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Abstract 
Network Intrusion Detection Systems (NIDS) often rely 
on exact string matching techniques. Depending on the 
choice of algorithm, implementation, and the frequency 
with which it is applied, this pattern matching may 
become a performance bottleneck.   To keep up with 
increasing network speeds and traffic, NIDS can take 
advantage of advanced string matching algorithms.   In 
this paper we describe the effectiveness of a significantly 
faster approach to pattern matching in the open source 
NIDS Snort. 
 
 
1. Introduction 
 

Network Intrusion Detection systems (NIDS) have 
relied on exact string matching from the very earliest 
days of the field; the UC Davis Network Security 
Monitor [1,2] made extensive use of string matching.  
More recently, a number of commercial NIDS including 
Dragon [3] rely heavily on exact string matching 
strategies, as do several free NIDS; Snort [4,5], and Bro 
[6] both have rule options to do exact matches of content 
strings in packets. 

Exact string matching is somewhat problematic as a 
NIDS strategy all by itself, given the broad range of 
tactics available to an attacker for de-synching the IDS 
[6,7,8].  Nonetheless, its popularity suggests that it is 
worth studying the most efficient way to carry out the 
task. 

In this paper, we look at the way the popular Snort 
NIDS performs string matching.  To the best of our 
knowledge, other NIDS's that rely heavily on exact 
string matching use similar strategies; however this is 
often a trade secret for commercial systems so we cannot 
be sure.  We show that there is an algorithm that is 
significantly faster in practice, and that can be expected 
to scale better as more rules requiring content searches 
are added to the Snort ruleset.  The algorithm we have 
used is a minor variation of algorithms known in the 
string matching research community [9,10,11], but not 
widely used.  We have implemented this algorithm, and 
we provide results demonstrating the improvements in 
speed.  Since Snort is widely used, and since, like all 

 
 
 network intrusion detection systems, Snort cannot keep 
up with heavily loaded fast networks, this is of 
immediate practical value. 

The basic string matching task that must be 
performed by a NIDS is to match a number of patterns 
drawn from the NIDS rules to each packet or 
reconstructed TCP stream that the NIDS is analyzing. In 
Snort, the total number of rules available has become 
quite large, and continues to grow rapidly.  As of 
10/10/2000 there were 854 rules included in the 
“10102kany.rules” ruleset file [5].  68 of these rules did 
not require content matching while 786 relied on content 
matching to identify harmful packets.  Thus, even 
though not every pattern string is applied to every 
stream, there are a large number of patterns being 
applied to some streams.  For example, in traffic 
inbound to a web server, Snort v 1.6.3 with the snort.org 
ruleset, "10102kany.rules”, checks up to 315 pattern 
strings against each packet.   At the moment, it checks 
each pattern in turn using the Boyer-Moore algorithm.  
Since the patterns often have something in common, it 
seemed likely that there is considerable scope for 
efficiency improvements here, and so it has proved. 

In the remainder of this paper, we first describe in 
detail the way Snort organizes the process of checking 
the content in each packet.  Then in section 3 we 
describe the faster algorithm that we have applied, 
together with various implementation details, and minor 
changes in the operation of Snort that result.  In section 4 
we record our experimental results from applying the 
original Snort v 1.6.3 to actual network traffic, together 
with our improved algorithm.  Finally, we conclude and 
suggest directions for further research in section 5. 
 
2. Description of Existing Algorithm 
 
 Snort uses its ruleset to create a two-dimensional 
linked list structure consisting of Rule Tree Nodes 
(RTN’s) and Option Tree Nodes (OTN’s) [5].  The 
RTN’s hold many common properties that must be 
included in each rule, such as the source and destination 
addresses, source and destination ports, and protocol 
type (TCP, ICMP, UDP).  The OTN’s hold the 
information for the various options that can be added to  



 
each rule, such as TCP flags, ICMP codes and types, 
packet payload size and a major bottleneck for 
efficiency, packet content.  These structures are 
organized into chains which can be conceptualized with 
the RTN’s strung from left to right as chain headers and 
the OTN’s hanging down from the individual RTN’s that 
each is associated with (see Figure 1). 
 In Snort 1.6.3, when packets are being examined 
against a given ruleset, the packet is first compared 
along the RTN list from left to right until the packet 
matches a particular RTN.  Only if such a match occurs 
is the packet then compared down the OTN list of the 
matching RTN.  Snort proceeds to check the packet 
against each OTN in the chain until a match is found.  
The options held in each OTN are checked using plugin 
functions that are called along a linked list as well.  
When an option matches the packet, the current plugin 
function calls the next option checking function in the 
list. If any of the option checks fail, the packet is then 
checked against the next OTN in the list.  For the sake of 
efficiency, Snort currently checks all other options 
before checking the packet for content matches on the 
assumption that pattern matching is most time intensive 
option to check.  
 If a content check is required, Snort uses a Boyer-
Moore pattern matching algorithm to check the content 
string held in the OTN against the entire packet payload.  
If no match exists, Snort will proceed to the next OTN in 
the list, which could have all options identical to the 
previous OTN save for a slightly different content string.  
For example, one OTN represents the rule looking for 
the content scripts/CGImail.exe while the next OTN 
requires a content search for the string 
scripts/fpcount.exe.  So if an exhaustive search of the 
entire packet content does not reveal scripts to exist in 
the packet, the second search is guaranteed to fail yet is 
performed regardless.   

 Boyer-Moore is a rather famous pattern matching 
algorithm that is quite fast in practice.  It uses heuristics 
to reduce the number of comparisons needed to 
determine if a given text string matches a particular 
pattern, i.e. it uses knowledge of the keyword to search 
for to skip over unnecessary comparisons against the text 
being searched. The algorithm typically aligns the text 
and the keyword to search for so that the keyword can be 
checked from left to right along the text string beginning 
with the last character of the keyword and ending with 
the first.   

The first heuristic it uses is commonly referred to as a 
bad character heuristic.  If a character is seen that does 
not exist in the keyword to search for, the keyword can 
be shifted forward N characters where N is the length of 
the given keyword (see Figure 2).  The second heuristic 
uses knowledge of repeated substrings in the keyword.  
Thus if a mismatch occurs and repeated patterns exist in 
a given keyword, it is able to shift the keyword to the 
next occurrence of a substring that matches what has 
already been successfully matched (see Figure 3). 

Boyer-Moore was designed for exact string matching 
of many strings against a single keyword.  While the 
algorithm is quite efficient at performing this operation, 
its current implementation in Snort does not take 
advantage of the similarities of the multiple keywords 
that are held in the OTN’s.  We noticed the similar 
prefixes of many of the rules in a commonly used 
snort.org ruleset library [5].  We theorized that if we 
could reduce the redundant pattern matches by using 
some other pattern matching algorithm, Snort would 
perform much faster.  In the next section we will discuss 
the concept and implementation of an algorithm that 
uses elements of Boyer-Moore to search for multiple 
patterns at the same time.   

 

 

 
Figure 1. A generic example of the RTN and OTN 
linked list structure.  

 
Before Shift: 
 
  pattern ->    one plus two  
                          * 
    text ->    two plus three equals five 
 
After Shift: 
 
  pattern ->                one plus two 
                                       *        
     text ->    two plus three equals five 
 
 
The characters are examined starting at * and compared right to 
the left while the whole pattern moves along the text to search 
from left to right.  The first comparison fails on the character r.  
Since no r exists in the pattern, it can be shifted by 12 characters 
as shown above.  The next comparison begins at the second *. 
 
Figure 2. Standard Boyer-Moore bad character shift 
 

 



 
3. Description/Implementation 
 

The algorithm is a Boyer-Moore like algorithm 
applied to a set of keywords held in an Aho-Corassick 
like keyword tree that overlays common prefixes of the  
keywords.  We designate it as the AC_BM algorithm in 
Snort.  Though we refer to the algorithm as AC_BM, it 
is essentially an implementation of a "Boyer-Moore 
Approach to Exact Set Matching" described by Dan 
Gusfield in Algorithms on Strings, Trees, and Sequences 
[9].  Gusfield outlines an algorithm that uses suffix trees, 
and examines the text from left to right. Our 
implementation mirrors the algorithm Gusfield describes 
- it examines packet data from right to left and uses a 
common prefix approach instead of a common suffix 
approach. The AC_BM implementation allows the 
various rules that require content searches to be placed 
in a tree that can be searched using elements of Boyer-
Moore. 
 Like the Boyer-Moore approach previously 
explained, the algorithm we implemented aligns the text 
to search with the patterns to search for and performs 
shifts to eliminate unnecessary comparisons. The 
keyword tree moves from the right end of the packet 
payload to the left while the character comparisons are 
performed from left to right once the keyword tree is in 
position.  The algorithm relies on derivatives of the same 
heuristics used by standard Boyer-Moore.  Instead of 
sliding a single pattern along the text string to be 
searched, the AC_BM algorithm slides a tree of patterns 
along using its bad character and good prefix shifts.  
The bad character shift is similar to the first heuristic of 
Boyer-Moore; if a mismatch occurs, it recommends 
shifting the tree to line up with the next occurrence of 
the character in some other keyword in the pattern tree.   
If the character does not exist in any keyword past its 

current depth, it recommends a shift of the length of the 
smallest pattern in the tree.  The good prefix shift 
recommends a shift to the next occurrence of a complete 
prefix that has already been seen as a substring of 
another pattern, or shift to the next occurrence of some 
prefix of the correctly matched text as the suffix of 
another pattern in the tree.  We always need to be sure 
not to shift farther than the length of the smallest pattern 
in the tree so we never skip past a matching pattern that 
is closer than our heuristic might suggest (see Figure 4 & 
Figure 5).   

The AC_BM algorithm allows for the content 
searching of many OTN’s to be combined into a single 
tree that can be searched quite quickly and greatly 
reduce the many unnecessary comparisons that Snort 
currently performs when searching its ruleset.  One tree 
is used for each RTN.  The keyword tree for a given 
RTN holds the content strings for all of the OTN’s that 
require a pattern match for that RTN.  The keyword tree 
information is attached, as a pointer to a PatternTreeData 
struct, to each RTN.  If the OTN List for a given RTN 
does not contain any content rules, this pointer is set to 
NULL.  The patterns for the keyword tree are collected 
during the construction of the RTN and OTN lists then  

 

Before Shift: 
 
  pattern ->   two plus two  
                          *    
     text ->   count to two hundred thirty 
 
After Shift: 
 
  pattern ->           two plus two  
                                  *    
  text ->     count to two hundred thirty  
  
The comparison begins at  * and continues examining characters 
right to left.  It fails on the second o read from the text.  Since two 
exists as a repeated substring in the pattern, the pattern can be 
shifted 9 characters to line the two of that pattern up with the 
matching part of the text string as shown above. The next 
comparison begins at the second *. 
 
Figure 3. Standard Boyer-Moore repeated substring 
shift 

Patterns: time, tired, tiring, tinted, tinsel 
 
Before Shift: 
                                 r e d 
                                / \ 
                               /   i n g  
                               |   
tree ->                      t i m e 
                               |    
                               \   t e d 
                                \ / 
                                 n s e l 
                             * 
text ->  t i m e i s o n m y s i d e 
 
After Shift: 
                           r e d 
                          / \ 
                         /   i n g  
                         |   
tree ->                t i m e 
                         |    
                         \   t e d 
                          \ / 
                           n s e l 
                       *    
text ->  t i m e i s o n m y s i d e 
  
  
The comparison begins by aligning the smallest pattern in 
the tree, time, with the last four letters of the string to 
search.  Then the characters are checked from left to right 
starting from * and in this case failing on char s.  The next 
s occurs in the pattern tinsel, which calls for a shift of 3 by 
the adapted bad character rule.   
 
Figure 4. Modified bad character shift 
 



 
the trees are preprocessed to set up the proper shift 
information.  Since the keyword tree groups many rules 
together and overlaps the matching prefixes, the various 
rule options are meaningless to the keyword tree.  Thus 
checking the rule’s individual non-content options posed 
a problem.  To allow most of the rule options available  
to still be used with the AC_BM algorithm, we needed 
to change how Snort performed options checking 
without drastically changing the structure or 
organization of the RTN and OTN data structures. We 
decided the best way to enable the other rule options and 
not significantly reorganize how the RTN and OTN lists 
were structured was to separate the content from non-
content rules and handle option checking for each type 
of rule separately. 

During preprocessing we organize the OTN list so 
that rules without content are checked before rules with 
content.  This is accomplished by adding each new OTN 
immediately before the first OTN encountered that 
requires a content search.  Whether or not the new OTN 
requires a content search, it will preserve the separation 
of non-content and content rules.  Since content 

searching should be the most computationally intensive 
of the option checking steps, we quickly check all the 
rules that do not have content first, then move on to the 
content searching.  Thus we proceed down the OTN list 
as usual and check the OTN's using their aforementioned 
linked list of option checking functions until a content 
rule is encountered.  Once a content rule is seen, the 
pattern matching algorithm is called to search the 
packet's content. If the packet matches a pattern in the 
keyword tree, the other options are checked, if these are 
successful, the pattern matching algorithm reports a 
success and the standard procedures of Snort are 
undertaken. The content matching for a rule is done prior 
to the other option checking since many of the rules have 
similar options set, such as checking for the TCP flags 
Push and Ack. 

The only option in Snort 1.6.3 that our implement-
ation does not support is case sensitive searching.   We 
decided not to implement both case sensitive and non 
case sensitive searching since this would require two 
keyword trees - one for case and one for non case.  Since 
the vast majority of the rules in the snort.org ruleset are 
not case sensitive, we chose to support only these rules 
to keep the implementation relatively simple.  

Multiple content rules, rules that require two or more 
patterns to be matched in a packet, are handled by 
searching for the first pattern using our keyword tree, 
and any additional patterns using Snort’s implementation 
of a standard Boyer-Moore algorithm.  This is done to 
allow for multiple content rules to be supported in our 
updated version of Snort while still keeping the 
implementation relatively simple.  Our goal was to 
develop a “quick and dirty”, proof of concept 
implementation to test if a new approach to pattern 
matching would be at all advantageous. Thus we opted 
to support those rules that required more than one 
content search by using our method followed by the 
standard Boyer-Moore search already implemented in 
Snort.  This also fit well into the option checking 
functions that Snort uses since any additional content 
matches are checked after the initial match when 
traversing the op_func chain previously mentioned.   

It is worthwhile to note that the AC_BM algorithm is 
highly dependent on the length of the shortest pattern 
being search for, since we can never shift the keyword 
tree more than this value. So the maximum shift value 
for a keyword tree under any particular RTN is directly 
determined by the length of the shortest pattern in that 
tree.  The effectiveness of the standard Boyer-Moore’s 
approach is also limited by the pattern’s size when 
checking any particular pattern, yet one short pattern 
under a given RTN does not affect the maximum safe 
distance to shift for all other patterns under that same 
RTN.  

Since we did not support case sensitive searching in 
our implementation, we disabled the case sensitive 

Patterns: time, tired, tiring, tomato, tornado 
 
Before Shift: 
                          r e d 
                         / \ 
                        /   i n g  
                        |   
 tree ->              t i m e 
                      | 
                      \   r n a d o 
                       \ / 
                        o m a t o   
                      *     
 text ->  a u t o m a t o n e   
 
After Shift: 
 
                  r e d 
                 / \ 
                /   i n g  
                |   
 tree ->      t i m e  
              |  
              \   r n a d o 
               \ / 
                o m a t o    
              *           
 text ->  a u t o m a t o n e   
 
The comparison begins by aligning the smallest pattern in 
the tree, time, with the last four letters of the string to 
search.  Then the characters are checked from left to right 
starting from * and failing on character n. Of the characters 
successfully matched, to appears as a suffix of a pattern, 
tomato, in the tree. This calls for a shift of 4 characters to 
align last two letters of the pattern with the to already seen. 
 
Figure 5. Modified repeated substring (good prefix) 
shift 



searches during the testing of both algorithms.  In the 
next section we will discuss the results of these tests and 
the potential differences our implementation could create 
in Snort’s behavior. 
 
4. Results 
 
 To examine how the two algorithms affect the 
performance of Snort, we used actual network traffic 
from the Capture the Flag game at Defcon 8, which we 
acquired from www.shmoo.org [12].  We then used the 
Linux time command to calculate the amount of time in 
seconds it took both versions of Snort to run the data sets 
collected.  Then we checked the output from each 
version to ensure they were identical.  To easily perform 
these tests and ensure that each algorithm performed 
only non-case sensitive tests, we modified Snort v 1.6.3 
slightly.  We included a command line argument to 
switch between the algorithms and disabled case 
sensitive searching in the standard algorithm. We ran 
Snort on a half-hour data set (77 MB) with AC_BM and 
standard Boyer-Moore algorithms. We used the 
10102kany.rules ruleset from snort.org [5], which at the 
time held 854 rules, 68 non-content and 786 content.   

We hypothesized that our algorithm would scale 
better as the number of content rules increased than the 
standard Snort approach. Our reasoning was based on 
how Snort currently performs content searching: by 
traversing down its RTN/OTN list and repeated applying 
Boyer-Moore.  Thus the running time for standard Snort 
to match a packet should increase linearly with the 
number of content rules in the ruleset used.  Since our 
implementation groups the content rules by taking 
advantage of the many similar prefixes, and applies 
Boyer-Moore tactics for skipping over many 
unnecessary comparisons, its running time to match a 
packet should increase far less drastically as the number 
of content rules increase.  In order to test this we parsed 
the ruleset to separate the non-content and content rules.  
 

We ran one series of tests including the 68 non-
content rules and another series of tests on the content 
rules only. The timing results for the first series of tests 
are represented in Table 1.  We performed the first test of 
this series using the DEFCON 8 data on the 68 non-
content rules.  Each subsequent test incremented the 
count of content rules by 200 until we exhausted our 
supply of 786 content rules.  While our implementation 
consistently ran in less time than the original snort, from 
1.02 times faster in the first case to 1.18 times faster in 
the last test, this is not the margin of improvement we 
suspected.  Noting that Amdahl’s Law [13] states that 
the overall speedup is gained only for the percentage of 
time our improvement is used, we decided to test the 
same data set using only content rules in order determine 
the speedup our algorithm could provide during 
intensive content matching. 

In the second run of tests we began with 200 content 
rules and incremented each subsequent test in the same 
fashion as the previous series.  The results of these tests 
demonstrate that our implementation can perform quite 
well on repetitive pattern matching compared to the 
standard Boyer-Moore approach.  While these tests are 
skewed by the elimination of the non-content rules, they 
still illustrate that a keyword tree approach to Boyer-
Moore pattern matching is superior to repetitively 
applying a single pattern Boyer-Moore algorithm, from 
1.31 times faster in the first test to 3.32 times faster in 
the last test.  These results are represented in Table 2 
below. 

Table 3 and Table 4 represent the memory usage of 
both algorithms during our first and second series of 
tests respectively.  As expected, the tradeoff for higher 
speed is higher memory use.  Our algorithm uses on 
roughly 3 times the memory of the standard version.  
This could most likely be improved by using more 
efficient methods to traverse the keyword tree.  
Currently the transition matrix for each keyword node is 
a 256 char array.  Assuming that each node does not  
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have most of these transitions in use, this uses much 
more memory than necessary. The current transition 
matrix of each node could be replaced with a structure 
such as a splay tree to reduce the space needed for each  
node for an increase in running time.  For each test we 
compared the alert files generated to determine if our 
implementation produced the same output as the 
original.  There were several alerts that exhibited one of 
the behavior changes we can expect from our version of 
Snort.   

Our data set produced inconsistent alerts due to the 
direction each algorithm examines packet payload.  
Snort’s standard Boyer-Moore algorithm examines 
packet data from the left end of packet data to the right.  
Our implementation examines packet data from the right 
end of a packet to the left end.  A packet containing the a 
content string for one rule beginning at its right end and 
another beginning at its left end could result in different 
rules being reported by the two algorithms.  For example 
suppose there is a Rule_A that contains a content search 
for toomanyexamples and another almost identical 
rule that had all of the same options as Rule_A except it 
checked for the content tcpforever.  Now suppose 
there is a packet that has a payload of 
toomanyexamplespapertcpforever.  Thus the 
current version of Snort would report Rule_A while our 
implementation would report Rule_B for the same 
packet.   

The inconsistencies in our alert files were produced 
by the following two rules: 

 
alert icmp any any -> any any (msg:"PING *NIX 
Type";content:"|101112131415161718191a1b1c1d1e
1f|";itype:8;depth:"32";) 

 
alert icmp any any -> any any (msg:"IDS152 – PING 
BSD"; content: "|08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 
14 15 16 17|"; itype: 8; depth: "32";) 

 

 
 
To test whether these rules would produce identical 
alerts, we ran the dataset using each rule individually. 
Both algorithms generated the same alerts.   

Another way that the two algorithms could result in 
different results is that rules attempting to use ordering 
and generalities to sift packets would always flag the 
most general rule using our new implementation.  For 
example, suppose there are two rules Last_1 and Last_2.  
Let Last_1 and Last_2 have all options identical except 
for their contents to search for.  Suppose Last_1 requires 
a search for lastexample and Last_2 requires a 
search for lastexamplereallynomore.  Now if 
they are ordered in the rule set as their names suggest 
(Last_1, then Last_2), and there is a packet that contains 
lastexamplereallynomore, then the current 
version of Snort would report on Last_2 while our 
implementation would report on Last_1.  This is due to 
the way the patterns are stored in the keyword tree.  The 
prefixes are overlapped so that the rules lose their 
ordering they had in the rule set.  The algorithm will 
report success when the first pattern that matches is 
found in the tree.  Thus the less specific rules will 
always be reported over the longer more specific rules.  
 
5. Conclusion 
 
 We discussed the importance of pattern matching for 
Intrusion Detection Systems (IDS) and discussed the 
approach the open-source IDS Snort uses to match 
packet content.  We verified that a “Boyer-Moore 
approach to exact set-matching” [9] works well in 
practice to significantly reduce the computation time 
needed to match packet content to our ever-increasing 
ruleset [5].  We demonstrated that our version of Snort 
can operate 1.02 times up to 3.32 times as fast as the 
current version depending on the number and type of 
content rules used while noting the day to day speedup 
will depend on the network traffic and ruleset used.  The 
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higher the percentage of content matching performed, 
the more speedup our algorithm will contribute.  The 
cost of this speed up is increased memory use (3 times as 
much as original).  Our implementation was shown to 
scale better than the standard version of Snort as the 
number of content patterns in the ruleset increases.   
 Future work could include a more thorough 
implementation of our algorithm into Snort.  The current 
RTN/OTN structure of Snort does not lend itself well to 
our approach to pattern matching.  To allow the AC_BM 
implementation to perform better, it might be beneficial 
to restructure the RTN/OTN list to further group similar 
non-content options, thus eliminating redundant option 
checking.  Another direction to pursue would implement 
both suffix and prefix tree approaches and then 
dynamically choosing which to use for each RTN.  In 
this fashion the content rules under a specific RTN 
would be grouped to take advantage of either common 
suffixes or prefixes depending on which gives the 
greatest value.  While the complexity of Snort would 
most likely increase, so would its effectiveness and 
efficiency in pattern matching. 
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