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Abstract
We present the first type and effect system for proving authenticity properties of security protocols

based on asymmetric cryptography. The most significant new features of our type system are: (1) a
separation ofpublic types(for data possibly sent to the opponent) fromtainted types(for data possibly
received from the opponent) via a subtype relation; (2)trust effects, to guarantee that tainted data does
not, in fact, originate from the opponent; and (3)challenge/response typesto support a variety of idioms
used to guarantee message freshness. We illustrate the applicability of our system via protocol examples.

1 Motivation

Gordon and Jeffrey recently proposed a type-based methodology for checking authenticity properties of
security protocols [GJ01c, GJ01a]. First, specify properties by annotating an executable description of a
protocol with correspondence assertions [WL93]. Second, annotate the protocol with suitable types. Third,
verify the assertions by running a type-checker. A type-correct protocol is secure against a malicious op-
ponent conforming to the Dolev and Yao assumptions [DY83]; the opponent may eavesdrop, generate, and
replay messages, but can only encrypt or decrypt messages if it knows the appropriate key. This methodol-
ogy is promising because it requires no state-space exploration, requires little interactive effort per protocol,
and reduces the verification problem to the familiar edit/type-check/debug cycle.

Still, their system applies only to symmetric-key cryptography and only to one style of nonce handshake,
a significant limitation. The goal of this paper is to enrich their type and effect system so as to apply the
methodology to a wider class of protocols based on both symmetric and asymmetric cryptography. To do
so, we need to solve the following three problems.

(1) Let us say data istainted if it may have been generated by the opponent, otherwiseuntainted, and
public if it may be revealed to the opponent, otherwisesecret. Now, in symmetric protocols, data is
either secret and untainted (because it is sent encrypted, and the opponent is ignorant of the key) or
it is both public and tainted (because it is sent in the clear). In asymmetric protocols, the situation is
subtler because of public keys: data may be both secret and tainted (if sent encrypted with an honest
agent’s public key) or public and untainted (if sent encrypted with an honest agent’s private key).
Gordon and Jeffrey’s system [GJ01a] has one type,Un, for public, tainted data, and every other type
is both secret and untainted. Here, we need to be more flexible; we use a subtype relation to represent
whether a type is tainted and whether it is public.

(2) Types can represent the degree of trust we place in data. In symmetric protocols, the degree of trust,
and hence the types of data, is fixed. On the other hand, in asymmetric protocols, the degree of trust
may increase over time as new information arises, for example, from nonce challenges. We introduce
trust effectsto model how new information may change the type of existing data.

(3) Gordon and Jeffrey’s system [GJ01a] supports one format for proving freshness via nonce hand-
shakes: the challenge in the clear, the response encrypted. Asymmetric protocols may use other
styles: both challenge and response encrypted; or the challenge encrypted, the response in the clear.
To accommodate these other styles, we introduce newchallenge/responsetypes.
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1.1 Background

Many methodologies exist for verifying authenticity properties against the opponent model of Dolev and
Yao [DY83]. Verification via type-checking is one of only a few, recent techniques that requires little
interactive effort per protocol, while not bounding protocol or opponent size. Other such techniques in-
clude automatic tools for strand spaces [Son99, THG98] and rank functions [HS00, Sch98]. Other effective
approaches include model-checking [Low96, MCJ97], which typically puts bounds on the protocol and op-
ponent, and techniques relying on theorem-proving [Bol96, Pau98] or epistemic logics [BAN89, DMP01],
which typically require lengthy expert interaction.

Woo and Lam’s correspondence assertions [WL93] are safety properties, specifying what is known as
injective agreement [Low95]. Given a description of the sequence of messages exchanged by principals in
a protocol, we annotate it with labelled events marking the progress of each principal through the protocol.
We divide these events into two kinds, begin-events and end-events. Event labels typically indicate the
names of the principals involved and their roles in the protocol. For example, to specify an authenticity
property of a simple nonce handshake we decorate it with begin-events and end-events as follows.

Message 1 A→ B : N
Event 1 B begins “B sendsA messageM”
Message 2 B→ A : {M,N}K
Event 2 A ends “B sendsA messageM”

A protocol issafeif in all protocol runs, every assertion of an end-event corresponds to a distinct, earlier
assertion of a begin-event with the same label. A protocol isrobustly safeif it is safe in the presence of any
hostile opponent who can capture, modify, and replay messages, but cannot forge assertions.

Previous work can type-check the robust safety of protocols based on secure channels [GJ01c], and
on insecure channels protected by symmetric cryptography [GJ01a]. These two papers are the only prior
work on authenticity by typing. They build on Abadi’s pioneering work [Aba99] on secrecy by typing for
symmetric-key cryptographic protocols. Abadi and Blanchet [AB01, AB02] extend Abadi’s original system
to establish secrecy properties for asymmetric protocols. The present paper is a parallel development for
authenticity properties. Technically, it is not simply a routine combination of previous papers [GJ01a,
AB01]. For example, to facilitate type-checking our formalism, each bound variable is annotated with a
single type. A feature of Abadi and Blanchet’s treatment of tainted data is that a bound variable may assume
an arbitrary number of types, depending on its context, and therefore they suppress type annotations.

Like earlier work on types for cryptographic protocols, we take a binary view of the world as consisting
of a system of honest protocol participants plus a dishonest opponent. We leave a finer-grained analysis as
future work.

1.2 Our Three Main Contributions

Separation of trust and secrecy. In a cryptographic protocol based on symmetric cryptography, data is
typically either both secret and untainted or both public and tainted. For example, consider the message:

A→ B : A,{M}KAB

(We write {M}KAB for the outcome of encryptingM using a symmetric algorithm with keyKAB.) The
principal nameA is public and tainted (since it is sent in plaintext) but the payloadM and the shared key
KAB are secret and untainted (since they are never sent in plaintext, and are known only to honest principals).

On the other hand, in a cryptographic protocol based on asymmetric cryptography, secrecy and tainted-
ness are independent. Data may be secret and tainted, or public and untainted. For example, ifKB is B’s
public key andK−1

A is A’s private key, consider the message:

A→ B : {|M|}K−1
A

,{|N|}KB
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(We write{|M|}K−1
A

for the outcome of encryptingM using an asymmetric algorithm with private keyK−1
A ,

and{|N|}KB for the outcome of encryptingN with public keyKB.) Now,B considers:

• M is public (since the opponent knowsKA and so can decrypt the ciphertext{|M|}K−1
A

) but untainted
(since it is encrypted withA’s private key, and so must have originated from the honest agentA).

• N is secret (since the opponent does not knowK−1
B so cannot decrypt the ciphertext{|B|}KB) but tainted

(since it is encrypted withB’s public key, and so could have originated from a dishonest intruder).

Previous type systems [Aba99, GJ01a] feature a type, here calledUn, for all messages known to the oppo-
nent. Here, to support asymmetric cryptography, we admit some types that are public without being tainted,
and others that are tainted without being public. We relate these types toUn via a subtype relation. As
usual, we sayT is a subtype ofU , written T <: U , to mean that data of typeT may be used in situations
expecting data of typeU . A typeT is public if T <: Un, that is, it may be sent to the opponent. A typeT is
taintedif Un <: T, that is, it may be sent from the opponent.

Our recognition of tainted types—as distinct from public types—has many parallels in analyses of non-
cryptographic aspects of security. The Perl programming language [WCS96] can track at runtime whether
or not scalar data is tainted, to catch bugs in code dealing with untrusted inputs. An extension of the
simply-typedλ-calculus [ØP97] uses annotations on each type constructor to track whether or not data can
be trusted, either because it originates from or has been endorsed by an honest participant. Similarly, an
experimental extension [STFW01] of C qualifies types as tainted or untainted to allow the static detection
of issues with format strings. The Secure Lambda Calculus [HR98] uses subtyping to track security levels.
To the best of our knowledge, this paper is the first to use types to track both public and tainted data in the
presence of cryptography.

Dynamic trust. In asymmetric protocols, the degree of trust we place in tainted data may increase as
we receive new information. For example, consider the following variant of the Needham–Schroeder–
Lowe [NS78, Low96] public-key protocol, extended to include a key exchange initiated byA:

Message 1 A→ B : {|A,KAB,NA|}KB

Message 2 B→ A : {|B,KAB,NA,NB|}KA

Message 3 A→ B : {|NB|}KB

After receiving Message 1,B regards the session keyKAB as tainted; it may come fromA, but it may also
come from the opponent, since the keyKB is public. In Message 2,B sendsA a nonceNB, encrypted together
with the tainted keyKAB underKA, and hence hidden from the opponent. Now,A only replies with Message
3 if the session key it receives in Message 2 matches the key it issued in Message 1. Therefore, on successful
receipt of the secretNB in Message 3,B trusts thatKAB did not in fact come from the opponent. So it is safe
for B to send a secret message toA encrypted with the keyKAB:

Message 4 B→ A : {M}KAB

In this protocol,B’s trust in the session keyKAB is dynamicin that it changes over time: initiallyKAB is
tainted, but after Message 3 it is known to be untainted.

We model dynamic trust by introducingtrust effects, that allow the type of a nonce to make assertions
about the type of other data. In the typed form of our example, the type ofNB asserts thatKAB has the type
of keys known only to honest participants.

Symmetric key cryptographic protocols typically do not require dynamic trust: data is either trusted or
untrusted for the whole run of the protocol, and its trust status does not change during a particular run. Over
time, symmetric key cryptographic protocols may downgrade their trust in data due to key-compromise or
other long-term attacks on the cryptosystem. Still, such attacks are outside our model, and are left for future
work.
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Nonce handshake styles. Protocols use nonce handshakes to establish message freshness, and hence to
thwart replay attacks. The type and effect system of this paper supports three handshake idioms:

• Public Out Secret Home (POSH): the nonce goes out in the clear and returns encrypted.

• Secret Out Public Home (SOPH): the nonce goes out encrypted and returns in the clear.

• Secret Out Secret Home (SOSH): the nonce goes out encrypted and returns encrypted.

SOSH nonces are useful in asymmetric protocols, such as the protocol described above, where if eitherNA

or NB is learned by the opponent, the protocol can be compromised. The novel feature of SOSH nonces in
our type system is that they can be relied upon for authenticity even when they are tainted (for example,
when they are encrypted with a public key) because we have two cases:

• If the nonce was generated by the opponent, then only the opponent can perform the equality check at
the end of the nonce handshake, so no honest agent ever relies on the authenticity information carried
by the nonce.

• If the nonce was generated by an honest agent, then the opponent never learns of it (since the nonce
is secret) and so it is safe for honest agents to rely on the authenticity information carried by it.

In contrast, POSH and SOPH nonces cannot be relied upon when tainted. The Needham–Schroeder–Lowe
protocol relies onNA andNB being SOSH nonces, since they are encrypted with public keys and hence
tainted.

Guttman and F́abrega [GF00] call POSH and SOPH nonces incoming and outgoing tests, respectively;
they do not discuss SOSH nonces. Gordon and Jeffrey [GJ01a] deal only with POSH nonces.

1.3 Remainder of this Paper

Section2 reviews Gordon and Jeffrey’s methodology for specifying authenticity properties of protocols.
Section3 describes our new type and effect system, and describes its application to some examples. Sec-
tion 4 concludes.

2 Specifying Authenticity Properties in the Spi-Calculus (Review)

We formalise our type and effect system in a version of the spi-calculus [AG99], a concurrent language
based on theπ-calculus [Mil99] augmented with the Dolev–Yao model of cryptography. Section2.1 re-
views the syntax and informal semantics of a spi-calculus extended with correspondence assertions [WL93].
Section2.2shows how to specify an example protocol. Later, we show it is robustly safe by typing.

2.1 A Spi-Calculus with Correspondence Assertions

First, here is the syntax of messages.

Names, Messages

m,n,x,y,z name: variable, channel, nonce, key, key-pair
L,M,N ::= message

x name
(M,N) pair formation
inl (M) left injection
inr (M) right injection
{M}N symmetric encryption
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k (M) (wherek eitherEncrypt or Decrypt) key-pair component
{|M|}N asymmetric encryption

These messages are:

• A messagex is a name, representing a channel, nonce, symmetric key, or asymmetric key-pair.

• A message(M,N) is a pair. From this primitive we can describe any finite record.

• Messagesinl (M) andinr (M) are tagged unions, differentiated by the distinct tagsinl andinr. With
these primitives we can encode any finite tagged union.

• A message{M}N is the ciphertext obtained by encrypting the plaintextM with the symmetric keyN.

• A message{|M|}N is the ciphertext obtained by encrypting the plaintextM with the asymmetric en-
cryption keyN.

• A messageDecrypt (M) extracts the decryption key component from the key pairM, andEncrypt (M)
extracts the encryption key component from the key pairM.

An asymmetric key-pairp has two dual applications: public-key encryption and digital signature. In the
first, Encrypt (p) is public andDecrypt (p) is secret. In the second,Encrypt (p) is secret andDecrypt (p)
is public. For each key-pair, our type system tracks whether the encryption or decryption key is public, but
it makes no difference to our syntax or operational semantics. (Hence, a single key-pair cannot be used
both for public-key encryption and digital signature; this is often regarded as an imprudent practice, but
nonetheless is beyond our formalism.)

Next, we give the syntax of processes. Each bound name has a type annotation, writtenT or U . We
postpone describing the syntax of types to the next section.

Processes:

O,P,Q,R ::= process
out M N output
inp M (x:T);P input (x bound inP)
repeat inp M (x:T);P replicated input (x bound inP)
split M is (x:T,y:U);P pair splitting (x bound inU andP; y bound inP)
match M is (N,y:T);P pair matching (y bound inP)
case M is inl (x:T) P is inr (y:U) Q union case (x bound inP; y bound inQ)
decrypt M is {x:T}N;P symmetric-key decryption (x bound inP)
decrypt M is {|x:T|}N−1;P asymmetric-key decryption (x bound inP)
check M is N;P nonce-checking
begin L;P begin-assertion
end L;P end-assertion
new (x:T);P name generation (x bound inP)
P |Q composition
stop inactivity

The type annotations on bound names are used for type-checking but play no role at runtime; they do not
affect the operational behaviour of processes. In examples, for the sake of brevity, we sometimes omit type
annotations.

The free and bound names of a process are defined as usual. We writeP{x←N} for the outcome of a
capture-avoiding substitution of the messageN for each free occurrence of the namex in the processP. We
identify processes up to the consistent renaming of bound names, for example wheny /∈ fn(P), we equate
new (x:T);P with new (y:T);(P{x←y}).
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Next, we give informal semantics for process behaviour and process safety; formal definitions appear in
AppendixB. These processes are:

• Processesout M N and inp M (x:T);P are output and input, respectively, along an asynchronous,
unordered channelM. If an outputout x N runs in parallel with an inputinp x (y);P, the two can
interact to leave the residual processP{y←N}.
• Processrepeat inp M (x:T);P is replicated input, which behaves like input, except that each time an

input of N is performed, the residual processP{y←N} is spawned off to run concurrently with the
original processrepeat inp M (x:T);P.
• A processsplit M is (x:T,y:U);P splits the pairM into its two components. IfM is (N,L), the process

behaves asP{x←N}{y←L}. Otherwise, it deadlocks, that is, does nothing.
• A processmatch M is (N,y:U);P splits the pairM into its two components, and checks that the first

one isN. If M is (N,L), the process behaves asP{y←L}. Otherwise, it deadlocks.
• A processcase M is inl (x:T) P is inr (y:U) Q checks the tagged unionM. If M is inl (L), the process

behaves asP{x←L}. If M is inr (N) it behaves asQ{y←N}. Otherwise, it deadlocks.
• A processdecrypt M is {x:T}N;P decryptsM using symmetric keyN. If M is {L}N, the process

behaves asP{x←L}. Otherwise, it deadlocks. We assume there is enough redundancy in the repre-
sentation of ciphertexts to detect decryption failures.
• A processdecrypt M is {|x:T|}N−1;P decryptsM using asymmetric keyN. If M is {|L|}Encrypt (K) and

N is Decrypt (K), then the process behaves asP{x←L}. Otherwise, it deadlocks.
• A processcheck M is N;P checks the messagesM andN are the same name before executingP. If

the equality test fails, the process deadlocks.
• A processbegin L;P autonomously asserts an begin-event labelledL, and then behaves asP.
• An processend L;P autonomously asserts an end-event labelledL, and then behaves asP.
• A processnew (x:T);P generates a new namex, whose scope isP, and then runsP. (This abstractly

represents nonce or key generation.)
• A processP |Q runs processesP andQ in parallel.
• The processstop is deadlocked.

Safety:

A processP is safeif and only if for every run of the process and for everyL,
there is a distinct begin-event labelledL preceding every end-event labelledL.

We are mainly concerned not just with safety, but with robust safety, that is, safety in the presence of an
arbitrary hostile opponent. In the untyped spi-calculus [AG99], the opponent is modelled by an arbitrary
process. In our typed spi-calculus, we do not consider completely arbitrary attacker processes, but restrict
ourselves toopponentprocesses that satisfy two mild conditions:

• Opponents cannot assert events: otherwise, no process would be robustly safe, because of the oppo-
nentend x;.

• Opponents do not have access to trusted data, so any type occurring in the process must beUn.

Opponents and Robust Safety:

A processP is assertion-freeif and only if it contains no begin- or end-assertions.
A processP is untypedif and only if the only type occurring inP is Un.
An opponent Ois an assertion-free untyped processO.
A processP is robustly safeif and only if P |O is safe for every opponentO.
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Sender(net,privateA,publicB) ∆=
new (keyAB);
new (challengeA);
begin “A generateskeyAB for B”;
out net{|A,keyAB,challengeA|}publicB

;
inp net(ctext2,challengeB2);
decrypt ctext2

is {|B,keyAB, responseA,challengeB1|}private−1
A

;

check challengeA is responseA;
end “B receivedkeyAB from A”;
new (msg);
begin “A sendsmsgto B”;
out net(challengeB1,{msg,challengeB2}keyAB

);

System(net) ∆=
new (pairA);new (pairB);(

Sender(net,Decrypt (pairA),Encrypt (pairB)) |
Receiver(net,Encrypt (pairA),Decrypt (pairB)) |
out net(Encrypt (pairA),Encrypt (pairB))

)

Receiver(net,publicA,privateB) ∆=
repeat

inp net(ctext1);
decrypt ctext1
is {|A,keyAB,challengeA|}private−1

B
;

new (challengeB1);
new (challengeB2);
begin “B receivedkeyAB from A”;
out net

({|B,keyAB,challengeA,challengeB1|}publicA
,

challengeB2);
inp net(responseB1,ctext3);
check challengeB1 is responseB1;
end “A generateskeyAB for B”;
decrypt ctext3 is {msg, responseB2}keyAB

;
check challengeB2 is responseB2;
end “A sendsmsgto B”;

Figure 1: An example protocol with correspondence assertions

2.2 Specifying an Example

We show how to program a simple cryptographic protocol in our formalism. This protocol is a version of
Needham-Schroeder-Lowe [NS78, Low96] modified to illustrate the various features of our type system.
(The protocol is different from the version discussed in Section1.) The protocol shares a session keyKAB

between participantsA andB, and uses this key to send a messageM from A to B. The protocol should
guarantee the authenticity properties:

(1) A believes she shares the keyKAB with B.

(2) B believes he shares the keyKAB with A.

(3) B believes messageM was sent byA.

We specify the protocol informally as follows:

Event 1 A begins “A generatesKAB for B”
Message 1 A→ B : {|A,KAB,NA|}KB

Event 2 B begins “B receivedKAB from A”
Message 2 B→ A : {|B,KAB,NA,NB1|}KA,NB2

Event 3 A ends “B receivedKAB from A”
Event 4 A begins “A sendsM to B”
Message 3 A→ B : NB1,{M,NB2}KAB

Event 5 B ends “A generatesKAB for B”
Event 6 B ends “A sendsM to B”

Figure1 is a spi-calculus version of the protocol. The top-level process,System(net) generates two fresh
key pairspairA andpairB, and places a single sender and a single receiver in parallel. We publish the public
encryption keys ofA andB, to allow the attacker access to them. The parameternet is a communications
channel, on which the attacker may send or receive, representing the untrusted network. For simplicity,
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Figure1 includes just one sender and one receiver; it is easy to extend the program to run multiple senders
and receivers in parallel.

Given the assertions embedded in the program, our formal specification is simply the following:

Authenticity: The processSystem(net) is robustly safe.

3 Authenticity by Typing for Asymmetric Cryptographic Protocols

Section3.1 describes informally how we type messages. Section3.2 explains the subtyping relation. Sec-
tion 3.3 explains how we ascribe effects to processes, respectively. The full details of the type system are
left to AppendixC. In Section3.4 we explain how to type the assertions in the example of the previous
section.

3.1 Types for Messages

We give the syntax of types and explain when a messageM has typeT, written informallyM : T.
Apart from challenge/response types, deferred to the next section, here is the syntax of our types.

Types:

S,T,U ::= type
(x:T,U) dependent pair type (x bound inU)
T +U sum type
Un data known to the opponent
Top top
SharedKey(T) shared-key type
KeyPair(T) asymmetric key-pair
k Key(T) (wherek eitherEncrypt or Decrypt) encryption or decryption part

Many of these types are standard or appear in earlier work on spi [GJ01a]. Messages of type(x:T,U) are
dependent records(M,N), whereM : T, andN : U{x←T}. Messages of typeT +U are tagged unions,
eitherinl (M) with M : T or inr (N) with N : U . Messages of typeUn are arbitrary, untrusted data known
to the opponent. Any typeable message is also of typeTop. Messages of typeSharedKey(T) are names
representing symmetric keys for encypting data of typeT to yield a ciphertext of typeUn.

We need some new types for asymmetric cryptography. A message of typeKeyPair(T) is a name
representing an asymmetric key-pair for encrypting data of typeT. Messages of typesEncrypt Key(T) or
Decrypt Key(T) take the formEncrypt p or Decrypt p, respectively, wherep : KeyPair(T).

The formal message typing judgment takes the formE `M : T, whereE is anenvironment, that assigns
types to the names in scope. An environment takes the formx1:T1, . . . ,xn:Tn.

Our typing rules rely on a subtyping relation on types, writtenE ` T <: U . Intuitively, this means that
any message of typeT also is of typeU . We explain subtyping in detail in the next section.

The formal typing rules definingE `M : T are mostly standard [GJ01a]. Full details are in AppendixC.
Here are some samples, the rules for applying subtyping and for typing asymmetric operations

Type Rules for Messages:

(Msg Subsum)
E `M : T E ` T <: U

E `M : U

(Msg Part)
E `M : KeyPair(T)

E ` k (M) : k Key(T)

(Msg Asymm)
E `M : T E ` N : Encrypt Key(T)

E ` {|M|}N : Un

The type-rules in AppendixC are all syntax-directed, and so it is routine to implement a top-down type-
checker for this type system.
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3.2 The Subtyping Relation

ThesubtypingrelationE ` T <: U means that messages of typeT can be used in place of a message of type
U . The environmentE tracks the names in scope, and sometimes is omitted in informal discussion.

A type’s relationship to the typeUn of data known to the opponent determines whether it can be sent to
or received from the opponent. Let a typeT bepublic if and only if T <: Un. Let a typeT betaintedif and
only if Un <: T.

The following tables of rules define the subtyping relation. Subtyping is reflexive and transitive, and has
a top elementTop:

Basic rules for subtyping:

E ` T =⇒ E ` T <: T (Sub Refl)
E ` S<: T,E ` T <: U =⇒ E ` S<: U (Sub Trans)
E ` T =⇒ E ` T <: Top (Sub Top)

Pair types(x : T,U), sum typesT +U and decryption key typesDecrypt Key(T) are covariant; encryption
key typesEncrypt Key(T) are contravariant:

Congruence Rules for Subtyping:

(Sub Pair)(wherex /∈ dom(E))
E ` T <: T ′ E,x:T `U <: U ′

E ` (x:T,U) <: (x:T ′,U ′)

(Sub Sum)
E ` T <: T ′ E `U <: U ′

E ` T +U <: T ′+U ′

(Sub Enc Key)
E ` T ′ <: T

E ` Encrypt Key(T) <: Encrypt Key(T ′)

(Sub Dec Key)
E ` T <: T ′

E ` Decrypt Key(T) <: Decrypt Key(T ′)

A pair type (x : Un,Un) contains only public data, so is itself public. Similarly, the sum typeUn +
Un, the symmetric key typeSharedKey(Un), the asymmetric key typek Key(Un), and the key pair type
KeyPair(Un) are all public types:

Subtyping Rules for Public Types:

E ` (x:Un,Un) <: Un (Public Pair)
E ` Un+Un <: Un (Public Sum)
E ` SharedKey(Un) <: Un (Public Shared Key)
E ` k Key(Un) <: Un (Public Key)
E ` KeyPair(Un) <: Un (Public Keypair)

A pair type (x : Un,Un) contains only tainted data, so is itself tainted. Similarly, the sum typeUn +
Un, the symmetric key typeSharedKey(Un), the asymmetric key typek Key(Un), and the key pair type
KeyPair(Un) are all tainted types:

Subtyping Rules for Tainted Types:

E ` Un <: (x:Un,Un) (Tainted Pair)
E ` Un <: Un+Un (Tainted Sum)
E ` Un <: SharedKey(Un) (Tainted Shared Key)
E ` Un <: k Key(Un) (Tainted Key)
E ` Un <: KeyPair(Un) (Tainted Keypair)
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We end this section by discussing the two dual applications of key-pairs of typeKeyPair(T).

• In public-key applications, the payload typeT should be tainted, since anyone, including the oppo-
nent, can encrypt messages. IfT is tainted, thenUn <: T. The type constructor for encryption keys
is contravariant, soEncrypt Key(T) <: Encrypt Key(Un) <: Un. Hence,Encrypt Key(T) is public.

• In digital signature applications, the payload typeT should be public, since anyone, including the
opponent, can check signatures. IfT is public, thenT <: Un. The type constructor for decryption
keys is covariant, soDecrypt Key(T) <: Decrypt Key(Un) <: Un. Hence,Decrypt Key(T) is public.

Note in particular that if a n̈ıave programmer attempts to use a key of typeKey(T) for both public-key and
digital signature, then they will discover thatT <: Un <: T, and soKey(T) = Un. This enforces the common
engineering practice that keys which are used for both public-key and digital signature applications are not
to be trusted.

3.3 Effects for Processes

We writeE ` P : esto mean that the processP is well-typed in environmentE, and that the effectesis an
upper bound on the certain aspects of the behaviourP. An effect is a multiset (that is, an unordered list) of
atomic effects. These can take three forms:

• end L, used to track the unmatched end-events of a process.

• check Public N andcheck Private N, used to track how often a nonce has been used.

• trustM:T, a trust effect used to gain the trust information that dataM really has typeT.

Overall, the goal when type-checking a protocol is to assign it the empty effect, for then it has no unbalanced
end-events, and therefore is safe. This section explains the intuitions behind the rules for assigning effects
to processes, which in part rely on challenge/response types for nonces.

Let e stand for an atomic effect, and letesstand for aneffect, that is, a multiset[e1, . . . ,en] of atomic
effects. We writees+es′ for the multiset union of the two multisetsesandes′, that is, their concatenation.
We writees−es′ for the multiset subtraction ofes′ from es, that is, the outcome of deleting an occurrence
of each atomic effect ines′ from es. If an atomic effect does not occur in an effect, then deleting the atomic
effect leaves the effect unchanged.

The interesting part of the effect system for processes is how it handles nonce handshakes. Each nonce
handshake breaks down into several steps:

(1) ParticipantA creates a fresh nonce and sends it toB inside a messageM.

(2) ParticipantB returns the nonce toA inside messageN.

(3) ParticipantA checks that she received the same nonce as she sent. From this (and some trust in
the cryptography used to encrypt secret messages) she knows thatB must have been involved in the
dialogue.

(4) To avoid vulnerability to replay of messages containing the nonce,A subsequently discards the nonce
and refuses to accept it again.

Our type system requires us to distinguish nonces which may be published to the untrusted agents (Public
nonces) from ones which may not (Private nonces). We let̀ be eitherPublic or Private. We type-check the
above four steps as follows:

(1) A creates the nonceN as having typè Challenge es, whereesis an effect, and sends it toB.

(2) B casts the nonce to a new type` Response fs, where fs is also an effect, and returns it toA. In order
to do this,B must ensure that the effectes+ fs is justified.
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(3) After receiving the newly cast nonce,A uses a name-checkcheck N is N′; to check nonce equality of
the original nonce challenge with the new nonce response. If this check succeeds,A can assume that
the effectes+ fs is justified.

(4) To guarantee that each nonceN is only checked once, we introduce a new atomic effectcheck ` N,
which is introduced each time acheck N is N′; is used. This can only be justified by freshly generating
the nonceN, which ensures that each nonce is only ever checked once.

This four-phase process extends the treatment of POSH nonces in earlier work [GJ01a], and is sufficient to
type check symmetric key protocols. Asymmetric key protocols, however, have dynamic trust, where the
trust in a piece of data may increase over time. In our system, trust is given by knowing the type of data,
so dynamic trust is modelled by allowing the type of some data to change over time. We model this by
introducing two new statements, which allowA to communicate toB that a piece of dataM has typeT:

(1) A knows thatM has typeT, and executeswitnessM:T; which justifies atrust effecttrustM:T. A can
then use the nonce mechanism described above to communicate this trust effect toB.

(2) B executestrustM is (x:T); which givesM typeT by bindingM to variablex of typeT. This requires
a trust effecttrustM:T.

In this fashion, type information can be exchanged between honest agents, using the same mechanism as
authenticity information.

Effects:

e, f ::= atomic effect
end L end-event labelled with messageL
check ` N name-check for a nonceN
trustM:T trust that a messageM has typeT

es, fs ::= effect
[e1, . . . ,en] multiset of atomic effects

Effects contain no name binders, so the free names of an effect are the free names of the message and types
they contain. We writees{x←M} for the outcome of a capture-avoiding substitution of the messageM for
each free occurrence of the namex in the effectes.

In AppendixC we defineE ` esmeaning ‘in environmentE, the effectesis well-formed’.
We extend the grammar of types to include nonce types. These come in two varieties:Public nonces

(for SOPH and POSH nonce handshakes) andPrivate nonces (for SOSH nonce handshakes). Note that:

• POSH nonces are sent out with tainted public typePublic Challenge [ ], and return with untainted
secret typePublic Response es.

• SOPH nonces are sent out with untainted secret typePublic Challenge es, and return with tainted
public typePublic Response [ ].

• SOSH nonces are send out with tainted secret typePrivate Challenge es, and return with tainted secret
typePrivate Response fs.

These properties are captured by the subtyping rules for nonce types.

Nonce Types:

T,U ::= type
. . . as in Section3.1
` Challenge es nonce challenge type

11



` Response es nonce response type
` ::= privacy

Public public
Private private

Subtyping Rules for Nonce Types:

E ` Public Challenge [ ] <: Un (Public Challenge[ ])
E ` fs=⇒ E ` Public Response fs<: Un (Public Response)
E ` Un <: Public Challenge [ ] (Tainted Public Challenge[ ])
E ` Un <: Public Response [ ] (Tainted Public Response[ ])
E ` es=⇒ E ` Un <: Private Challenge es (Tainted Private Challenge)
E ` es=⇒ E ` Un <: Private Response es (Tainted Private Response)

We extend the grammar of processes to include nonce manipulation:

Processes Manipulating Nonces:

O,P,Q,R ::= process
... as in Section2.1
cast M is (x:T);P nonce-casting
witnessM:T;P witness testimony
trustM is (x:T);P trusted-casting

In a processcast M is (x:T);P or trustM is (x:T);P, the namex is bound; its scope is the processP.

• The processcast M is (x:T);P casts the messageM to the typeT, by binding the variablex to M, and
then runningP. (This process can only be typed by our type system ifM has typè Challenge esand
T is of the form` Response es.)
• The processwitnessM:T;P requires thatM has typeT. It justifies any number of effects of the form

trustM:T.
• The processtrustM is (x:T);P casts the messageM to the typeT, by binding the variablex to M, and

then runningP. (This process requires an effecttrustM:T to be justified: this allows type information
to be communicated amongst honest agents.)

We can now give rules which calculate the effect of a process. Most of the rules are the same as [GJ01a],
so are given in AppendixC. We only provide the rules for asymmetric cryptography, nonce challenges, and
dynamic trust here.

The rule for asymmetric decryption is similar to the one for symmetric decryption: ifM is a plaintext of
typeT andK is a decrypt key of typeDecrypt Key(T) then we can decrypt a ciphertext of typeUn to reveal
the plaintext of typeT:

Rule for Asymmetric Cryptography:

(Proc Asymm) (wherex /∈ dom(E)∪ fn(es))
E `M : Un E ` N : Decrypt Key(T) E,x:T ` P : es

E ` decrypt M is {|x:T|}N−1;P : es

The rules for nonce types are similar to the rules from [GJ01a], except that they support SOPH and POSH
nonces as well as POSH nonces:
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Rules for Challenges and Responses:

(Proc Cast) (wherex /∈ dom(E)∪ fn( fs))
E `M : ` Challenge esC E,x:` Response esR ` P : fs

E ` cast M is (x:` Response esR);P : esC +esR+ fs

(Proc Check)
E `M : ` Challenge esC E ` N : ` Response esR E ` P : fs

E ` check M is N;P : ( fs− (esC +esR))+ [check ` M]

(Proc Challenge) (wherex /∈ dom(E)∪ fn(es− [check ` x]))
E,x:` Challenge fs` P : es

E ` new (x:` Challenge fs);P : es− [check ` x]

The rules for trust effects are new in this paper. A processwitnessM:T;P requires that messageM has type
T, and allows the processP to use the trust effecttrustM:T many times; A processtrustM is(x:T);P makes
use of the trust effecttrustM:T to useM with typeT:

Rules for Witness Testimony and Trusted-Casting:

(Proc Witness)
E `M : T E ` P : es+[trustM:T, . . . , trustM:T]

E ` witnessM:T;P : es

(Proc Trust) (wherex /∈ dom(E)∪ fn(es))
E `M : Top E,x:T ` P : es

E ` trustM is (x:T);P : es

Finally, we state the safety theorem for this type system. The proof depends on identifying a suitable runtime
invariant and showing it is preserved by the operational semantics.

Theorem 1 (Robust Safety)If x1:Un, . . . ,xn:Un ` P : [ ] then P is robustly safe.

3.4 Typing the Example

We now show that the processSystem(net) has empty effect, and so by Theorem1 (Robust Safety)is robustly
safe. We give other examples in AppendixA, including an example using signed certificates. Each nonce
has two types: one type when it is used as a nonce challenge, and one for when it is used as a response. The
types forNA are:

CA(a,b,k) = Private Challenge [end (“a generatesk for b”)]
RA = Private Response [ ]

The types forNB1 are:

CB1(a,b,k) = Public Challenge [end (“b receivedk from a”), trustk:KAB(a,b)]
RB1 = Public Response [ ]

The types forNB2 are:

CB2 = Public Challenge [ ]
RB2(a,b,m) = Public Response [end (“a sendsm to b”)]

Keys have only one type, giving the type of the plaintext encrypted with the key. The type forKAB is:

KAB(a,b) = SharedKey(m:Payload, r:RB2(a,b,m))
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Sender(net: Un,privateA : Decrypt KA(A),publicB : Encrypt KB(B)) ∆=
new (keyAB : KAB(A,B));
// Effect: [ ]
new (challengeA : CA(A,B,keyAB));
// Effect: [check Private challengeA]
begin “A generateskeyAB for B”;
out net{|A,keyAB,challengeA|}publicB

;
inp net(ctext2 : Un,challengeB2 : CB2);
decrypt ctext2 is {|B,keyAB, responseA : RA,challengeB1 : CB1(A,B,keyAB)|}private−1

A
;

// Effect: [check Private challengeA,end “A generateskeyAB for B” ]
check challengeA is responseA;
// Effect: [end “B receivedkeyAB from A” ,end “A generateskeyAB for B” ]
end “B receivedkeyAB from A”;
new (msg: Payload);
// Effect: [end “A generateskeyAB for B” ]
begin “A sendsmsgto B”;
// Effect: [end “A generateskeyAB for B” ,end “A sendsmsgto B” ]
witnesskeyAB:KAB(A,B);
// Effect: [end “A generateskeyAB for B” , trustkeyAB:KAB(A,B),end “A sendsmsgto B” ]
cast challengeB1 is (responseB1 : RB1);
// Effect: [end “A sendsmsgto B” ]
cast challengeB2 is (responseB2 : RB2(A,B,msg));
// Effect: [ ]
out net(responseB1,{msg, responseB2}keyAB

);

Receiver(net: Un,publicA : Encrypt KA(A),privateB : Decrypt KB(B)) ∆=
repeat

inp net(ctext1 : Un);
decrypt ctext1 is {|A,untrusted: Top,challengeA : CA(A,B,keyAB)|}private−1

B
;

// Effect: [ ]
new (challengeB1 : CB1(A,B,keyAB));
// Effect: [check Public challengeB1]
new (challengeB2 : CB2);
// Effect: [check Public challengeB1,check Public challengeB2]
begin “B receiveduntrustedfrom A”;
// Effect: [end “B receiveduntrustedfrom A” ,check Public challengeB1,check Public challengeB2]
cast challengeA is (responseA : RA);
out net{|B,untrusted,challengeA,challengeB1|}publicA

,challengeB2;
inp net(responseB1 : RB1,ctext3 : Un);
// Effect: [check Public challengeB1,check Public challengeB2]
check challengeB1 is responseB1;
// Effect: [end “A generatesuntrustedfor B” , trustuntrusted:KAB(A,B),check Public challengeB2]
end “A generatesuntrustedfor B”;
// Effect: [trustuntrusted:KAB(A,B),check Public challengeB2]
trustuntrustedis (keyAB : KAB(A,B));
decrypt ctext3 is {msg: Payload, responseB2 : RB2(A,B,msg)}keyAB

;
// Effect: [check Public challengeB2]
check challengeB2 is responseB2;
// Effect: [end “A sendsmsgto B” ]
end “A sendsmsgto B”;

Figure 2: Proof that the example is robustly safe
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The type forKA is:

KA(a) = Key(b:Principal,k:Top, rA:RA,cB1:CB1(a,b,k))

The type forKB is:

KB(b) = Key(a:Principal,k:Top,cA:CA(a,b,k))

We can then check that the encryption keys for each of the participants is public:

• The typesPrincipal, Top, RA andCB1(a,b,k) are all tainted,
so the record type(b:Principal,k:Top, rA:RA,cB1:CB1(a,b,k)) is tainted,
so the encryption key typeEncrypt KA(a) is public.

• The typesPrincipal, Top andCA(a,b,k) are all tainted,
so the record type(a:Principal,k:Top,cA:CA(a,b,k)) is tainted,
so the encryption key typeEncrypt KB(b) is public.

In Figure2, we annotate the participants in the protocol with types and appropriate casts, to ensure that the
protocol is robustly safe. When we typecheck the receiver, we cannot initially trust the session key, so we
have to give it typeTop rather than key type. It is only once message 3 has arrived that we know that the
key is really fromA and not fabricated by an intruder, at which point we can cast it tokeyAB : KAB(A,B).
This is justified by the trust effecttrustkeyAB : KAB(A,B) which is communicated as part of nonce challenge
challengeB1.

4 Conclusions and Further Work

This paper presents a type and effect system for asymmetric cryptographic protocols. The main new ideas
are (1) to identify the separate notions of public and tainted types, defined formally via subtyping; (2) to
formalize the way nonces increase the degree of trust in data via trust effects; and (3) to support different
styles of nonce handshake via challenge/response types. Examples show how to model common features of
asymmetric protocols such as key exchange and the use of signed certificates.

The Cryptyc project [GJ01b] includes a tool for type-checking symmetric key protocols, and have used
this tool to verify most of the protocols in the Clark–Jacob survey [CJ97]. We expect that this tool could
easily be extended to include the type and effect system described here.

The long-term aims of all the work on typing cryptographic protocols are to find secrecy and authenticity
types that are as compellingly intuitive as BAN formulas, are easy to type-check, have a precise semantics,
and support a wide range of cryptographic transforms and protocol idioms. This paper represents solid
progress towards these goals.

Still, several limitations remain to be addressed. Our types for encryption give every ciphertext type
Un, so we cannot model some forms of nested cryptography such as “sign-then-encrypt” or “encrypt-then-
sign”. Our attacker model assumes that every opponent is completely untrusted: they only have access to
data of typeUn; this does not model attacks where opponents are partially trusted (for example,M may
have a public keyKM which is trusted to give authenticity information aboutM but not aboutA or B). Also,
the attacker model does not support key-compromise attacks. Our encryption model does not include other
encryption technologies such as hashing, Diffie–Hellman key exchange and constructing keys from pass
phrases.
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A Other Examples

A.1 Abbreviations Used in Examples

In these examples, we make use of the following syntax sugar:

• Dependent record types(x1:T1, . . . ,xn:Tn), rather than just pairs.

• Tagged union types(`1(T1) | · · · | `n(Tn)) rather than just binary choiceT +U .

• Strings “a1 . . .an” used in correspondence assertions.

• A public, tainted typePrincipal for principal names.

We show in the full version of this paper that these constructs can be derived from our base language.

A.2 Authentication using certificates

A simple authentication protocol using certificates is the ISO Public Key Two-Pass Unilateral Authentica-
tion Protocol described by Clark and Jacob [CJ97]. In this protocol, a principalA sends a certificate for her
public keyKA together with a message encrypted with her private keyK−1

A to principalB. The certificate
is encrypted with the private keyK−1

CA of a certificate authorityCA. The protocol, simplified to remove
messages unrelated to authenticity, is:

Message 1 B→ A : NB

Event 1 A begins “A sendingM to B”
Message 2 A→ B : {|A,KA|}K−1

CA
,{|M,B,NB|}K−1

A

Event 2 B ends “A sendingM to B”

Translating the protocol into the spi-calculus with correspondence assertions is routine, but we have to
provide types for the participants. The type ofA’s key is (for any public typePayload):

KA(a : Principal) = Key(msg: Payload,b : Principal,n : Public Response [end “a sendingmsgto b” ])

The type of the certificate authorityCA’s key is:

KCA = Key(a : Principal,kA : KA(a))

We can then check that the participants public keys are public:

• The plaintext of typeKA(a) is public soDecrypt KA(a) is public (this depends on thePayload type
being public ).

• The plaintext of typeKCA is public, soDecrypt KCA is public.

It is then routine to verify that this protocol typechecks and is effect-free, and so is robustly safe.

A.3 Needham–Schroeder–Lowe

The full Needham–Schroeder–Lowe [NS78, Low96] protocol makes use of a certificate authoritySwhich
validates the public keysKA and KB of principalsA and B, by encrypting the public keys with private
encryption keyK−1

S . A andB useS to find each others public keys, then use two SOSH nonce handshakes
to establish contact:
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Message 1 A→ S: A,B
Message 2 S→ A : {|B,KB|}K−1

S

Event 1 A begins “A contactingB”
Message 3 A→ B : {|msg3(A,NA)|}KB

Event 2 B begins “B contacted byA”
Message 4 B→ S: B,A
Message 5 S→ B : {|A,KA|}K−1

S

Message 6 B→ A : {|msg6(B,NA,NB)|}KA

Event 3 A ends “B contacted byA”
Message 7 A→ B : {|msg7(NB)|}KB

Event 4 B ends “A contactingB”

Translating the protocol into the spi-calculus with correspondence assertions is routine, but we have to
provide types for the participants. The type ofA andB’s keys is:

KP(p : Principal) = Key(
msg3(q : Principal,nQ : Private Challenge [end “ p contacted byq” ])
|msg6(q : Principal,nP : Private Response [ ],nQ : Private Challenge [end “ p contactingq” ])
|msg7(Private Response [ ])

)

The type ofS’s key is:

KS = Key(p : Principal,kP : KP(p))

We can then check that the participants public keys are public:

• The plaintext of typeKP(p) is tainted, soEncrypt KP(p) is public (note that this depends on private
nonce types being tainted).

• The plaintext of typeKS is public, soDecrypt KS is public.

It is then routine to verify that NSL typechecks is effect-free, and so is robustly safe. In the type formsg6 we
requireq’s name to be present, otherwise the type formsg6 is not well-formed; this is the basis of Lowe’s
attack on the original Needham–Schroeder public key protocol.

B Operational Semantics and Safety

Processes include correspondence assertion eventsbegin L andend L which describe the authenticity prop-
erties expected of the protocol. We take a new approach to formalizing correspondence assertions via a tuple
space metaphor. Informally, we regard these events as analogous toput andget in a fictitious secure tuple
space similar to Linda [CG89]. When abegin L event takes place, we addL to the secure tuple space. When
anend L event takes place, we removeL from the tuple space: a violation of the security requirements of
the protocol have taken place ifL is not present. In reality, this tuple space does not exist, so we need the
type system ensure that everyend L event is guaranteed to succeed. In an implementation of a typechecked
protocol,begin L andend L events can be implemented as no-ops, since the type checker guarantees that
theend L will succeed.

We define astate Asof a protocol to be a tuple space (that is, a multiset of tuples which have been begun
but not ended) and a thread pool (that is, a multiset of executing threads).
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Activities

A,B,C ::= activity
L tuple labelledL
P processP

Ls ::= [L1, . . . ,Ln] tuple space: multiset of tuples
Ps,Qs::= [P1, . . . ,Pn] thread pool: multiset of processes
As,Bs,Cs::= Ls+Ps state: tuple space plus thread pool

The free namesfn(As) of a stateAs are defined in the usual way. We define the operational semantics of
a state by giving a reduction relationAs→ Bs meaning ‘in stateAs the program can perform one step of
computation and become stateBs’.

State Transitions:

[out x M]+ [inp x (y:T);P]+As→ [P{y←M}]+As (Trans I/O)
[out x M]+ [repeat inp x (y:T);P]+As→ [P{y←M}]+ [repeat inp x (y:T);P]+As (Trans Repl I/O)
x /∈ fn(As)⇒ [new (x:T);P]+As→ [P]+As (Trans New)
[P |Q]+As→ [P]+ [Q]+As (Trans Par)
[stop]+As→ As (Trans Stop)
[split (M,N) is (x:T,y:U);P]+As→ [P{x←M}{y←N}]+As (Trans Split)
[match (M,N) is (M,y:U);P]+As→ [P{y←N}]+As (Trans Match)
[case inl (M) is inl (x:T) P is inr (y:U) Q]+As→ [P{x←M}]+As (Trans Inl)
[case inr (N) is inl (x:T) P is inr (y:U) Q]+As→ [Q{y←N}]+As (Trans Inr)
[decrypt {M}N is {x:T}N;P]+As→ [P{x←M}]+As (Trans Symm)
[decrypt {|M|}Encrypt (N) is {|x:T|}Decrypt (N)−1;P]+As→ [P{x←M}]+As (Trans Asymm)

[begin L;P]+As→ [L]+ [P]+As (Trans Begin)
[L]+ [end L;P]+As→ [P]+As (Trans End)
[check x is x;P]+As→ [P]+As (Trans Check)
[cast x is (y:T);P]+As→ [P{y←x}]+As (Trans Cast)
[witnessM:T;P]+As→ [P]+As (Trans Witness)
[trustM is (x:T);P]+As→ [P{x←M}]+As (Trans Trust)

An error state is one where anend L event is encountered without a matching tupleL in the tuple space.

Error States and Safety:

A state is anerror iff it has the form[end L;P]+AswhereL 6∈ As.
A processP is safeiff there is no error stateAssuch that[P]→∗ As.

C Full Definition of the Type System

In this section, we give the full definition of the type system for the spi calculus with correspondence
assertions. The type system is given as a number of judgements of the formE ` J .

Environments:

D,E ::= environment
x1:T1, . . . ,xn:Tn unordered set of entries
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JudgmentsE ` J :

E ` � good environment
E ` es good effectes
E ` T good typeT
E ` T <: U subtyping
E `M : T good messageM of typeT
E ` P : es good processP with effectes

A well-formed environmentE is one whereE ` �.

Rules for Environments:

(Env Good)(whereE = x1:T1, . . . ,xn:Tn)
E ` Ti ∀i ∈ 1..n x1, . . . ,xn distinct

E ` �

In an environmentE, a well-formed effectesis one whereE ` es.

Rules for Effects:

(Effect∅)

E ` [ ]

(Effect End)
E ` es E` L : Top

E ` es+[end L]

(Effect Check)
E ` es E` N : ` Challenge fs

E ` es+[check ` N]

(Effect Trust)
E ` es E`M : Top E ` T

E ` es+[trustM:T]

In an environmentE, a well-formed typeT is one whereE ` T.

Rules for Types:

(Type Pair)(wherex /∈ dom(E))
E ` T E,x:T `U

E ` (x:T,U)

(Type Sum)
E ` T E `U

E ` T +U

(Type Top)

E ` Top

(Type Un)

E ` Un

(Type Key)
E ` T

E ` SharedKey(T)

(Type Key-Pair)
E ` T

E ` KeyPair(T)

(Type Part)
E ` T

E ` k Key(T)

(Type Challenge)
E ` es

E ` ` Challenge es

(Type Response)
E ` es

E ` ` Response es

In an environmentE, a well-formed typeT is a subtype of a well-formed typeU wheneverE ` T <: U , as
defined in Section3.1and3.3. We repeat the rules here for completeness:

Basic rules for subtyping:

E ` T =⇒ E ` T <: T (Sub Refl)
E ` S<: T,E ` T <: U =⇒ E ` S<: U (Sub Trans)
E ` T =⇒ E ` T <: Top (Sub Top)

Congruence Rules for Subtyping:

(Sub Pair)(wherex /∈ dom(E))
E ` T <: T ′ E,x:T `U <: U ′

E ` (x:T,U) <: (x:T ′,U ′)

(Sub Sum)
E ` T <: T ′ E `U <: U ′

E ` T +U <: T ′+U ′
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(Sub Enc Key)
E ` T ′ <: T

E ` Encrypt Key(T) <: Encrypt Key(T ′)

(Sub Dec Key)
E ` T <: T ′

E ` Decrypt Key(T) <: Decrypt Key(T ′)

Subtyping Rules for Public Types:

E ` (x:Un,Un) <: Un (Public Pair)
E ` Un+Un <: Un (Public Sum)
E ` SharedKey(Un) <: Un (Public Shared Key)
E ` k Key(Un) <: Un (Public Key)
E ` KeyPair(Un) <: Un (Public Keypair)

Subtyping Rules for Tainted Types:

E ` Un <: (x:Un,Un) (Tainted Pair)
E ` Un <: Un+Un (Tainted Sum)
E ` Un <: SharedKey(Un) (Tainted Shared Key)
E ` Un <: k Key(Un) (Tainted Key)
E ` Un <: KeyPair(Un) (Tainted Keypair)

Subtyping Rules for Nonce Types:

E ` Public Challenge [ ] <: Un (Public Challenge[ ])
E ` fs=⇒ E ` Public Response fs<: Un (Public Response)
E ` Un <: Public Challenge [ ] (Tainted Public Challenge[ ])
E ` Un <: Public Response [ ] (Tainted Public Response[ ])
E ` es=⇒ E ` Un <: Private Challenge es (Tainted Private Challenge)
E ` es=⇒ E ` Un <: Private Response es (Tainted Private Response)

In an environmentE, a well-formed messageM of typeT is one whereE `M : T.

Type Rules for Messages:

(Msgx)

E′,x:T,E′′ ` x : T

(Msg Subsum)
E `M : S E` S<: U

E `M : U

(Msg Pair)
E `M : T E ` N : U{x←M}

E ` (M,N) : (x:T,U)

(Msg Inl)
E `M : T E `U

E ` inl (M) : T +U

(Msg Inr)
E ` T E ` N : U

E ` inr (N) : T +U

(Msg Symm)
E `M : T E ` N : SharedKey(T)

E ` {M}N : Un

(Msg Part)
E `M : KeyPair(T)

E ` k (M) : k Key(T)

(Msg Asymm)
E `M : T E ` N : Encrypt Key(T)

E ` {|M|}N : Un

In an environmentE, a well-formed processP with effectesis one whereE ` P : es.
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Basic Rules for Processes:

(Proc Output Un)
E `M : Un E ` N : Un

E ` out M N : [ ]

(Proc Input Un) (wherey /∈ dom(E)∪ fn(es))
E `M : Un E,y:Un ` P : es

E ` inp M (y:T);P : es

(Proc Par)
E ` P : es E`Q : fs

E ` P |Q : es+ fs

(Proc Repeat Input Un)
E `M : Un E,y:Un ` P : [ ]

E ` repeat inp M (y:T);P : [ ]

(Proc Stop)

E ` stop : [ ]

(Proc Res) (wherex /∈ dom(E)∪ fn(es))
E,x:T ` P : es T is Un or KeyPair(U) or SharedKey(T)

E ` new (x:T);P : es

Rules for Processes Manipulating Products and Sums:

(Proc Split) (wherex,y /∈ dom(E)∪ fn(es) andx 6= y)
E `M : (x:T,U) E,x:T,y:U ` P : es

E ` split M is (x:T,y:U);P : es

(Proc Match) (wherey /∈ dom(E)∪ fn(es))
E `M : (x:T,U) E ` N : T E,y:U{x←N} ` P : es

E `match M is (N,y:U{x←N});P : es

(Proc Case) (wherex /∈ dom(E)∪ fn(es) andy /∈ dom(E)∪ fn( fs))
E `M : T +U E,x:T ` P : es E,y:U `Q : fs

E ` case M is inl (x:T) P is inr (y:U) Q : es∨ fs

Rules for Cryptography:

(Proc Symm) (wherex /∈ dom(E)∪ fn(es))
E `M : Un E ` N : SharedKey(T) E,x:T ` P : es

E ` decrypt M is {x:T}N;P : es

(Proc Asymm) (wherex /∈ dom(E)∪ fn(es))
E `M : Un E ` N : Decrypt Key(T) E,x:T ` P : es

E ` decrypt M is {|x:T|}N−1;P : es

Rules for Begins and Ends:

(Proc Begin)
E ` L : T E ` P : es

E ` begin L;P : es− [end L]

(Proc End)
E ` L : T E ` P : es

E ` end L;P : es+[end L]

Rules for Challenges and Responses:

(Proc Cast) (wherex /∈ dom(E)∪ fn( fs))
E `M : ` Challenge esC E,x:` Response esR ` P : fs

E ` cast M is (x:` Response esR);P : esC +esR+ fs
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(Proc Check)
E `M : ` Challenge esC E ` N : ` Response esR E ` P : fs

E ` check M is N;P : ( fs− (esC +esR))+ [check ` M]

(Proc Challenge) (wherex /∈ dom(E)∪ fn(es− [check ` x]))
E,x:` Challenge fs` P : es

E ` new (x:` Challenge fs);P : es− [check ` x]

Rules for Witness Testimony and Trusted-Casting:

(Proc Witness)
E `M : T E ` P : es+[trustM:T, . . . , trustM:T]

E ` witnessM:T;P : es

(Proc Trust) (wherex /∈ dom(E)∪ fn(es))
E `M : Top E,x:T ` P : es

E ` trustM is (x:T);P : es+[trustM:T]

The type-and-effect rules for processesE ` P : esrely on some multiset algebra, which we define here for
unordered sequences[x1, . . . ,xn] for some grammar ranged over byx.

Multiset algebra xs+xs′, xs≤ xs′, xs−xs′, x∈ xs, xs∨xs′

[x1, . . . ,xm]+ [y1, . . . ,yn]
∆= [x1, . . . ,xm,y1, . . . ,yn]

xs≤ xs′ if and only if xs+xs′′ = xs′ for somexs′′

xs−xs′
∆= the smallestxs′′ such thatxs≤ xs′′+xs′

x∈ xs if and only if [x]≤ xs

xs∨xs′
∆= the smallestxs′′ such thatxs≤ xs′′ andxs′ ≤ xs′′
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