embed a telltale mark directly in the compressed fin-
gerprint image. A challenge/response method has
been proposed to check the liveliness of the signal
acquired from an intelligent sensor.

Finally, we have touched on the often-neglected
problems of privacy and revocation of biometrics. It
is somewhat ironic that the greatest strength of bi-
ometrics, the fact that the biometrics does not change
over time, is at the same time its greatest liability.
Once a set of biometric data has been compromised,
it is compromised forever. To address this issue, we
have proposed applying repeatable noninvertible dis-
tortions to the biometric signal. Cancellation simply
requires the specification of a new distortion trans-
form. Privacy is enhanced because different distor-
tions can be used for different services and the true
biometrics are never stored or revealed to the au-
thentication server. In addition, such intentionally
distorted biometrics cannot be used for searching leg-
acy databases and will thus alleviate some privacy
violation concerns.
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