Types and Effects for Asymmetric Cryptographic Protocols

Submitted to 2002 IEEE Computer Security Foundations Workshop
DRAFT of Jan 28 2002

Abstract

We present the first type and effect system for proving authenticity properties of security protocols
based on asymmetric cryptography. The most significant new features of our type system are: (1) a
separation opublic typeqfor data possibly sent to the opponent) freeimted typegfor data possibly
received from the opponent) via a subtype relation;t(@3t effectsto guarantee that tainted data does
not, in fact, originate from the opponent; and ¢Bgllenge/response typassupport a variety of idioms
used to guarantee message freshness. We illustrate the applicability of our system via protocol examples.

1 Motivation

Gordon and Jeffrey recently proposed a type-based methodology for checking authenticity properties of
security protocolsGJ01¢ GJ014 First, specify properties by annotating an executable description of a
protocol with correspondence assertiond P3]. Second, annotate the protocol with suitable types. Third,
verify the assertions by running a type-checker. A type-correct protocol is secure against a malicious op-
ponent conforming to the Dolev and Yao assumptidmgg3]; the opponent may eavesdrop, generate, and
replay messages, but can only encrypt or decrypt messages if it knows the appropriate key. This methodol-
ogy is promising because it requires no state-space exploration, requires little interactive effort per protocol,
and reduces the verification problem to the familiar edit/type-check/debug cycle.

Still, their system applies only to symmetric-key cryptography and only to one style of nonce handshake,
a significant limitation. The goal of this paper is to enrich their type and effect system so as to apply the
methodology to a wider class of protocols based on both symmetric and asymmetric cryptography. To do
so, we need to solve the following three problems.

(1) Let us say data itaintedif it may have been generated by the opponent, otherwigainted and
publicif it may be revealed to the opponent, otherwsseret Now, in symmetric protocols, data is
either secret and untainted (because it is sent encrypted, and the opponent is ignorant of the key) or
it is both public and tainted (because it is sent in the clear). In asymmetric protocols, the situation is
subtler because of public keys: data may be both secret and tainted (if sent encrypted with an honest
agent’s public key) or public and untainted (if sent encrypted with an honest agent’s private key).
Gordon and Jeffrey’s systersJ014 has one typeUn, for public, tainted data, and every other type
is both secret and untainted. Here, we need to be more flexible; we use a subtype relation to represent
whether a type is tainted and whether it is public.

(2) Types can represent the degree of trust we place in data. In symmetric protocols, the degree of trust,
and hence the types of data, is fixed. On the other hand, in asymmetric protocols, the degree of trust
may increase over time as new information arises, for example, from nonce challenges. We introduce
trust effectdo model how new information may change the type of existing data.

(3) Gordon and Jeffrey’s systen@p014 supports one format for proving freshness via nonce hand-
shakes: the challenge in the clear, the response encrypted. Asymmetric protocols may use other
styles: both challenge and response encrypted; or the challenge encrypted, the response in the clear.
To accommodate these other styles, we introduceci@llenge/responsgpes.

1.1 Background

Many methodologies exist for verifying authenticity properties against the opponent model of Dolev and
Yao [DY83]. Verification via type-checking is one of only a few, recent techniques that requires little
interactive effort per protocol, while not bounding protocol or opponent size. Other such techniques in-
clude automatic tools for strand spac8sif99 THG9§ and rank functionsfiS0Q Sch9§. Other effective
approaches include model-checkingy96, MCJ97, which typically puts bounds on the protocol and op-
ponent, and techniques relying on theorem-provBgl96, Pau98 or epistemic logicsBAN89, DMPO01],

which typically require lengthy expert interaction.

Woo and Lam’s correspondence assertioh 93] are safety properties, specifying what is known as
injective agreementjow95]. Given a description of the sequence of messages exchanged by principals in
a protocol, we annotate it with labelled events marking the progress of each principal through the protocol.
We divide these events into two kinds, begin-events and end-events. Event labels typically indicate the
names of the principals involved and their roles in the protocol. For example, to specify an authenticity
property of a simple nonce handshake we decorate it with begin-events and end-events as follows.

Message 1 A—B: N

Event 1 B begins B sendsA messagd”
Message 2 B— A: {M,N}k

Event 2 Aends 'BsendsA messagél”

A protocol issafeif in all protocol runs, every assertion of an end-event corresponds to a distinct, earlier
assertion of a begin-event with the same label. A protocalbsstly safef it is safe in the presence of any
hostile opponent who can capture, modify, and replay messages, but cannot forge assertions.

Previous work can type-check the robust safety of protocols based on secure ch&d0dl [and
on insecure channels protected by symmetric cryptogra@id@ld These two papers are the only prior
work on authenticity by typing. They build on Abadi’s pioneering wofbf99 on secrecy by typing for
symmetric-key cryptographic protocols. Abadi and BlancA&(1, AB02] extend Abadi’s original system
to establish secrecy properties for asymmetric protocols. The present paper is a parallel development for
authenticity properties. Technically, it is not simply a routine combination of previous papéesa
ABO1]. For example, to facilitate type-checking our formalism, each bound variable is annotated with a
single type. A feature of Abadi and Blanchet’s treatment of tainted data is that a bound variable may assume
an arbitrary number of types, depending on its context, and therefore they suppress type annotations.

Like earlier work on types for cryptographic protocols, we take a binary view of the world as consisting
of a system of honest protocol participants plus a dishonest opponent. We leave a finer-grained analysis as
future work.

1.2 Our Three Main Contributions

Separation of trust and secrecy. In a cryptographic protocol based on symmetric cryptography, data is
typically either both secret and untainted or both public and tainted. For example, consider the message:

A—B: A{Mk,

(We write {M}k,, for the outcome of encryptin! using a symmetric algorithm with kel{ag.) The

principal nameA is public and tainted (since it is sent in plaintext) but the payleldnd the shared key

Kag are secret and untainted (since they are never sent in plaintext, and are known only to honest principals).
On the other hand, in a cryptographic protocol based on asymmetric cryptography, secrecy and tainted-

ness are independent. Data may be secret and tainted, or public and untainted. For ex#peB's

public key and(,;l is A’'s private key, consider the message:

A—B: ﬂM[}Kgl,ﬂN[}KB

(We write {M B’Kgl for the outcome of encryptinlyl using an asymmetric algorithm with private kisy*,
and{N[k. for the outcome of encryptinly with public keyKg.) Now, B considers:

e M is public (since the opponent knows and so can decrypt the cipherte{}MﬂKgl) but untainted
(since it is encrypted witld's private key, and so must have originated from the honest aent

e Nis secret (since the opponent does not kll@/?l so cannot decrypt the cipherted[}k,) but tainted
(since itis encrypted witB'’s public key, and so could have originated from a dishonest intruder).

Previous type system#&pa99 GJ013 feature a type, here callddin, for all messages known to the oppo-
nent. Here, to support asymmetric cryptography, we admit some types that are public without being tainted,
and others that are tainted without being public. We relate these tydéss ia a subtype relation. As
usual, we sayl is a subtype otJ, written T <: U, to mean that data of type may be used in situations
expecting data of typd. A typeT is publicif T <: Un, that is, it may be sent to the opponent. A typpes
taintedif Un <: T, that is, it may be sent from the opponent.

Our recognition of tainted types—as distinct from public types—has many parallels in analyses of non-
cryptographic aspects of security. The Perl programming langu&@@Spg can track at runtime whether
or not scalar data is tainted, to catch bugs in code dealing with untrusted inputs. An extension of the
simply-typedA-calculus PP97 uses annotations on each type constructor to track whether or not data can
be trusted, either because it originates from or has been endorsed by an honest participant. Similarly, an
experimental extensiorS[TFWO0] of C qualifies types as tainted or untainted to allow the static detection
of issues with format strings. The Secure Lambda CalcuiiRIg uses subtyping to track security levels.
To the best of our knowledge, this paper is the first to use types to track both public and tainted data in the
presence of cryptography.

Dynamic trust. In asymmetric protocols, the degree of trust we place in tainted data may increase as
we receive new information. For example, consider the following variant of the Needham-Schroeder—
Lowe [NS78 Low96] public-key protocol, extended to include a key exchange initiated:by

Message 1 A — B: {A Kag, Nafks
Message 2 B — A: {B,Kag,Na,Ng[k,
Message 3A—B: {Nglks

After receiving Message B regards the session k&g as tainted; it may come from, but it may also

come from the opponent, since the kqyis public. In Message B sendsA a nonceNg, encrypted together

with the tainted keyKag underKa, and hence hidden from the opponent. Névanly replies with Message

3 ifthe session key it receives in Message 2 matches the key itissued in Message 1. Therefore, on successful
receipt of the secrédz in Message 3B trusts thaKag did not in fact come from the opponent. So it is safe

for B to send a secret messagedencrypted with the kelag:

Message 4 B— A: {M}k,,

In this protocol,B’s trust in the session kelfag is dynamicin that it changes over time: initialliag is
tainted, but after Message 3 it is known to be untainted.

We model dynamic trust by introducingust effectsthat allow the type of a nonce to make assertions
about the type of other data. In the typed form of our example, the typlg abserts thaag has the type
of keys known only to honest participants.

Symmetric key cryptographic protocols typically do not require dynamic trust: data is either trusted or
untrusted for the whole run of the protocol, and its trust status does not change during a particular run. Over
time, symmetric key cryptographic protocols may downgrade their trust in data due to key-compromise or
other long-term attacks on the cryptosystem. Still, such attacks are outside our model, and are left for future
work.

Nonce handshake styles. Protocols use nonce handshakes to establish message freshness, and hence to
thwart replay attacks. The type and effect system of this paper supports three handshake idioms:

e Public Out Secret Home (POSHhe nonce goes out in the clear and returns encrypted.
e Secret Out Public Home (SOPHhe nonce goes out encrypted and returns in the clear.
e Secret Out Secret Home (SOStite nonce goes out encrypted and returns encrypted.

SOSH nonces are useful in asymmetric protocols, such as the protocol described above, wherd\i either
or Ng is learned by the opponent, the protocol can be compromised. The novel feature of SOSH nonces in
our type system is that they can be relied upon for authenticity even when they are tainted (for example,
when they are encrypted with a public key) because we have two cases:

¢ If the nonce was generated by the opponent, then only the opponent can perform the equality check at
the end of the nonce handshake, so no honest agent ever relies on the authenticity information carried
by the nonce.

¢ If the nonce was generated by an honest agent, then the opponent never learns of it (since the nonce
is secret) and so it is safe for honest agents to rely on the authenticity information carried by it.

In contrast, POSH and SOPH nonces cannot be relied upon when tainted. The Needham-Schroeder-Lowe
protocol relies orNa andNg being SOSH nonces, since they are encrypted with public keys and hence
tainted.

Guttman and &brega GF0Q call POSH and SOPH nonces incoming and outgoing tests, respectively;
they do not discuss SOSH nonces. Gordon and Jeféé@1a deal only with POSH nonces.

1.3 Remainder of this Paper

Section2 reviews Gordon and Jeffrey’s methodology for specifying authenticity properties of protocols.
Section3 describes our new type and effect system, and describes its application to some examples. Sec-
tion 4 concludes.

2 Specifying Authenticity Properties in the Spi-Calculus (Review)

We formalise our type and effect system in a version of the spi-calcAG@9], a concurrent language
based on thetcalculus Mil99] augmented with the Dolev—Yao model of cryptography. SecH#dnre-
views the syntax and informal semantics of a spi-calculus extended with correspondence asBérd&hs [
Section2.2 shows how to specify an example protocol. Later, we show it is robustly safe by typing.

2.1 A Spi-Calculus with Correspondence Assertions
First, here is the syntax of messages.

Names, Messages

m,n,X,y,z name: variable, channel, nonce, key, key-pair
L,M,N = message

X name

(M,N) pair formation

inl (M) left injection

inr (M) right injection

{M}n symmetric encryption

k(M) (wherek eitherEncrypt or Decrypt) key-pair component
{M[In asymmetric encryption

These messages are:

e A message is a name, representing a channel, nonce, symmetric key, or asymmetric key-pair.
A messagéM,N) is a pair. From this primitive we can describe any finite record.

Messagesl (M) andinr (M) are tagged unions, differentiated by the distinct tagandinr. With
these primitives we can encode any finite tagged union.

A messagg M}y is the ciphertext obtained by encrypting the plaintexivith the symmetric keW.
A messag€|M [y is the ciphertext obtained by encrypting the plaintekwith the asymmetric en-
cryption keyN.

A messag®ecrypt (M) extracts the decryption key component from the key giandEncrypt (M)
extracts the encryption key component from the key phir

An asymmetric key-paip has two dual applications: public-key encryption and digital signature. In the
first, Encrypt (p) is public andDecrypt (p) is secret. In the seconBncrypt (p) is secret an®ecrypt (p)
is public. For each key-pair, our type system tracks whether the encryption or decryption key is public, but
it makes no difference to our syntax or operational semantics. (Hence, a single key-pair cannot be used
both for public-key encryption and digital signature; this is often regarded as an imprudent practice, but
nonetheless is beyond our formalism.)

Next, we give the syntax of processes. Each bound name has a type annotation, Twatten We
postpone describing the syntax of types to the next section.

Processes:
I 1
O,PQ,R::= process

out M N output

inpM (xT);P input (x bound inP)

repeat inp M (xT); P
split M is (xT,y:U);P
match M is (N,y:T); P
case Misinl (xT) Pisinr (y:U) Q
decrypt M is {X:T }n;P
decrypt M is {x:T [}\-1;P
check M is N; P

begin L; P

end L;P

new (X:T);P

PIQ

stop

replicated inputX bound inP)

pair splitting & bound inU andP; y bound inP)
pair matching y bound inP)

union caseX bound inP; y bound inQ)
symmetric-key decryptiorx(bound inP)
asymmetric-key decryptiorxpound inP)
nonce-checking

begin-assertion

end-assertion

name generatiorx(ound inP)
composition

inactivity

The type annotations on bound names are used for type-checking but play no role at runtime; they do not
affect the operational behaviour of processes. In examples, for the sake of brevity, we sometimes omit type
annotations.
The free and bound names of a process are defined as usual. We&{xit\ } for the outcome of a
capture-avoiding substitution of the messabfor each free occurrence of the namia the proces®. We

identify processes up to the consistent renaming of bound names, for examplg wiie{P), we equate

new (X:T); P with new (y:T); (P{x<y}).

Next, we give informal semantics for process behaviour and process safety; formal definitions appear in
AppendixB. These processes are:

e Processesut M N andinp M (x:T); P are output and input, respectively, along an asynchronous,
unordered channe¥l. If an outputout x N runs in parallel with an inpuinp x (y); P, the two can
interact to leave the residual procésg/«—N}.

e Processepeat inp M (x:T); P is replicated input, which behaves like input, except that each time an
input of N is performed, the residual proceBéy—N} is spawned off to run concurrently with the
original processepeat inp M (x:T); P.

e Aprocessplit M is (x:T,y:U); P splits the paiM into its two components. M is (N, L), the process
behaves aB{x—N}{y—L}. Otherwise, it deadlocks, that is, does nothing.

e A processmatch M is (N,y:U); P splits the paiM into its two components, and checks that the first
one isN. If M is (N,L), the process behavesR§y—L}. Otherwise, it deadlocks.

e Aprocessase Misinl (xT) Pisinr (y:U) Q checks the tagged unidv. If M isinl (L), the process
behaves aB{x—L}. If M isinr (N) it behaves aQ{y-—N}. Otherwise, it deadlocks.

e A processdecrypt M is {x:T };P decryptsM using symmetric keWN. If M is {L}n, the process
behaves aP{x—L}. Otherwise, it deadlocks. We assume there is enough redundancy in the repre-
sentation of ciphertexts to detect decryption failures.

e A processdecrypt M is {x.T [}y-1;P decryptsM using asymmetric kei. If M is {L|}gncrypt (k) @nd
N is Decrypt (K), then the process behavesRs«—L}. Otherwise, it deadlocks.

e A processcheck M is N; P checks the messagbtandN are the same name before executihgf
the equality test fails, the process deadlocks.

e A processbegin L; P autonomously asserts an begin-event labdlleahd then behaves &s

e An processnd L; P autonomously asserts an end-event labdlleahd then behaves &s

e A processew (x:T);P generates a new namewhose scope iB, and then run®. (This abstractly
represents nonce or key generation.)

e Aprocess | Qruns processeB andQ in parallel.

e The processtop is deadlocked.

Safety:

A proces<P is safeif and only if for every run of the process and for evéry
there is a distinct begin-event labelleghreceding every end-event labelled

We are mainly concerned not just with safety, but with robust safety, that is, safety in the presence of an
arbitrary hostile opponent. In the untyped spi-calculd&99], the opponent is modelled by an arbitrary
process. In our typed spi-calculus, we do not consider completely arbitrary attacker processes, but restrict
ourselves tmpponenprocesses that satisfy two mild conditions:

e Opponents cannot assert events: otherwise, no process would be robustly safe, because of the oppo-
nentend X;.
e Opponents do not have access to trusted data, so any type occurring in the processtimust be

Opponents and Robust Safety:

A processP is assertion-freaf and only if it contains no begin- or end-assertions.
A proces<P is untypedif and only if the only type occurring iR is Un.

An opponent Gs an assertion-free untyped proc€ss

A proces<P is robustly saféf and only if P | O is safe for every opponef.

Sendefnet private,, publicg) =
new (keysg);
new (challengg);
begin “A generatekey,g for B”;
out net{A, key,g, challengg [} publics ;
inp net(ctexp, challengeg,);
decrypt ctexb
is {B, keyyg, responsg, challengg; |}

check challengg is responseg;
end “B receivedkey,g from A”;
new (Msg;

begin “A sendsnsgto B”;

. —1,
private, -’

out net(challengeg,, {msgchallenge; }key,s):

Receivefnet public,, privateg) =
repeat
inp net(ctext);
decrypt ctexy
is { A keyag, challengg [}

new (challengeg;);
new (challengg,);
begin “B receivedkeyyg from A”;
out net
({B, keysg, challengg, challenge; [} public, »
challengeg,);
inp net(responsg,, ctexs);
check challengg; is responsgy;

privateg 1,

end “A generate&eyg for B”;

decrypt ctexg is {Msgresponsg; freyq:
check challenge, is responsg,;

end “A sendsnsgto B”;

Systeret) =
new (pairy); new (pairg); (
Sendefnet Decrypt (pair,), Encrypt (pairg)) |
Receivefnet Encrypt (pair,), Decrypt (pairg)) |
out net(Encrypt (paira), Encrypt (pairg))

)

Figure 1: An example protocol with correspondence assertions

2.2 Specifying an Example

We show how to program a simple cryptographic protocol in our formalism. This protocol is a version of
Needham-Schroeder-Low&l$78 Low96] modified to illustrate the various features of our type system.
(The protocol is different from the version discussed in SectiprThe protocol shares a session k&g
between participantd andB, and uses this key to send a messk&dom A to B. The protocol should
guarantee the authenticity properties:

(1) Abelieves she shares the Ke€yg with B.
(2) B believes he shares the kiyg with A.
(3) B believes messagd was sent byA.

We specify the protocol informally as follows:

Event 1 A begins ‘A generate&ag for B’
Message 1 A—B: {A Kas, Naltks

Event 2 B begins B receivedKag from A’
Message 2B—A: ﬂB, Kag, Na, NB]_I}KA, Ng2
Event 3 Aends ‘B receivedKag from A”
Event4 Abegins ‘AsenddV to B”
Message 3A— B: Nz, {M,Ng2}ks
Event5 Bends ‘Agenerate&ag for B”
Event 6 Bends ‘AsendivitoB”

Figurel is a spi-calculus version of the protocol. The top-level proc8gstertnet) generates two fresh

key pairspair, andpairg, and places a single sender and a single receiver in parallel. We publish the public
encryption keys oA andB, to allow the attacker access to them. The paranregeis a communications
channel, on which the attacker may send or receive, representing the untrusted network. For simplicity,

Figurel includes just one sender and one receiver; it is easy to extend the program to run multiple senders
and receivers in parallel.
Given the assertions embedded in the program, our formal specification is simply the following:

Authenticity: The procesS$ystertnet) is robustly safe.

3 Authenticity by Typing for Asymmetric Cryptographic Protocols

Section3.1 describes informally how we type messages. Se@i@mexplains the subtyping relation. Sec-

tion 3.3 explains how we ascribe effects to processes, respectively. The full details of the type system are
left to AppendixC. In Section3.4 we explain how to type the assertions in the example of the previous
section.

3.1 Types for Messages

We give the syntax of types and explain when a mesdégas typer, written informallyM : T.
Apart from challenge/response types, deferred to the next section, here is the syntax of our types.

Types:

ST,U .= type
(xT,U) dependent pair typexound inU)
T+U sum type
Un data known to the opponent
Top top
SharedKey(T) shared-key type
KeyPair(T) asymmetric key-pair

k Key(T) (wherek eitherEncrypt or Decrypt) encryption or decryption part

Many of these types are standard or appear in earlier work orGslilld. Messages of typex:T,U) are
dependent recorddv,N), whereM : T, andN : U{x<T}. Messages of typ& + U are tagged unions,
eitherinl (M) with M : T orinr (N) with N : U. Messages of typEn are arbitrary, untrusted data known
to the opponent. Any typeable message is also of fyge Messages of typSharedKey(T) are names
representing symmetric keys for encypting data of tyge yield a ciphertext of typ&n.

We need some new types for asymmetric cryptography. A message oKeysir(T) is a name
representing an asymmetric key-pair for encrypting data of fypbessages of typelSncrypt Key(T) or
Decrypt Key(T) take the formEncrypt p or Decrypt p, respectively, wher@ : KeyPair(T).

The formal message typing judgment takes the f&rmM : T, whereE is anenvironmentthat assigns
types to the names in scope. An environment takes the f@rfy, ... , Xn: Tp.

Our typing rules rely on a subtyping relation on types, writeh T <: U. Intuitively, this means that
any message of type also is of typdJ. We explain subtyping in detail in the next section.

The formal typing rules defining - M : T are mostly standard3J014. Full details are in Appendig.
Here are some samples, the rules for applying subtyping and for typing asymmetric operations

Type Rules for Messages:

(Msg Subsum) (Msg Part) (Msg Asymm)
EFM:T EFT<:U E +M: KeyPair(T) EFM:T EFN:Encrypt Key(T)
EFM:U EFK(M):kKey(T) EF{M}n:Un

The type-rules in AppendiK are all syntax-directed, and so it is routine to implement a top-down type-
checker for this type system.

3.2 The Subtyping Relation

ThesubtypingelationE - T <: U means that messages of typean be used in place of a message of type
U. The environmenE tracks the names in scope, and sometimes is omitted in informal discussion.

A type’s relationship to the typen of data known to the opponent determines whether it can be sent to
or received from the opponent. Let a typdepublicif and only if T <: Un. Let a typeT betaintedif and
only if Un <: T.

The following tables of rules define the subtyping relation. Subtyping is reflexive and transitive, and has
a top elementop:

Basic rules for subtyping:

EFT—EFT<:T (Sub Refl)
EFS<T,EFT<U=—EFS<:U (Sub Trans)
EFT—EFT<: Top (Sub Top)

Pair typegx: T,U), sum typesT +U and decryption key typeBecrypt Key(T) are covariant; encryption
key typesEncrypt Key(T) are contravariant:

Congruence Rules for Subtyping:

(Sub Pair)(where ¢ domE)) (Sub Sum)
EFT<T ExTHU<U EFT<T ERU<U’
Et(xT,U)<: (xT,U) EFT+U < T'+U’

(Sub Enc Key) (Sub Dec Key)
EFT < T EFT < T

E - Encrypt Key(T) <: Encrypt Key(T’) EF Decrypt Key(T) <: Decrypt Key(T’)
|

A pair type (x: Un,Un) contains only public data, so is itself public. Similarly, the sum tyjpe+
Un, the symmetric key typ8&haredKey(Un), the asymmetric key typk Key(Un), and the key pair type
KeyPair(Un) are all public types:

Subtyping Rules for Public Types:

EF (x:Un,Un) <:Un (Public Pair)
EFUn+Un<:Un (Public Sum)

E F SharedKey(Un) <: Un (Public Shared Key)
EFkKey(Un) <:Un (Public Key)

E F KeyPair(Un) <: Un (Public Keypair)

A pair type (x : Un,Un) contains only tainted data, so is itself tainted. Similarly, the sum type-
Un, the symmetric key typ&haredKey(Un), the asymmetric key typk Key(Un), and the key pair type
KeyPair(Un) are all tainted types:

Subtyping Rules for Tainted Types:

EF Un <:(x:Un,Un) (Tainted Pair)
EFUn<:Un+Un (Tainted Sum)

E F Un <: SharedKey(Un) (Tainted Shared Key)
E F Un <:kKey(Un) (Tainted Key)

E F Un <: KeyPair(Un) (Tainted Keypair)

We end this section by discussing the two dual applications of key-pairs oKisydair(T).

¢ In public-key applications, the payload typeshould be tainted, since anyone, including the oppo-
nent, can encrypt messagesTIfs tainted, therUn <: T. The type constructor for encryption keys
is contravariant, s@ncrypt Key(T) <: Encrypt Key(Un) <: Un. Hence Encrypt Key(T) is public.

¢ In digital signature applications, the payload typeshould be public, since anyone, including the
opponent, can check signatures.Tlfis public, thenT <: Un. The type constructor for decryption
keys is covariant, sDecrypt Key(T) <: Decrypt Key(Un) <: Un. Hence Decrypt Key(T) is public.

Note in particular that if aiave programmer attempts to use a key of tigeg(T) for both public-key and

digital signature, then they will discover that<: Un <: T, and sdKey(T) = Un. This enforces the common
engineering practice that keys which are used for both public-key and digital signature applications are not
to be trusted.

3.3 Effects for Processes

We write E - P : esto mean that the processis well-typed in environmenE, and that the effeatsis an
upper bound on the certain aspects of the behaRoun effect is a multiset (that is, an unordered list) of
atomic effectsThese can take three forms:

e end L, used to track the unmatched end-events of a process.
e check Public N andcheck Private N, used to track how often a nonce has been used.
e trust M:T, a trust effect used to gain the trust information that détaeally has typ€l .

Overall, the goal when type-checking a protocol is to assign it the empty effect, for then it has no unbalanced
end-events, and therefore is safe. This section explains the intuitions behind the rules for assigning effects
to processes, which in part rely on challenge/response types for nonces.

Let e stand for an atomic effect, and les stand for areffect that is, a multisefey, ..., e,] of atomic
effects. We writees+ es for the multiset union of the two multiseésandes, that is, their concatenation.
We write es— es for the multiset subtraction @S from es that is, the outcome of deleting an occurrence
of each atomic effect ies from es If an atomic effect does not occur in an effect, then deleting the atomic
effect leaves the effect unchanged.

The interesting part of the effect system for processes is how it handles nonce handshakes. Each nonce
handshake breaks down into several steps:

(1) ParticipantA creates a fresh nonce and sends Bioside a messadd.

(2) ParticipantB returns the nonce ta inside messagh.

(3) ParticipantA checks that she received the same nonce as she sent. From this (and some trust in
the cryptography used to encrypt secret messages) she knovi&rthadt have been involved in the
dialogue.

(4) To avoid vulnerability to replay of messages containing the nohsebsequently discards the nonce
and refuses to accept it again.

Our type system requires us to distinguish nonces which may be published to the untrustedragiints (
nonces) from ones which may nétr{vate nonces). We lef be eitherPublic or Private. We type-check the
above four steps as follows:

(1) Acreates the nondé as having typé Challenge es whereesis an effect, and sends it &

(2) B casts the nonce to a new typ®&esponse fs, wherefsis also an effect, and returns it£o In order
to do this,B must ensure that the effees+ fsis justified.

10

(3) After receiving the newly cast nonc&,uses a name-checkeck N is N’; to check nonce equality of
the original nonce challenge with the new nonce response. If this check sucAeasassume that
the effectes+ fsis justified.

(4) To guarantee that each nondds only checked once, we introduce a new atomic eftaetk ¢ N,
which is introduced each timecaeck N is N’; is used. This can only be justified by freshly generating
the nonceN, which ensures that each nonce is only ever checked once.

This four-phase process extends the treatment of POSH nonces in earlieGu6dd| and is sufficient to

type check symmetric key protocols. Asymmetric key protocols, however, have dynamic trust, where the
trust in a piece of data may increase over time. In our system, trust is given by knowing the type of data,
so dynamic trust is modelled by allowing the type of some data to change over time. We model this by
introducing two new statements, which alléwto communicate t® that a piece of dat¥l has typerT:

(1) Aknows thatM has typeT, and executewitness M: T ; which justifies arust effecttrust M:T. A can
then use the nonce mechanism described above to communicate this trust é8fect to

(2) B executesrustMis (x:T); which givesM typeT by bindingM to variablex of typeT. This requires
a trust effectrust M:T.

In this fashion, type information can be exchanged between honest agents, using the same mechanism as
authenticity information.

Effects:
I 1
efi= atomic effect
end L end-event labelled with message
check ¢ N name-check for a nondg
trust M:T trust that a messagdé has typerl
es fs::= effect
[e1,...,en] multiset of atomic effects

Effects contain no name binders, so the free names of an effect are the free names of the message and types
they contain. We writes{x—M} for the outcome of a capture-avoiding substitution of the messhfp
each free occurrence of the namim the effectes
In AppendixC we defineE F esmeaning ‘in environmeri, the effectesis well-formed’.
We extend the grammar of types to include nonce types. These come in two vaietidis:nonces
(for SOPH and POSH nonce handshakes)Ririhte nonces (for SOSH nonce handshakes). Note that:

e POSH nonces are sent out with tainted public t{jablic Challenge [], and return with untainted
secret typdublic Response es

e SOPH nonces are sent out with untainted secret Bydgic Challenge es and return with tainted
public typePublic Response [].

e SOSH nonces are send out with tainted secretBrpate Challenge es and return with tainted secret
typePrivate Response fs.

These properties are captured by the subtyping rules for nonce types.

Nonce Types:

T,U = type
as in SectiorB.1
¢ Challenge es nonce challenge type

11

¢ Response es nonce response type

l= privacy
Public public
Private private

Subtyping Rules for Nonce Types:

E - Public Challenge [] <: Un (Public Challengg])

E - fs=— E I Public Response fs<: Un (Public Response)

E F Un <: Public Challenge [] (Tainted Public Challengg)
E - Un <: Public Response [] (Tainted Public Respongé§
E - es= E I Un <: Private Challenge es (Tainted Private Challenge)
E - es= E I Un <: Private Response es (Tainted Private Response)

We extend the grammar of processes to include nonce manipulation:

Processes Manipulating Nonces:

I

O,PQR:= process
as in Sectior.1
cast Mis (xT);P nonce-casting
witnessM:T; P witness testimony
trustMis (xT); P trusted-casting

In a processast M is (x:T); P or trust M is (x:T); P, the namex is bound; its scope is the proce2s

e The processast M is (x:T); P casts the messagdé to the typeT, by binding the variable to M, and
then runningP. (This process can only be typed by our type systel ifas typel Challenge esand
T is of the form{ Response es)

e The processvitness M:T; P requires thaM has typeT. It justifies any number of effects of the form
trustM:T.

e The processrustMis (x:T); P casts the messa@é to the typeT, by binding the variable to M, and
then runningP. (This process requires an effeaist M: T to be justified: this allows type information
to be communicated amongst honest agents.)

We can now give rules which calculate the effect of a process. Most of the rules are the s&d6% |
so are given in Appendi. We only provide the rules for asymmetric cryptography, nonce challenges, and
dynamic trust here.

The rule for asymmetric decryption is similar to the one for symmetric decryptidv:isfa plaintext of
typeT andK is a decrypt key of typ®ecrypt Key(T) then we can decrypt a ciphertext of type to reveal
the plaintext of typeT :

Rule for Asymmetric Cryptography:
(Proc Asymm) (where ¢ dom(E) Ufn(es))
EFM:Un EFN:Decrypt Key(T) E,xTHP:es
E - decrypt M is {x:T[}n-1;P: €S

The rules for nonce types are similar to the rules fréd(13, except that they support SOPH and POSH
nonces as well as POSH nonces:

12

Rules for Challenges and Responses:
(Proc Cast) (wherg ¢ dom(E) Ufn(fs))
E+ M : /¢ Challenge e E, X/ Response eqt P: fs
E F cast M is (X:¢ Response exR);P: ex +ex+ fs

(Proc Check)
E-M: /¢ Challengeess EFN:/¢Responseex EFP:fs

Et check Mis N;P: (fs— (e +ex)) + [check ¢ M]

(Proc Challenge) (where¢ dom(E) Ufn(es— [check ¢ X]))
E,x:¢ Challenge fsi-P:es

E - new (x:¢ Challenge fs); P : es— [check ¢ X]

The rules for trust effects are new in this paper. A proegssess M: T ; P requires that messad# has type
T, and allows the proce$sto use the trust effectust M: T many times; A processustMis (x:T); P makes
use of the trust effearust M:T to useM with typeT:

Rules for Witness Testimony and Trusted-Casting:

(Proc Witness) (Proc Trust) (wheret ¢ domE) Ufn(es)
EFM:T EFP:est+[trustM:T,... trustM:T] EFM:Top E,xTHP:es
E F witnessM:T;P: es EF trustMis(xT);P:es

Finally, we state the safety theorem for this type system. The proof depends on identifying a suitable runtime
invariant and showing it is preserved by the operational semantics.

Theorem 1 (Robust Safety)If X1:Un,...,x,:Un P[] then P is robustly safe.

3.4 Typing the Example

We now show that the proceSgstertnet) has empty effect, and so by TheorértRobust Safetyis robustly

safe. We give other examples in Appendixincluding an example using signed certificates. Each nonce

has two types: one type when it is used as a nonce challenge, and one for when it is used as a response. The
types forNa are:

Ca(a,b,k) = Private Challenge [end (“a generatek for b”)]
Ra = Private Response []
The types folNg; are:
Cgi(a,b,k) = Public Challenge [end (“breceivedk froma”),trustk:Kag(a,b)]
Rer = Public Response []
The types folNg; are:
Cgz = Public Challenge []
Re2(a,b,m) = Public Response [end (“asendsntob”)]

Keys have only one type, giving the type of the plaintext encrypted with the key. The tygagdas:
Kag(a,b) = SharedKey(m:Payload,r:Rgz(a,b,m))

13

A

Sendefnet: Un, private, : Decrypt Ka(A), publicg : Encrypt Kg(B))
new (keyag : Kag(A,B));
// Effect: []
new (challengg : Ca(A,B,keyg));
// Effect: [check Private challengg|
begin “A generatekey,g for B”;
out net{A, key,g, challengg [} publics;
inp net(ctexb : Un, challengg, : Cgp);
decrypt ctexb is {|B, keyag, responsg : Ra, challengg; : Cg1(A, B, keyg) |}
// Effect: [check Private challengg, end “A generate&ey,g for B”]
check challengg is responseg;
// Effect: [end “B receivedkey,g from A" end “A generate&ey,g for B”]
end “B receivedkey,g from A”;
new (Msg: Payload);
// Effect: [end “ A generategey,g for B|
begin “A sendansgto B”;
// Effect: [end “A generate&ey,g for B”,end “A sendsnsgto B”]
witness keyag:Kag(A, B);
// Effect: [end “A generategey,g for B”, trust keyyg:Kag(A, B),end “A sendamsgto B”|
cast challengg; is (responsg; : Rg1);
// Effect: [end “A sendamsgto B”]
cast challengeg, is (responsg, : Rg2(A,B,msg);
// Effect: []
out net(responsg,, {Msgresponsg, tkey,s):

. _1,
private, -’

A

Receivefnet: Un,publicy : Encrypt Ka(A), privates : Decrypt Kg(B))
repeat
inp net(ctexy : Un);
decrypt ctext is {A, untrusted: Top,challengg : Ca(A, B, keyg) [t
// Effect: []
new (challenge; : Cg1(A,B,keyg));
// Effect: [check Public challengg]
new (challengg, : Cgp);
// Effect: [check Public challengg;, check Public challenge,]
begin “B receiveduntrustedfrom A”;
// Effect: [end “B receiveduntrustedfrom A" check Public challengg;, check Public challengg,]
cast challengg is (responsg : Ra);
out net{B, untrustedchallengg, challengg, [} pubiic, - challengeg,;
inp net(responsg, : Re1,ctexg : Un);
// Effect: [check Public challengg,, check Public challenge,]
check challengg; is responsg;;
// Effect: [end “A generatesintrustedfor B”, trust untrustedKag(A, B), check Public challengg,]
end “A generatesintrustedfor B”;
// Effect: [trust untrustedKag(A, B),check Public challengey]
trust untrusteds (keyag : Kag(A,B));
decrypt ctexg is {msg: Payload, responsg, : Re2(A, B,Msg }key,q:
// Effect: [check Public challengg,]
check challengg, is responsg,;
// Effect: [end “A sendsmsgto B”|
end “A sendansgto B”;

privateg 1

Figure 2: Proof that the example is robustly safe

14

The type forKAis:
Ka(@ = Key(b:Principal,k:Top,ra:Ra,cs1:Cgi1(a,b,k))
The type forKB is:
Ke(b) = Key(a:Principal,k:Top,ca:Ca(a,b,k))
We can then check that the encryption keys for each of the participants is public:

e The typesPrincipal, Top, Ra andCg;(a, b, k) are all tainted,
so the record typ€o:Principal,k: Top, ra:Ra, ce1:Cgi(a, b, k)) is tainted,
so the encryption key typencrypt Ka(a) is public.
e The typesPrincipal, Top andCa(a, b, k) are all tainted,
so the record typéa:Principal, k: Top,ca:Ca(a, b, k)) is tainted,
so the encryption key typencrypt Kg(b) is public.

In Figure2, we annotate the participants in the protocol with types and appropriate casts, to ensure that the
protocol is robustly safe. When we typecheck the receiver, we cannot initially trust the session key, so we
have to give it typ€elop rather than key type. It is only once message 3 has arrived that we know that the
key is really fromA and not fabricated by an intruder, at which point we can castkeigg : Kag(A, B).

This is justified by the trust effectust keyyg : Kag(A, B) which is communicated as part of nonce challenge
challengg;.

4 Conclusions and Further Work

This paper presents a type and effect system for asymmetric cryptographic protocols. The main new ideas
are (1) to identify the separate notions of public and tainted types, defined formally via subtyping; (2) to
formalize the way nonces increase the degree of trust in data via trust effects; and (3) to support different
styles of nonce handshake via challenge/response types. Examples show how to model common features of
asymmetric protocols such as key exchange and the use of signed certificates.

The Cryptyc projectJO1h includes a tool for type-checking symmetric key protocols, and have used
this tool to verify most of the protocols in the Clark—Jacob surn@y9q. We expect that this tool could
easily be extended to include the type and effect system described here.

The long-term aims of all the work on typing cryptographic protocols are to find secrecy and authenticity
types that are as compellingly intuitive as BAN formulas, are easy to type-check, have a precise semantics,
and support a wide range of cryptographic transforms and protocol idioms. This paper represents solid
progress towards these goals.

Still, several limitations remain to be addressed. Our types for encryption give every ciphertext type
Un, so we cannot model some forms of nested cryptography such as “sign-then-encrypt” or “encrypt-then-
sign”. Our attacker model assumes that every opponent is completely untrusted: they only have access to
data of typeUn; this does not model attacks where opponents are partially trusted (for exavhptay
have a public ke which is trusted to give authenticity information abdibut not about or B). Also,
the attacker model does not support key-compromise attacks. Our encryption model does not include other
encryption technologies such as hashing, Diffie—Hellman key exchange and constructing keys from pass
phrases.

15

A Other Examples

A.1 Abbreviations Used in Examples

In these examples, we make use of the following syntax sugar:

e Dependent record typ€g;:Ti,...,Xn:Tn), rather than just pairs.

e Tagged union type§1(T1) | --- | £n(Tn)) rather than just binary choice+U.
e Strings ‘a;...ay" used in correspondence assertions.

e A public, tainted typePrincipal for principal names.

We show in the full version of this paper that these constructs can be derived from our base language.

A.2 Authentication using certificates

A simple authentication protocol using certificates is the ISO Public Key Two-Pass Unilateral Authentica-
tion Protocol described by Clark and Jac@d97. In this protocol, a principal sends a certificate for her
public keyKa together with a message encrypted with her privatel(gﬁ/ to principalB. The certificate

is encrypted with the private ke&gj of a certificate authorityCA. The protocol, simplified to remove
messages unrelated to authenticity, is:

Message 1 B— A: N

Event 1 Abegins ‘AsendingM to B”
Message2 A—B: {A, KA[}K&%, {M,B, NBI}K;1
Event 2 Bends ‘AsendingM to B”

Translating the protocol into the spi-calculus with correspondence assertions is routine, but we have to
provide types for the participants. The typeAX key is (for any public typéayload):

Ka(a: Principal) = Key(msg: Payload, b : Principal,n: Public Response [end “a sendingmsgto b"])
The type of the certificate authori@As key is:

Kca = Key(a: Principal,ka : Ka(a))
We can then check that the participants public keys are public:

e The plaintext of typeKa(a) is public soDecrypt Ka(@) is public (this depends on theayload type
being public).
e The plaintext of typd<ca is public, soDecrypt Kca is public.

It is then routine to verify that this protocol typechecks and is effect-free, and so is robustly safe.

A.3 Needham-Schroeder—Lowe

The full Needham—-Schroeder—Lowd$78 Low96] protocol makes use of a certificate authoi®hich
validates the public keyKa and Kg of principals A and B, by encrypting the public keys with private
encryption keyKs*. A andB useSto find each others public keys, then use two SOSH nonce handshakes
to establish contact:

16

Message1A—S: AB

Message 2 S— A: {B, KBI}Kgl
Eventl Abegins ‘A contactingd”
Message 3A—B: {msg(A Na)lks
Event 2 B begins ‘B contacted by’
Message4 B— S: B,A
Message5S—B: {A, KA[}Kgl
Message 6 B— A: {msg(B,Na,Ng) [}k,
Event3 Aends ‘Bcontacted by’
Message 7 A— B: {msg(Ns)[}kg
Event 4 Bends ‘A contactingB”

Translating the protocol into the spi-calculus with correspondence assertions is routine, but we have to
provide types for the participants. The typefoAndB's keys is:

Kp(p: Principal) = Key(
msg(q : Principal,ng : Private Challenge [end “ p contacted byy”])
| msg;(q: Principal,np : Private Response [],Ng : Private Challenge [end “ p contactingg”])
| msg(Private Response [])

)
The type ofSs key is:

Ks= Key(p: Principal, ke : Kp(p))
We can then check that the participants public keys are public:

e The plaintext of typeKp(p) is tainted, sEncrypt Kp(p) is public (note that this depends on private
nonce types being tainted).

e The plaintext of type<g is public, soDecrypt Ks is public.

Itis then routine to verify that NSL typechecks is effect-free, and so is robustly safe. In the typsgore
requireg's name to be present, otherwise the typerfaag; is not well-formed,; this is the basis of Lowe’s
attack on the original Needham—-Schroeder public key protocol.

B Operational Semantics and Safety

Processes include correspondence assertion avegitsL andend L which describe the authenticity prop-
erties expected of the protocol. We take a new approach to formalizing correspondence assertions via a tuple
space metaphor. Informally, we regard these events as analogpuisandget in a fictitious secure tuple
space similar to Linda@G89. When abegin L event takes place, we atido the secure tuple space. When
anend L event takes place, we remolkedrom the tuple space: a violation of the security requirements of
the protocol have taken placelifis not present. In reality, this tuple space does not exist, so we need the
type system ensure that eveind L event is guaranteed to succeed. In an implementation of a typechecked
protocol,begin L andend L events can be implemented as no-ops, since the type checker guarantees that
theend L will succeed.

We define astate Af a protocol to be a tuple space (that is, a multiset of tuples which have been begun
but not ended) and a thread pool (that is, a multiset of executing threads).

17

Activities

A B.C:= activity

L tuple labelled-

P proces$
Ls:=]L1,...,Ln] tuple space: multiset of tuples
PsQs:=[P,...,P] thread pool: multiset of processes
AsBsCs::=Ls+Ps state: tuple space plus thread pool

The free namefn(As) of a stateAsare defined in the usual way. We define the operational semantics of
a state by giving a reduction relatidks — Bs meaning ‘in statéAsthe program can perform one step of
computation and become std&s.

State Transitions:

[out X M] + [inp X (y:T); P| + As— [P{y—M}| + As (Trans 1/0)

[out X M] + [repeat inp X (Y:T);P] 4+ As— [P{y—M}] + [repeat inp X (y:T);P]+As (Trans Repl I/O)
x ¢ fn(As) = [new (X:T);P] +As— [P]+As (Trans New)
[P| Q] +As— [P]+[Q] +As (Trans Par)
[stop] + As— As (Trans Stop)
[split (M,N) is (xT,y:U); P] + As— [P{x—M}{y—N}|+ As (Trans Split)
[match (M, N) is (M,y:U);P] 4+ As— [P{y<—N}|+As (Trans Match)
[case inl (M) isinl (xT) Pisinr (y:U) Q] +As— [P{x—M}]|+As (Trans Inl)
[case inr (N) isinl (xT) Pisinr (y:U) Q] +As— [Q{y<N}]+As (Trans Inr)
[decrypt {M}n is {XT }n;P] +As— [P{x—M}] + As (Trans Symm)
[decrypt {MEncrypt (N) 1S X T [pecrypt (N)-1:P] +As— [P{x<—M}] +As (Trans Asymm)
[begin L;P] +As— [L]+[P] +As (Trans Begin)
[L]+ [end L;P] +As— [P]+As (Trans End)
[check X is X; P] + As— [P] + As (Trans Check)
[cast Xis (Y:T);P]+As— [P{y—x}|+ As (Trans Cast)
[witnessM:T;P] +As— [P]+As (Trans Witness)
[trust Mis (xT);P] +As— [P{x<M}] +As (Trans Trust)

An error state is one where and L event is encountered without a matching tuplia the tuple space.

Error States and Safety:

I

A state is arerror iff it has the form[end L; P] + AswhereL ¢ As
A proces<P is safeiff there is no error statAssuch thafP] —* As
|

C Full Definition of the Type System

In this section, we give the full definition of the type system for the spi calculus with correspondence
assertions. The type system is given as a number of judgements of th& forfn

Environments:

I
D,E = environment
X1:T1, ..., %0 Th unordered set of entries

18

JudgmentsE I 7:

EFo good environment

Etes good effectes

EFT good typeT

EFT<:U subtyping

EFM:T good messag®l of type T
E-P:es good proces® with effectes

A well-formed environmenE is one wherée F .

Rules for Environments:
(Env Good)(wherd = x1:Tq,...,%Xn:Th)
EFT Viel.n X,..., X,distinct
Ero

In an environmenE, a well-formed effecesis one wherée - es

Rules for Effects:

(Effect@) (Effect End) (Effect Check) (Effect Trust)
Er-es EFL:Top Eres EFN:£ZChallengefs EFRes EFM:Top EFT
EF] E - es+ [end L] E - es+ [check ¢ N] E - es+ [trustM:T]

In an environmenE, a well-formed typ€Tl is one wherde - T.

Rules for Types:
I(Type Pair)(wherex ¢ dom(E)) (Type Sum) (Type Top) (Type Un) |
EFT ExTHU EFT EFRU
EF (xT,U) EFT+U E-Top EFUn
(Type Key) (Type Key-Pair) (Type Part) (Type Challenge) (Type Response)
EFT EFT EFT Etes Eles

E - SharedKey(T) EF KeyPair(T) EFkKey(T) EF/ZChallengees EF ¢ Responsees

In an environmenE, a well-formed typeT is a subtype of a well-formed typ¢ whenevelE - T <: U, as
defined in Sectio®.1and3.3 We repeat the rules here for completeness:

Basic rules for subtyping:

EFT—EFT<:T (Sub Refl)
EFS<T,EFT<U=—EFS<:U (Sub Trans)
EFT=—EFT <:Top (Sub Top)

Congruence Rules for Subtyping:

(Sub Pair)(where ¢ domE)) (Sub Sum)
EFT<:T ExTHU<U EFT<T EFRU<:U’

EF(xT,U) <: (xT",U") EFT+U<:T'+U’

19

(Sub Enc Key)
EFT < T

(Sub Dec Key)

EFT < T

E - Encrypt Key(T) <: Encrypt Key(T’)

E - Decrypt Key(T) <: Decrypt Key(T’)

Subtyping Rules for Public Types:

EF (x:Un,Un) <:Un
EFUn+Un<:Un

E I SharedKey(Un) <: Un
E -k Key(Un) <: Un

E I KeyPair(Un) <: Un

(Public Pair)

(Public Sum)
(Public Shared Key)
(Public Key)

(Public Keypair)

Subtyping Rules for Tainted Types:

E+ Un <: (xUn,Un)
EFUn<:Un+4Un

E - Un <: SharedKey(Un)
EFUn <:kKey(Un)

E - Un <: KeyPair(Un)

(Tainted Pair)
(Tainted Sum)
(Tainted Shared Key)
(Tainted Key)
(Tainted Keypair)

Subtyping Rules for Nonce Types:

E - Public Challenge [] <: Un

E - fs=— E I Public Response fs<: Un
E - Un <: Public Challenge []

E I Un <: Public Response []

E - es= E I Un <: Private Challenge es
E - es= E I Un <: Private Response es

(Public Challengg])

(Public Response)

(Tainted Public Challengg)
(Tainted Public Respongé
(Tainted Private Challenge)
(Tainted Private Response)

In an environmenE, a well-formed messagdd of typeT is one wherd&e - M : T.

Type Rules for Messages:

(Msgx) (Msg Subsum)
EFM:S EFS<:U
E xT,E'Fx:T EFM:U
(Msg Pair) (Msg Inl) (Msg Inr)
EFM:T EFN:U{x—M} EFM:T ERU EFT EEN:U
EF(M,N): (xT,U) EFinf(M): T4+U Ekinr(N):T+U
(Msg Symm) (Msg Part) (Msg Asymm)

EFM:T EFN:SharedKey(T) EF M : KeyPair(T)

Er{M}x:Un EFk(M):kKey(T)

In an environmenE, a well-formed procesB with effectesis one wherd - P: es

20

EFM:T EFN:Encrypt Key(T)
EF {MJ : Un

Basic Rules for Processes:

I(Proc Output Un) (Proc Input Un) (wherg ¢ dom(E) Ufn(e9)
EFM:Un EFN:Un EFM:Un E,yUnFP:es
EFoutMN:] EFinpM (y:T);P:es
(Proc Par) (Proc Repeat Input Un) (Proc Stop)
E-P:es EFQ:fs EFM:Un E,yUnkP:[]
EFP|Q:es+ fs EtrepeatinpM (y:T);P:[] EFstop:]

(Proc Res) (wherg ¢ domE) Ufn(es))
E,xTHP:es TisUn orKeyPair(U) or SharedKey(T)

EF new (xT);P:es

Rules for Processes Manipulating Products and Sums:

I(Proc Split) (where,y ¢ dom(E) Ufn(eg andx #y)
EFM:(xT,U) ExT,yUFP:es
EFsplitMis (xT,y:U);P:es

(Proc Match) (wherg ¢ dom(E) Ufn(es)
EFM:(xT,U) EEN:T EyU{x~N}FP:es
E - match M is (N,y:U{x—N});P:es

(Proc Case) (where¢ domE) Ufn(es andy ¢ domE) Ufn(fs))
EFM:T4+U ExTHP:es EyUFRQ:fs

El case Misinl (xT) Pisinr (yU) Q:esv fs

Rules for Cryptography:
(Proc Symm) (where ¢ domE) Ufn(e9)
EFM:Un EHFN:SharedKey(T) E,xTHP:es
E - decrypt M is {xT}n;P: es

(Proc Asymm) (where ¢ dom(E) Ufn(es))
EFM:Un EFN:Decrypt Key(T) E,xTHP:es

E - decrypt M is {x:T[}n-1;P: €s

Rules for Begins and Ends:

(Proc Begin) (Proc End)
EFL: T EFP:es EFL: T EFP:es

EtF beginL;P:es—[endL] EFendL;P:es+endL]

Rules for Challenges and Responses:

(Proc Cast) (wherg ¢ dom(E) Ufn(fs))
EF M : ¢ Challenge e E,x:{ Response exFP: fs

E b cast M is (X:¢ Response exR);P: ex +ex+ fs

21

(Proc Check)
EFM: /¢ Challengees EFN:/Responseek EFP:fs

E check Mis N;P: (fs— (e +ex)) + [check ¢ M]

(Proc Challenge) (where¢ dom(E) Ufn(es— [check ¢ X]))
E,x:¢ Challenge fsi-P:es

E - new (x:¢ Challenge fs); P : es— [check ¢ X]

Rules for Witness Testimony and Trusted-Casting:

(Proc Witness) (Proc Trust) (wherex ¢ domE) Ufn(es)
EFM:T EFP:est+[trustM:T,... trustM:T] EFM:Top E,XTHP:es
E F witnessM:T;P: es EFtrustMis (X:T);P: es+ [trust M:T|

The type-and-effect rules for proces$es P : esrely on some multiset algebra, which we define here for
unordered sequences, .. .,X,| for some grammar ranged over ky

Multiset algebra xs+ xs, Xs< XS, XS— XS, X € X§, XSV XS

[le"'axm] + [Y1a~~7Yn] = {le"'axm’ylw"ayn]
xs< xs if and only if xs+ xs’ = xs for somexs’
xs—x< = the smallesks’ such thas < x&’ + xg
x € xsif and only if [x] < xs

xsv xd = the smallesks’ such thaks < x<’ andxd < x</

References

[ABO1] M. Abadi and B. Blanchet. Secrecy types for asymmetric communicatiofoundations of
Software Science and Computation Structures (FoSSaCS, 200ime 2030 of ectures Notes
in Computer Scienggages 25—-41. Springer, 2001.

[ABO2] M. Abadi and B. Blanchet. Analyzing security protocols with secrecy types and logic pro-
grams. In29th ACM Symposium on Principles of Programming Languages (PORL20Dp.
To appear.

[Aba99] M. Abadi. Secrecy by typing in security protocolslournal of the ACM 46(5):749-786,
September 1999.

[AG99] M. Abadi and A.D. Gordon. A calculus for cryptographic protocols: The spi calcuhier-
mation and Computatiqri48:1-70, 1999.

[BANB9] M. Burrows, M. Abadi, and R.M. Needham. A logic of authenticatidProceedings of the
Royal Society of London, 426:233-271, 1989.

[Bol96] D. Bolignano. An approach to the formal verification of cryptographic protocol$hird ACM
Conference on Computer and Communications Secyéges 106—-118, 1996.

[CG89] N. Carriero and D. Gelernter. Linda in contex@ommunications of the ACN82(4):444-458,
1989.

[CJI97] J. Clark and J. Jacob. A survey of authentication protocol literature. Unpublished manuscript,
1997.

22

[DMPO0O1] Nancy Durgin, John C. Mitchell, and Dusko Pavlovic. A compositional logic for protocol
correctness. 1d4th IEEE Computer Security Foundations WorkshHeiE Computer Society
Press, 2001.

[DY83] D. Dolev and A.C. Yao. On the security of public key protocdISEE Transactions on Infor-
mation TheoryIT-29(2):198-208, 1983.

[GFO0] J.D. Guttman and F.J. Thayealbrega. Authentication tests. 2000 IEEE Computer Society
Symposium on Research in Security and Priy2600.

[GJO01la] A.D. Gordon and A. Jeffrey. Authenticity by typing for security protocols14th IEEE Com-
puter Security Foundations Workshgpages 145-159. IEEE Computer Society Press, 2001.
An extended version appears as Microsoft Research Technical Report MSR—TR-2001-49, May
2001.

[GJO1b] A.D. Gordon and A. Jeffrey. The Cryptyc Project. itp://cryptyc.cs.depaul.eduZ001.

[GJ01c] A.D. Gordon and A. Jeffrey. Typing correspondence assertions for communication protocols.
In Mathematical Foundations of Programming SemanticsBI@ctronic Notes in Theoretical
Computer Science. Elsevier, 2001. To appear. Pages 99-120 of the Preliminary Proceedings,
BRICS Notes Series NS-01-2, BRICS, University of Aarhus, May 2001. An extended version
appears as Microsoft Research Technical Report MSR—-TR-2001-48, May 2001.

[HR98] N. Heintze and J.G. Riecke. The SLam calculus: Programming with secrecy and integrity. In
25th ACM Symposium on Principles of Programming Languages (PORLp@a8)es 365-377,
1998.

[HSO00Q] J. Heather and S. Schneider. Towards automatic verification of authentication protocols on an
unbounded network. Ib3th Computer Security Foundations Workshogges 132-143. IEEE
Computer Society Press, 2000.

[Low95] G. Lowe. A hierarchy of authentication specifications10th Computer Security Foundations
Workshoppages 31-43. IEEE Computer Society Press, 1995.

[Low96] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using CSP and FDR.
In T. Margaria and B. Steffen, editor§pols and Algorithms for the Construction and Analysis
of Systems (TACAS’96)olume 1055 of_ectures Notes in Computer Scienpages 147-166.
Springer, 1996.

[MCJ97] W. Marrero, E.M. Clarke, and S. Jha. Model checking for security protocolsDIMACS
Workshop on Design and Formal Verification of Security Protqct®®7. Preliminary version
appears as Technical Report TR-CMU-CS-97-139, Carnegie Mellon University, May 1997.

[Mil99] R. Milner. Communicating and Mobile Systems: t€alculus Cambridge University Press,
1999.

[NS78] R.M. Needham and M.D. Schroeder. Using encryption for authentication in large networks of
computersCommunications of the ACN1(12):993-999, 1978.

[@P9T7] P. @rbaek and J. Palsberg. Trust in Ahealculus.Journal of Functional Programming(2):75—
85, 1997.

[Pau98] L.C. Paulson. The inductive approach to verifying cryptographic protocldarnal of Com-
puter Security6:85-128, 1998.

[Sch98] S.A. Schneider. Verifying authentication protocols in CSEBEE Transactions on Software
Engineering 24(9), September 1998.

[Son99] D.X. Song. Athena: a new efficient automatic checker for security protocol analysithn
Computer Security Foundations WorkshtipEE Computer Society Press, 1999.

[STFWO01] U. Shankar, K. Talwar, J.S. Foster, and D. Wagner. Detecting format string vulnerabilities with
type qualifiers. InMLOth USENIX Security Symposiu2®01.

23

[THG98] F.J. Thayer Bbrega, J.C. Herzog, and J.D. Guttman. Strand spaces: Why is a security protocol
correct? In1998 IEEE Computer Society Symposium on Research in Security and Privacy
1998.

[WCS96] L. Wall, T. Christiansen, and R.L. Schwart®2rogramming Perl O’Reilly Associates, 2nd
edition, 1996.

[WL93] T.Y.C.Wooand S.S. Lam. A semantic model for authentication protocolEH&E Symposium
on Security and Privagypages 178-194, 1993.

24

	Motivation
	Background
	Our Three Main Contributions
	Remainder of this Paper

	Specifying Authenticity Properties in the Spi-Calculus (Review)
	A Spi-Calculus with Correspondence Assertions
	Specifying an Example

	Authenticity by Typing for Asymmetric Cryptographic Protocols
	Types for Messages
	The Subtyping Relation
	Effects for Processes
	Typing the Example

	Conclusions and Further Work
	Other Examples
	Abbreviations Used in Examples
	Authentication using certificates
	Needham--Schroeder--Lowe

	Operational Semantics and Safety
	Full Definition of the Type System

