

Towards Faster String Matching for Intrusion Detection
or Exceeding the Speed of Snort

C. Jason Coit

Silicon Defense
jasonc@silicondefense.com

 Stuart Staniford
Silicon Defense

stuart@silicondefense.com

Joseph McAlerney
Silicon Defense

joey@silicondefense.com

Abstract
Network Intrusion Detection Systems (NIDS) often rely
on exact string matching techniques. Depending on the
choice of algorithm, implementation, and the frequency
with which it is applied, this pattern matching may
become a performance bottleneck. To keep up with
increasing network speeds and traffic, NIDS can take
advantage of advanced string matching algorithms. In
this paper we describe the effectiveness of a significantly
faster approach to pattern matching in the open source
NIDS Snort.

1. Introduction

Network Intrusion Detection systems (NIDS) have
relied on exact string matching from the very earliest
days of the field; the UC Davis Network Security
Monitor [1,2] made extensive use of string matching.
More recently, a number of commercial NIDS including
Dragon [3] rely heavily on exact string matching
strategies, as do several free NIDS; Snort [4,5], and Bro
[6] both have rule options to do exact matches of content
strings in packets.

Exact string matching is somewhat problematic as a
NIDS strategy all by itself, given the broad range of
tactics available to an attacker for de-synching the IDS
[6,7,8]. Nonetheless, its popularity suggests that it is
worth studying the most efficient way to carry out the
task.

In this paper, we look at the way the popular Snort
NIDS performs string matching. To the best of our
knowledge, other NIDS's that rely heavily on exact
string matching use similar strategies; however this is
often a trade secret for commercial systems so we cannot
be sure. We show that there is an algorithm that is
significantly faster in practice, and that can be expected
to scale better as more rules requiring content searches
are added to the Snort ruleset. The algorithm we have
used is a minor variation of algorithms known in the
string matching research community [9,10,11], but not
widely used. We have implemented this algorithm, and
we provide results demonstrating the improvements in
speed. Since Snort is widely used, and since, like all

 network intrusion detection systems, Snort cannot keep
up with heavily loaded fast networks, this is of
immediate practical value.

The basic string matching task that must be
performed by a NIDS is to match a number of patterns
drawn from the NIDS rules to each packet or
reconstructed TCP stream that the NIDS is analyzing. In
Snort, the total number of rules available has become
quite large, and continues to grow rapidly. As of
10/10/2000 there were 854 rules included in the
“10102kany.rules” ruleset file [5]. 68 of these rules did
not require content matching while 786 relied on content
matching to identify harmful packets. Thus, even
though not every pattern string is applied to every
stream, there are a large number of patterns being
applied to some streams. For example, in traffic
inbound to a web server, Snort v 1.6.3 with the snort.org
ruleset, "10102kany.rules”, checks up to 315 pattern
strings against each packet. At the moment, it checks
each pattern in turn using the Boyer-Moore algorithm.
Since the patterns often have something in common, it
seemed likely that there is considerable scope for
efficiency improvements here, and so it has proved.

In the remainder of this paper, we first describe in
detail the way Snort organizes the process of checking
the content in each packet. Then in section 3 we
describe the faster algorithm that we have applied,
together with various implementation details, and minor
changes in the operation of Snort that result. In section 4
we record our experimental results from applying the
original Snort v 1.6.3 to actual network traffic, together
with our improved algorithm. Finally, we conclude and
suggest directions for further research in section 5.

2. Description of Existing Algorithm

 Snort uses its ruleset to create a two-dimensional
linked list structure consisting of Rule Tree Nodes
(RTN’s) and Option Tree Nodes (OTN’s) [5]. The
RTN’s hold many common properties that must be
included in each rule, such as the source and destination
addresses, source and destination ports, and protocol
type (TCP, ICMP, UDP). The OTN’s hold the
information for the various options that can be added to

each rule, such as TCP flags, ICMP codes and types,
packet payload size and a major bottleneck for
efficiency, packet content. These structures are
organized into chains which can be conceptualized with
the RTN’s strung from left to right as chain headers and
the OTN’s hanging down from the individual RTN’s that
each is associated with (see Figure 1).
 In Snort 1.6.3, when packets are being examined
against a given ruleset, the packet is first compared
along the RTN list from left to right until the packet
matches a particular RTN. Only if such a match occurs
is the packet then compared down the OTN list of the
matching RTN. Snort proceeds to check the packet
against each OTN in the chain until a match is found.
The options held in each OTN are checked using plugin
functions that are called along a linked list as well.
When an option matches the packet, the current plugin
function calls the next option checking function in the
list. If any of the option checks fail, the packet is then
checked against the next OTN in the list. For the sake of
efficiency, Snort currently checks all other options
before checking the packet for content matches on the
assumption that pattern matching is most time intensive
option to check.
 If a content check is required, Snort uses a Boyer-
Moore pattern matching algorithm to check the content
string held in the OTN against the entire packet payload.
If no match exists, Snort will proceed to the next OTN in
the list, which could have all options identical to the
previous OTN save for a slightly different content string.
For example, one OTN represents the rule looking for
the content scripts/CGImail.exe while the next OTN
requires a content search for the string
scripts/fpcount.exe. So if an exhaustive search of the
entire packet content does not reveal scripts to exist in
the packet, the second search is guaranteed to fail yet is
performed regardless.

 Boyer-Moore is a rather famous pattern matching
algorithm that is quite fast in practice. It uses heuristics
to reduce the number of comparisons needed to
determine if a given text string matches a particular
pattern, i.e. it uses knowledge of the keyword to search
for to skip over unnecessary comparisons against the text
being searched. The algorithm typically aligns the text
and the keyword to search for so that the keyword can be
checked from left to right along the text string beginning
with the last character of the keyword and ending with
the first.

The first heuristic it uses is commonly referred to as a
bad character heuristic. If a character is seen that does
not exist in the keyword to search for, the keyword can
be shifted forward N characters where N is the length of
the given keyword (see Figure 2). The second heuristic
uses knowledge of repeated substrings in the keyword.
Thus if a mismatch occurs and repeated patterns exist in
a given keyword, it is able to shift the keyword to the
next occurrence of a substring that matches what has
already been successfully matched (see Figure 3).

Boyer-Moore was designed for exact string matching
of many strings against a single keyword. While the
algorithm is quite efficient at performing this operation,
its current implementation in Snort does not take
advantage of the similarities of the multiple keywords
that are held in the OTN’s. We noticed the similar
prefixes of many of the rules in a commonly used
snort.org ruleset library [5]. We theorized that if we
could reduce the redundant pattern matches by using
some other pattern matching algorithm, Snort would
perform much faster. In the next section we will discuss
the concept and implementation of an algorithm that
uses elements of Boyer-Moore to search for multiple
patterns at the same time.

Figure 1. A generic example of the RTN and OTN
linked list structure.

Before Shift:

 pattern -> one plus two
 *
 text -> two plus three equals five

After Shift:

 pattern -> one plus two
 *
 text -> two plus three equals five

The characters are examined starting at * and compared right to
the left while the whole pattern moves along the text to search
from left to right. The first comparison fails on the character r.
Since no r exists in the pattern, it can be shifted by 12 characters
as shown above. The next comparison begins at the second *.

Figure 2. Standard Boyer-Moore bad character shift

3. Description/Implementation

The algorithm is a Boyer-Moore like algorithm
applied to a set of keywords held in an Aho-Corassick
like keyword tree that overlays common prefixes of the
keywords. We designate it as the AC_BM algorithm in
Snort. Though we refer to the algorithm as AC_BM, it
is essentially an implementation of a "Boyer-Moore
Approach to Exact Set Matching" described by Dan
Gusfield in Algorithms on Strings, Trees, and Sequences
[9]. Gusfield outlines an algorithm that uses suffix trees,
and examines the text from left to right. Our
implementation mirrors the algorithm Gusfield describes
- it examines packet data from right to left and uses a
common prefix approach instead of a common suffix
approach. The AC_BM implementation allows the
various rules that require content searches to be placed
in a tree that can be searched using elements of Boyer-
Moore.
 Like the Boyer-Moore approach previously
explained, the algorithm we implemented aligns the text
to search with the patterns to search for and performs
shifts to eliminate unnecessary comparisons. The
keyword tree moves from the right end of the packet
payload to the left while the character comparisons are
performed from left to right once the keyword tree is in
position. The algorithm relies on derivatives of the same
heuristics used by standard Boyer-Moore. Instead of
sliding a single pattern along the text string to be
searched, the AC_BM algorithm slides a tree of patterns
along using its bad character and good prefix shifts.
The bad character shift is similar to the first heuristic of
Boyer-Moore; if a mismatch occurs, it recommends
shifting the tree to line up with the next occurrence of
the character in some other keyword in the pattern tree.
If the character does not exist in any keyword past its

current depth, it recommends a shift of the length of the
smallest pattern in the tree. The good prefix shift
recommends a shift to the next occurrence of a complete
prefix that has already been seen as a substring of
another pattern, or shift to the next occurrence of some
prefix of the correctly matched text as the suffix of
another pattern in the tree. We always need to be sure
not to shift farther than the length of the smallest pattern
in the tree so we never skip past a matching pattern that
is closer than our heuristic might suggest (see Figure 4 &
Figure 5).

The AC_BM algorithm allows for the content
searching of many OTN’s to be combined into a single
tree that can be searched quite quickly and greatly
reduce the many unnecessary comparisons that Snort
currently performs when searching its ruleset. One tree
is used for each RTN. The keyword tree for a given
RTN holds the content strings for all of the OTN’s that
require a pattern match for that RTN. The keyword tree
information is attached, as a pointer to a PatternTreeData
struct, to each RTN. If the OTN List for a given RTN
does not contain any content rules, this pointer is set to
NULL. The patterns for the keyword tree are collected
during the construction of the RTN and OTN lists then

Before Shift:

 pattern -> two plus two
 *
 text -> count to two hundred thirty

After Shift:

 pattern -> two plus two
 *
 text -> count to two hundred thirty

The comparison begins at * and continues examining characters
right to left. It fails on the second o read from the text. Since two
exists as a repeated substring in the pattern, the pattern can be
shifted 9 characters to line the two of that pattern up with the
matching part of the text string as shown above. The next
comparison begins at the second *.

Figure 3. Standard Boyer-Moore repeated substring
shift

Patterns: time, tired, tiring, tinted, tinsel

Before Shift:
 r e d
 / \
 / i n g
 |
tree -> t i m e
 |
 \ t e d
 \ /
 n s e l
 *
text -> t i m e i s o n m y s i d e

After Shift:
 r e d
 / \
 / i n g
 |
tree -> t i m e
 |
 \ t e d
 \ /
 n s e l
 *
text -> t i m e i s o n m y s i d e

The comparison begins by aligning the smallest pattern in
the tree, time, with the last four letters of the string to
search. Then the characters are checked from left to right
starting from * and in this case failing on char s. The next
s occurs in the pattern tinsel, which calls for a shift of 3 by
the adapted bad character rule.

Figure 4. Modified bad character shift

the trees are preprocessed to set up the proper shift
information. Since the keyword tree groups many rules
together and overlaps the matching prefixes, the various
rule options are meaningless to the keyword tree. Thus
checking the rule’s individual non-content options posed
a problem. To allow most of the rule options available
to still be used with the AC_BM algorithm, we needed
to change how Snort performed options checking
without drastically changing the structure or
organization of the RTN and OTN data structures. We
decided the best way to enable the other rule options and
not significantly reorganize how the RTN and OTN lists
were structured was to separate the content from non-
content rules and handle option checking for each type
of rule separately.

During preprocessing we organize the OTN list so
that rules without content are checked before rules with
content. This is accomplished by adding each new OTN
immediately before the first OTN encountered that
requires a content search. Whether or not the new OTN
requires a content search, it will preserve the separation
of non-content and content rules. Since content

searching should be the most computationally intensive
of the option checking steps, we quickly check all the
rules that do not have content first, then move on to the
content searching. Thus we proceed down the OTN list
as usual and check the OTN's using their aforementioned
linked list of option checking functions until a content
rule is encountered. Once a content rule is seen, the
pattern matching algorithm is called to search the
packet's content. If the packet matches a pattern in the
keyword tree, the other options are checked, if these are
successful, the pattern matching algorithm reports a
success and the standard procedures of Snort are
undertaken. The content matching for a rule is done prior
to the other option checking since many of the rules have
similar options set, such as checking for the TCP flags
Push and Ack.

The only option in Snort 1.6.3 that our implement-
ation does not support is case sensitive searching. We
decided not to implement both case sensitive and non
case sensitive searching since this would require two
keyword trees - one for case and one for non case. Since
the vast majority of the rules in the snort.org ruleset are
not case sensitive, we chose to support only these rules
to keep the implementation relatively simple.

Multiple content rules, rules that require two or more
patterns to be matched in a packet, are handled by
searching for the first pattern using our keyword tree,
and any additional patterns using Snort’s implementation
of a standard Boyer-Moore algorithm. This is done to
allow for multiple content rules to be supported in our
updated version of Snort while still keeping the
implementation relatively simple. Our goal was to
develop a “quick and dirty”, proof of concept
implementation to test if a new approach to pattern
matching would be at all advantageous. Thus we opted
to support those rules that required more than one
content search by using our method followed by the
standard Boyer-Moore search already implemented in
Snort. This also fit well into the option checking
functions that Snort uses since any additional content
matches are checked after the initial match when
traversing the op_func chain previously mentioned.

It is worthwhile to note that the AC_BM algorithm is
highly dependent on the length of the shortest pattern
being search for, since we can never shift the keyword
tree more than this value. So the maximum shift value
for a keyword tree under any particular RTN is directly
determined by the length of the shortest pattern in that
tree. The effectiveness of the standard Boyer-Moore’s
approach is also limited by the pattern’s size when
checking any particular pattern, yet one short pattern
under a given RTN does not affect the maximum safe
distance to shift for all other patterns under that same
RTN.

Since we did not support case sensitive searching in
our implementation, we disabled the case sensitive

Patterns: time, tired, tiring, tomato, tornado

Before Shift:
 r e d
 / \
 / i n g
 |
 tree -> t i m e
 |
 \ r n a d o
 \ /
 o m a t o
 *
 text -> a u t o m a t o n e

After Shift:

 r e d
 / \
 / i n g
 |
 tree -> t i m e
 |
 \ r n a d o
 \ /
 o m a t o
 *
 text -> a u t o m a t o n e

The comparison begins by aligning the smallest pattern in
the tree, time, with the last four letters of the string to
search. Then the characters are checked from left to right
starting from * and failing on character n. Of the characters
successfully matched, to appears as a suffix of a pattern,
tomato, in the tree. This calls for a shift of 4 characters to
align last two letters of the pattern with the to already seen.

Figure 5. Modified repeated substring (good prefix)
shift

searches during the testing of both algorithms. In the
next section we will discuss the results of these tests and
the potential differences our implementation could create
in Snort’s behavior.

4. Results

 To examine how the two algorithms affect the
performance of Snort, we used actual network traffic
from the Capture the Flag game at Defcon 8, which we
acquired from www.shmoo.org [12]. We then used the
Linux time command to calculate the amount of time in
seconds it took both versions of Snort to run the data sets
collected. Then we checked the output from each
version to ensure they were identical. To easily perform
these tests and ensure that each algorithm performed
only non-case sensitive tests, we modified Snort v 1.6.3
slightly. We included a command line argument to
switch between the algorithms and disabled case
sensitive searching in the standard algorithm. We ran
Snort on a half-hour data set (77 MB) with AC_BM and
standard Boyer-Moore algorithms. We used the
10102kany.rules ruleset from snort.org [5], which at the
time held 854 rules, 68 non-content and 786 content.

We hypothesized that our algorithm would scale
better as the number of content rules increased than the
standard Snort approach. Our reasoning was based on
how Snort currently performs content searching: by
traversing down its RTN/OTN list and repeated applying
Boyer-Moore. Thus the running time for standard Snort
to match a packet should increase linearly with the
number of content rules in the ruleset used. Since our
implementation groups the content rules by taking
advantage of the many similar prefixes, and applies
Boyer-Moore tactics for skipping over many
unnecessary comparisons, its running time to match a
packet should increase far less drastically as the number
of content rules increase. In order to test this we parsed
the ruleset to separate the non-content and content rules.

We ran one series of tests including the 68 non-
content rules and another series of tests on the content
rules only. The timing results for the first series of tests
are represented in Table 1. We performed the first test of
this series using the DEFCON 8 data on the 68 non-
content rules. Each subsequent test incremented the
count of content rules by 200 until we exhausted our
supply of 786 content rules. While our implementation
consistently ran in less time than the original snort, from
1.02 times faster in the first case to 1.18 times faster in
the last test, this is not the margin of improvement we
suspected. Noting that Amdahl’s Law [13] states that
the overall speedup is gained only for the percentage of
time our improvement is used, we decided to test the
same data set using only content rules in order determine
the speedup our algorithm could provide during
intensive content matching.

In the second run of tests we began with 200 content
rules and incremented each subsequent test in the same
fashion as the previous series. The results of these tests
demonstrate that our implementation can perform quite
well on repetitive pattern matching compared to the
standard Boyer-Moore approach. While these tests are
skewed by the elimination of the non-content rules, they
still illustrate that a keyword tree approach to Boyer-
Moore pattern matching is superior to repetitively
applying a single pattern Boyer-Moore algorithm, from
1.31 times faster in the first test to 3.32 times faster in
the last test. These results are represented in Table 2
below.

Table 3 and Table 4 represent the memory usage of
both algorithms during our first and second series of
tests respectively. As expected, the tradeoff for higher
speed is higher memory use. Our algorithm uses on
roughly 3 times the memory of the standard version.
This could most likely be improved by using more
efficient methods to traverse the keyword tree.
Currently the transition matrix for each keyword node is
a 256 char array. Assuming that each node does not

29.9

35.66

40.79 41.73
43.97

29.25

34.82
37.26 36.78 37.19

0

5

10

15

20

25

30

35

40

45

50

68 268 468 668 854
Number of Rules

T
im

e
in

 S
ec

on
ds

Standard AC_BM

Table 1. Time vs. number of rules
(non-content and content)

7.9

10.46

24.59
25.92

6.02
7.53 7.44 7.8

0

5

10

15

20

25

30

200 400 600 786
Content Rules

T
im

e
in

 S
ec

on
ds

Standard AC_BM

Table 2. Time vs. number of content rules

have most of these transitions in use, this uses much
more memory than necessary. The current transition
matrix of each node could be replaced with a structure
such as a splay tree to reduce the space needed for each
node for an increase in running time. For each test we
compared the alert files generated to determine if our
implementation produced the same output as the
original. There were several alerts that exhibited one of
the behavior changes we can expect from our version of
Snort.

Our data set produced inconsistent alerts due to the
direction each algorithm examines packet payload.
Snort’s standard Boyer-Moore algorithm examines
packet data from the left end of packet data to the right.
Our implementation examines packet data from the right
end of a packet to the left end. A packet containing the a
content string for one rule beginning at its right end and
another beginning at its left end could result in different
rules being reported by the two algorithms. For example
suppose there is a Rule_A that contains a content search
for toomanyexamples and another almost identical
rule that had all of the same options as Rule_A except it
checked for the content tcpforever. Now suppose
there is a packet that has a payload of
toomanyexamplespapertcpforever. Thus the
current version of Snort would report Rule_A while our
implementation would report Rule_B for the same
packet.

The inconsistencies in our alert files were produced
by the following two rules:

alert icmp any any -> any any (msg:"PING *NIX
Type";content:"|101112131415161718191a1b1c1d1e
1f|";itype:8;depth:"32";)

alert icmp any any -> any any (msg:"IDS152 – PING
BSD"; content: "|08 09 0a 0b 0c 0d 0e 0f 10 11 12 13
14 15 16 17|"; itype: 8; depth: "32";)

To test whether these rules would produce identical
alerts, we ran the dataset using each rule individually.
Both algorithms generated the same alerts.

Another way that the two algorithms could result in
different results is that rules attempting to use ordering
and generalities to sift packets would always flag the
most general rule using our new implementation. For
example, suppose there are two rules Last_1 and Last_2.
Let Last_1 and Last_2 have all options identical except
for their contents to search for. Suppose Last_1 requires
a search for lastexample and Last_2 requires a
search for lastexamplereallynomore. Now if
they are ordered in the rule set as their names suggest
(Last_1, then Last_2), and there is a packet that contains
lastexamplereallynomore, then the current
version of Snort would report on Last_2 while our
implementation would report on Last_1. This is due to
the way the patterns are stored in the keyword tree. The
prefixes are overlapped so that the rules lose their
ordering they had in the rule set. The algorithm will
report success when the first pattern that matches is
found in the tree. Thus the less specific rules will
always be reported over the longer more specific rules.

5. Conclusion

 We discussed the importance of pattern matching for
Intrusion Detection Systems (IDS) and discussed the
approach the open-source IDS Snort uses to match
packet content. We verified that a “Boyer-Moore
approach to exact set-matching” [9] works well in
practice to significantly reduce the computation time
needed to match packet content to our ever-increasing
ruleset [5]. We demonstrated that our version of Snort
can operate 1.02 times up to 3.32 times as fast as the
current version depending on the number and type of
content rules used while noting the day to day speedup
will depend on the network traffic and ruleset used. The

832
1640

2368
3144

832

3672

7200

9828

12312

3684

0

2000

4000

6000

8000

10000

12000

14000

68 268 468 668 854

Rules

M
em

 in
 K

B

Standard AC_BM

Table 3. Memory vs. number of rules
(non-content and content)

1428
2192

2968
36843492

7020

9648

12312

0

2000

4000

6000

8000

10000

12000

14000

200 400 600 786

Content Rules

M
em

 in
 K

B

Standard AC_BM

Table 4. Memory vs. number of content rules

higher the percentage of content matching performed,
the more speedup our algorithm will contribute. The
cost of this speed up is increased memory use (3 times as
much as original). Our implementation was shown to
scale better than the standard version of Snort as the
number of content patterns in the ruleset increases.
 Future work could include a more thorough
implementation of our algorithm into Snort. The current
RTN/OTN structure of Snort does not lend itself well to
our approach to pattern matching. To allow the AC_BM
implementation to perform better, it might be beneficial
to restructure the RTN/OTN list to further group similar
non-content options, thus eliminating redundant option
checking. Another direction to pursue would implement
both suffix and prefix tree approaches and then
dynamically choosing which to use for each RTN. In
this fashion the content rules under a specific RTN
would be grouped to take advantage of either common
suffixes or prefixes depending on which gives the
greatest value. While the complexity of Snort would
most likely increase, so would its effectiveness and
efficiency in pattern matching.

References:

[1] L.T. Habergeon, G.V. Dias, K.N. Levitt, B. Mukherjee,
(with J. Wood, D.Wolber), "A Network Security Monitor".
Proceedings of the 1990 IEEE Symposium on Research in
Security and Privacy. Oakland, CA, 7-9 May 1990, pp. 296-
304.

[2] L.T. Heberlein , "Network Security Monitor (NSM) - Final
Report". Lawrence Livermore National Laboratory project
deliverable, http://seclab.ucdavis.edu/papers/NSM-final.pdf.

[3] http://www.securitywizards.com

[4] Martin Roesch, "Snort - Lightweight Intrusion Detection
for Networks" USENIX LISA Conference November 1999.

[5] http://www.snort.org/

[6] Paxson, V., Bro: A System for Detecting Network Intruders
in Real-Time. Proceedings of the 7th USENIX Security
Symposium, San Antonio, TX, January 1998.

[7] T. Ptacek and T. Newsham, "Insertion, Evasion, and
Denial of Service: Eluding Network Intrusion Detection,"
Secure Networks, Inc., http://www.aciri.org/vern/Ptacek-
NewshamEvasion -98.ps, Jan. 1998.

[8] Greg Hoglund and Jon Gary, "Multiple Levels of De-
synchronization and other Concerns with Testing an IDS
System”, SecurityFocus.com, http://www.securityfocus.com
/focus/ids/articles/desynch.html, August 2000.

[9] Dan Gusfield , Algorithms on Strings, Trees, and
Sequences:Computer Science and Computational Biology,
University of California Press, CA, 1997.
[10] A. Aho and M. Corasick. “Efficient string matching: an
aid to biliographic search”, Comm. ACM. 18:333-40, 1975.

[11] B. Commentz-Walter, “A string matching algorithm fast
on average”, Proc. Of the 6th Int. Colloq. On Automata,
Languages, and Programming, pages 118-32, 1979.

[12] http:// www.shmoo.org/

[13] John L. Hennessy and David A. Patterson, Computer
Architecture: A Quantitative Approach Second Edition,
Morgan Kaufmann Publishers, CA, 1996.

