
Anti-Trojan and Trojan Detection with
In-Kernel Digital Signature testing of

Executables.

Michael A. Williams

Security Software Engineering
NetXSecure NZ Limited.

http//www.nxs.co.nz

April 16, 2002

ABSTRACT

This paper presents a somewhat compute expensive way to detect or deny
the activity of Trojan or otherwise modified executable files that may have been
tampered with in any way thus taking a "that which is not expressly permitted is
denied" stance. It then provides a description of two reference implementations
with a summary of the implications and some obvious limitations. Included are
appendices containing gprof flat and call graph profiles from kgmon and gprof
Kernel profiling sessions with references for further reading and or study on the
included topics.

Version 0.06

1

Contents

1 In-Kernel signature checking of executables 3
1.1 Why . 3
1.2 How . 3
1.3 Costs . 4

2 Reference Implementations 4
2.1 OpenBSD . 4
2.2 FreeBSD . 5
2.3 Signature Database . 5

3 Summary 5
3.1 Is it worth it . 5
3.2 Where to next . 6
3.3 Kernel Profiling . 6

A Kernel Profiles 7
A.1 Flat Profiles for Compilation Loop 7
A.2 Flat Profile for Workstation . 8
A.3 Call Graph Profiles . 9

A.3.1 Generic Kernel in Compilation Loop 9
A.3.2 Signed Exec Kernel Option in Compilation Loop 10
A.3.3 Signed Exec Kernel Option - Workstation 11

B References 12
B.1 books . 12
B.2 papers . 12
B.3 training courses . 12

2

1 In-Kernel signature checking of executables

1.1 Why

Why should we do this? Due to the prolific nature and rampant increase of at-
tacks achieved by the successful compromise of a network connected computer
followed by the installation of Trojan-ed binaries, root kits, worms and virus pay-
loads the system administrator or security manager has a very difficult task.

Once you have decided that even the best and most secure system is capable
of or has been compromised then the next thing to consider is how do you know
that it has happened and how quickly can you react? It would be nice to know
that an attempt has been made to execute a file that has been tampered with and
that the affected computer system has either warned you of this or has denied the
execution depending on which you prefer1.

One could ask why not simply run executables from read only media to make
executables tamper proof or in the case of *BSD systems use of the immutable file
flags2 which in both cases require physical access to the console to bypass. One
answer is in the debate that if a system is compromised and the attacker is not
able to install a root kit or tamper with executable files then how does the owner
or administration team know that the system has been compromised?

In respect to special case systems such as sacrificial hosts or honey pots there
is an obvious advantage to knowing as quickly as possible that an attack is in
progress, on that note sacrificial hosts or honey pots are obvious candidates for
the alerts generated from warnings. Firewall’s, routers and or VPN endpoints are
suitable candidates for the deny stance.

1.2 How

When the Kernel is carrying out a series of checks before executing a binary or
script3 file it would seem to be an ideal opportunity to optionally carry out a check
to see if the file has been tampered with by doing a signature calculation4 and
comparison against a highly secured signature database with a resulting decision
to allow or deny the execution based on the result. It also follows that the Kernel

1Read the section titled How for an explanation
2man chflags(1)
3As well as any Interpreter
4eg. man md5(1)

3

could decide to proceed with the execution of a file that does not pass the compar-
ison and simply generate a warning with an audit trail written in either case.

1.3 Costs

Does the ongoing massive increases in CPU processing power and memory band-
width mean that the cost benefit ratio of calculating and comparing a digital sig-
nature for each and every invocation of an executable or script file is acceptable.

Have a look at the Kernel profile results which show forty percent (40%)5

and higher of the running Kernel in MD5Transform6 for a system in a kernel
compilation loop as compared to point seven of a percent (0.7%)7 for a power
workstation running X Windows with ten (10) active virtual desktops although
not a high invocation rate of the exec system call. The decision must come down
to the the cost of having the information that an attacker has got far enough to
tamper with executable files versus the cost of not knowing.

2 Reference Implementations

2.1 OpenBSD

OpenBSD8 was chosen for the first reference implementation due to its well known
high security standards and a clean efficient Kernel compilation environment. The
implementation is mainly within the Exec system call as in-line code that calls the
Kernel library MD5 routines to calculate a signature for the intended executable
file. The BSD securelevel9 is used to decide between no audit, audit and warnings
or audit and deny. A check is carried out to ensure that the signature database is
either mounted on a cd9660 type file system or alternatively a read only mounted
local FFS file system with the signature files set immutable10.

The wiring of loadable Kernel module types syscall and exec have been dis-
abled to prevent a simple and obvious bypass of signature testing within the exec
system call, with the side affect that these loadable Kernel modules are not avail-
able.

5See section A.1 on page 7
6MD5 was chosen in the instance, SHA1 could be a better choice
7See section A.2 on page 8
8http://www.openbsd.org
9man init(8)

10man chflags(1)

4

The reference code11 is available12 as a set of patch files to the Kernel source
tree for OpenBSD 3.0 Release and is compiled in by Kernel Option with behavior
controlled by securelevel settings.

2.2 FreeBSD

FreeBSD13 was chosen for the second reference implementation. Again the ref-
erence code14 is available15 as a set of patch files to the Kernel source tree for
FreeBSD 4.5 Release. Almost identical in-line source code with the same compi-
lation included by Kernel Option and behavior controlled by securelevel.

FreeBSD loadable Kernel module functionality is disabled if the Kernel is
compiled with the signed exec option on, this needs to change to signature check-
ing of the LKM before loading as done with executables.

2.3 Signature Database

The reference implementation uses a supplied script to build an MD5 signature
database which needs to be either copied to a separate local FFS16 partition to be
mounted read only after setting the entire signature database to immutable with
chflags17 or alternatively written to CD-ROM.

3 Summary

3.1 Is it worth it

On a busy server or any system that has a high invocation rate of the exec system
call with short duration programs the cost could easily be prohibitive and for any
system that is updated regularly18 the burden of updating signature database’s
could also be considered too much effort.

11Currently Intel i386 architecture only
12http://www.trojanproof.org/sigexec-obsd3.0r-0.2.tgz
13http://www.freebsd.org
14Currently Intel i386 architecture only
15http://www.trojanproof.org/sigexec-fbsd4.5r-0.2.tgz
16man mount
17man chflags(1)
18Including security patches!

5

The intention of this exercise has not been to create a system that can not be
defeated, rather a way of making it harder for the casual break in to go undetected
and for that detection process to occur very very quickly.

3.2 Where to next

Loadable Kernel Modules and shared libraries could and should be signature
tested as well.

Performance improvements are an area that has not really been addressed how-
ever performance data has been obtained to benchmark the costs of doing sig-
nature checking of executables as well as providing a baseline for performance
improvements such as pre-loading the executable19 and maybe caching signatures
which unfortunately raise further security issues.

A Linux 2.2.4 Kernel implementation is in progress.

3.3 Kernel Profiling

Kgmon20 and Gprof21 have been used along with custom Kernels compiled and
configured22 for profiling23.

The results are going to vary dramatically based on almost as many variables
as there are variations in system types and possible mixes of applications so no
information has been provided on the hardware used to conduct the tests and no
tests have been run taking advantage of hardware crypto yet. The indications are
that the faster CPU’s and more modern hardware handles this type of workload
with ease compared to older generation systems.

19Into the VM system
20kgmon(8)
21gprof(1)
22config(8)
23See section B.2 on page 12

6

A Kernel Profiles

A.1 Flat Profiles for Compilation Loop
*** FreeBSD 4.5 Release Kernel profiles.

*** Generic Kernel with profiling.
*** Flat profile first 8 entries for the entire kernel.

% cumulative self self total
time seconds seconds calls ms/call ms/call name
7.6 64.15 64.15 __mcount [18]
6.8 121.41 57.26 1593655 0.04 0.04 generic_copyout [20]
5.3 166.36 44.96 101883964 0.00 0.00 splx <cycle 1> [21]
4.9 208.04 41.68 3477950 0.01 0.01 trap <cycle 1> [25]
4.5 246.60 38.56 36264396 0.00 0.00 lockmgr <cycle 1> [24]
4.1 281.22 34.62 3643431 0.01 0.01 i486_bzero [27]
3.8 313.29 32.07 4769164 0.01 0.11 syscall2 [4]
3.5 343.36 30.07 3202573 0.01 0.02 vm_fault <cycle 1> [16]

*** Generic Kernel with SIGNED_EXEC option enabled and profiling.
*** Flat profile first 8 entries for the entire kernel.

% cumulative self self total
time seconds seconds calls ms/call ms/call name
42.2 1085.12 1085.12 192540406 0.01 0.01 MD5Transform [6]
4.2 1192.39 107.27 __mcount [19]
3.9 1292.14 99.75 205885250 0.00 0.00 generic_bcopy [20]
2.4 1353.34 61.19 173071759 0.00 0.00 splx <cycle 1> [22]
2.3 1412.49 59.16 54135072 0.00 0.00 lockmgr <cycle 1> [23]
2.3 1470.96 58.47 298346 0.20 0.20 default_halt [25]
2.0 1523.03 52.07 197968791 0.00 0.00 i486_bzero [26]
1.9 1571.79 48.76 7550914 0.01 0.27 syscall2 [3]

Note the impact of the SIGNED_EXEC option where the MD5Transform
routine occupies 42.2% of the running kernel time.

7

A.2 Flat Profile for Workstation

*** FreeBSD 4.5 Release Kernel profiles.

*** Generic Kernel with SIGNED_EXEC option enabled and profiling.
*** Flat profile first 20 entries for the entire kernel.

% cumulative self self total
time seconds seconds calls ms/call ms/call name
23.0 54.54 54.54 15068819 0.00 0.00 default_halt [8]
21.9 106.63 52.09 __mcount [9]
12.7 136.89 30.27 122765174 0.00 0.00 splx <cycle 1> [14]
3.9 146.26 9.37 6365848 0.00 0.00 i8254_get_timecount [23]
3.8 155.37 9.11 63148 0.14 0.15 xe_intr [26]
2.2 160.63 5.26 2591575 0.00 0.03 selscan [6]
2.2 165.83 5.20 10784660 0.00 0.01 syscall2 [2]
2.1 170.88 5.04 44242485 0.00 0.00 sopoll [12]
1.7 174.91 4.03 449072 0.01 0.01 spl0 <cycle 1> [38]
1.2 177.78 2.87 44242485 0.00 0.00 soo_poll [11]
1.1 180.37 2.59 57172474 0.00 0.00 fdrop <cycle 1> [43]
1.1 182.89 2.52 16339174 0.00 0.00 generic_copyin [44]
1.0 185.28 2.39 47628483 0.00 0.00 selrecord [48]
0.9 187.33 2.05 14378842 0.00 0.00 lockmgr <cycle 1> [53]
0.9 189.38 2.04 7352548 0.00 0.01 Xint0x80_syscall [4]
0.8 191.39 2.01 8702286 0.00 0.00 generic_copyout [55]
0.8 193.36 1.97 33540 0.06 0.06 xe_pio_write_packet [57]
0.7 194.94 1.58 1672633 0.00 0.00 MD5Transform [47]
0.6 196.39 1.45 1888269 0.00 0.05 select [5]
0.6 197.77 1.37 1073088 0.00 0.01 sosend [30]

8

A.3 Call Graph Profiles
A.3.1 Generic Kernel in Compilation Loop
*** Call Graph for system call Execve.
*** Details for child calls from execve not shown.

called/total parents
index %time self descendents called+self name index

called/total children

0.00 0.00 46819/46819 syscall2 (637)
[1] 100.0 0.97 57.40 46819 execve [1]

0.67 39.98 32008/32008 exec_elf_imgact [2]
0.20 5.71 47177/880963 namei [7]
1.23 2.67 32008/32008 exec_copyout_strings [11]
0.12 1.01 32366/39552 exec_map_first_page [23]
1.12 0.00 48628/1204021 generic_bcopy [13]
0.12 0.72 32366/39552 exec_check_permissions [28]
0.15 0.65 32008/32008 setregs [37]
0.34 0.13 64374/78101428 vrele <cycle 1> [90]
0.11 0.36 32008/32008 elf_freebsd_fixup [50]
0.25 0.10 46819/78101428 kmem_alloc_wait <cycle 1> [225]
0.25 0.10 46819/78101428 kmem_free_wakeup <cycle 1> [340]
0.02 0.27 32366/39552 exec_unmap_first_page [60]
0.17 0.07 32366/78101428 ufs_vnoperate <cycle 1> [22]
0.21 0.00 32008/32008 execsigs [86]
0.12 0.05 23029/78101428 wakeup <cycle 1> [246]
0.09 0.03 16620/78101428 malloc <cycle 1> [165]
0.10 0.01 32008/32008 fdcloseexec [120]
0.07 0.00 32366/32366 exec_shell_imgact [146]
0.07 0.00 32008/32008 exec_aout_imgact [153]
0.07 0.00 32366/554391 NDFREE [139]
0.04 0.00 32008/32008 stopprofclock [200]
0.03 0.00 32008/316167 knote [209]
0.02 0.00 32008/1590251 vref [163]
0.01 0.00 48628/1204021 bcopy [218]
0.00 0.00 667/78101428 free <cycle 1> [130]
0.00 0.00 1/32 change_euid [567]
0.00 0.00 1/105 crcopy [563]
0.00 0.00 1/164 setsugid [872]
0.00 0.00 1/1 setugidsafety [978]

9

A.3.2 Signed Exec Kernel Option in Compilation Loop
*** Call Graph for system call Execve.
*** Details for child calls from execve not shown.

called/total parents
index %time self descendents called+self name index

called/total children

0.00 0.00 48882/48882 syscall2 (763)
[1] 100.0 5.58 1376.10 48882 execve [1]

22.77 1219.23 3026100/3094706 MD5Update [2]
0.73 44.87 33918/33918 exec_elf_imgact [7]
5.60 24.13 3060376/3060376 vn_rdwr [9]
0.02 28.23 34303/34303 MD5Final [11]
0.32 9.09 83570/1368992 namei [14]
0.09 5.90 548848/556414 snprintf [18]
1.35 0.65 33918/33918 exec_copyout_strings [35]
1.29 0.43 223021/121143509 malloc <cycle 1> [185]
1.19 0.40 206498/121143509 free <cycle 1> [128]
0.11 1.10 34303/41849 exec_map_first_page [40]
0.05 1.07 102936/102936 sprintf [48]
0.12 0.79 34303/41849 exec_check_permissions [49]
0.59 0.20 102497/121143509 vrele <cycle 1> [86]
0.05 0.71 68633/68633 log [60]
0.64 0.00 548848/548848 strcat [67]
0.40 0.13 68552/121143509 vop_defaultop <cycle 1> [126]
0.11 0.39 33918/33918 elf_freebsd_fixup [81]
0.14 0.34 33918/33918 setregs [84]
0.28 0.09 48882/121143509 kmem_alloc_wait <cycle 1> [289]
0.28 0.09 48882/121143509 kmem_free_wakeup <cycle 1> [455]
0.02 0.29 34303/41849 exec_unmap_first_page [99]
0.20 0.07 34303/121143509 ufs_vnoperate <cycle 1> [34]
0.20 0.07 34276/121143509 vop_stdunlock <cycle 1> [105]
0.20 0.06 33918/121143509 knote <cycle 1> [244]
0.22 0.00 33918/33918 execsigs [132]
0.14 0.05 24509/121143509 wakeup <cycle 1> [279]
0.12 0.00 68579/1010369 NDFREE [174]
0.10 0.01 33918/33918 fdcloseexec [190]
0.09 0.00 33918/33918 exec_aout_imgact [200]
0.09 0.00 34303/34303 strncmp [203]
0.08 0.00 34303/34303 exec_shell_imgact [220]
0.03 0.00 33918/33918 stopprofclock [298]
0.02 0.00 51121/205885250 generic_bcopy [4]
0.02 0.00 34303/34303 MD5Init [347]
0.02 0.00 33918/2499349 vref [192]
0.01 0.00 34303/555516 strcmp [431]
0.00 0.00 51121/205810944 bcopy [13]
0.00 0.00 6/194 crcopy [657]
0.00 0.00 2/52 change_euid [679]
0.00 0.00 6/292 setsugid [682]
0.00 0.00 6/6 setugidsafety [1136]

10

A.3.3 Signed Exec Kernel Option - Workstation
*** Call Graph for system call Execve.
*** Details for child calls from execve not shown.

called/total parents
index %time self descendents called+self name index

called/total children

0.00 0.00 341/341 syscall2 (650)
[1] 100.0 0.00 2.50 341 execve [1]

0.02 2.34 26245/27283 MD5Update [2]
0.00 0.06 337/389 MD5Final [6]
0.00 0.02 335/335 exec_elf_imgact [10]
0.00 0.02 26550/26550 vn_rdwr [13]
0.00 0.01 5392/8061 snprintf [15]
0.00 0.01 690/613673 namei [17]
0.00 0.00 325/325 exec_copyout_strings [33]
0.00 0.00 706/1716 sprintf [35]
0.00 0.00 706/1213 log [36]
0.00 0.00 341/479 kmem_alloc_wait [30]
0.00 0.00 337/475 exec_map_first_page [29]
0.00 0.00 2347/177610456 malloc <cycle 1> [362]
0.00 0.00 2027/177610456 free <cycle 1> [314]
0.00 0.00 337/475 exec_check_permissions [32]
0.00 0.00 337/337 exec_aout_imgact [44]
0.00 0.00 5392/5392 strcat [47]
0.00 0.00 341/479 kmem_free_wakeup [38]
0.00 0.00 1252/177610456 ufs_vnoperate <cycle 1> [54]
0.00 0.00 967/177610456 vrele <cycle 1> [106]
0.00 0.00 323/323 elf_freebsd_fixup [61]
0.00 0.00 325/325 fdcloseexec [67]
0.00 0.00 337/475 exec_unmap_first_page [75]
0.00 0.00 650/2331411 generic_bcopy [4]
0.00 0.00 325/177610456 knote <cycle 1> [144]
0.00 0.00 151/177610456 wakeup <cycle 1> [242]
0.00 0.00 642/582563 NDFREE [102]
0.00 0.00 325/325 setregs [139]
0.00 0.00 337/103548 strncmp [146]
0.00 0.00 325/1226218 vref [89]
0.00 0.00 650/2331411 bcopy [9]
0.00 0.00 12/176 crcopy [190]
0.00 0.00 4/51 change_euid [225]
0.00 0.00 2/15775 suword [46]
0.00 0.00 337/389 MD5Init [880]
0.00 0.00 325/325 stopprofclock [908]
0.00 0.00 325/325 execsigs [904]
0.00 0.00 12/12 exec_shell_imgact [1138]
0.00 0.00 12/280 setsugid [921]
0.00 0.00 12/12 setugidsafety [1142]

11

B References

B.1 books

McKusick, Marshall Kirk, Keith Bostic, Michael J Karels, and John Quarterman.
The Design and Implementation of the 4.4BSD Operating System24.

B.2 papers

http://docs.freebsd.org/44doc/papers/kerntune.html

B.3 training courses

Unix Kernel Internals: Data Structures and Algorithms
http://www.mckusick.com/courses/introdescrip.html
FreeBSD Kernel Internals: An Intensive Code Walkthrough
http://www.mckusick.com/courses/advdescrip.html

24Addison-Wesley, 1996. ISBN 0-201-54979-4

12

