
NetSTAT: A Network-based Intrusion Detection Approach

Giovanni Vigna and Richard A. Kemmerer
Reliable Software Group

Department of Computer Science
University of California Santa Barbara
[vigna,kemm]@cs.ucsb.edu

Abstract

Network-based attacks have become common and so-
phisticated. For this reason, intrusion detection systems are
now shifting their focus from the hosts and their operating
systems to the network itself. Network-based intrusion de-
tection is challenging because network auditing produces
large amounts of data, and different events related to a sin-
gle intrusion may be visible in different places on the net-
work. This paper presents NetSTAT, a new approach to net-
work intrusion detection. By using a formal model of both
the network and the attacks, NetSTAT is able to determine
which network events have to be monitored and where they
can be monitored.
Keywords: Security, Intrusion detection, Networks.

1. Introduction

Network intrusions have become common and sophisti-
cated. Attacking a system through a network provides the
attacker with advantages that are not available when attack-
ing a host. For example, network attacks often do not re-
quire any previous access to the attacked system and may
be totally invisible from the audit trail produced by the at-
tacked host. In addition, the use of firewalls to protect en-
terprise networks from the external Internet has often sup-
ported the design of open, efficient, andinsecureinternal
networks. These networks are open to insider attacks. Al-
though networks give the attacker additional advantages,
networks, by their very nature, have some characteristics
that intrusion detection systems (IDSs) can take advantage
of. For instance, networks can provide detailed information
about computer system activity, and they can provide this
information regardless of the installed operating systems or
the auditing modules available on the hosts. In addition,
network auditing can be performed in a nonintrusive way,
without notching the performance of either the monitored
hosts or the network itself, and network audit stream gener-

ation cannot be turned off. Finally, network traffic has more
precise and timely timing information than the audit records
produced by the standard OS auditing facilities.

Network-oriented intrusion detection systems can be
roughly divided into distributed IDSs and network-based
IDSs. A survey of network-oriented IDSs is given in [7].
Distributed IDSs are an extension of the original, single-
host intrusion detection approach to multiple hosts. Dis-
tributed IDSs perform intrusion detection analysis over au-
dit streams collected from several sources, which allows
one to identify attacks spanning several systems. Exam-
ples of this kind of systems are IDES [4] and ISOA [12].
Network-based IDSs take a different perspective and move
their focus from the computational infrastructure (the hosts
and their operating systems) to the communication infras-
tructure (the network and its protocols). These systems use
the network as the source of security-relevant information.
Examples of this kind of systems are NSM [2], DIDS [10],
and EMERALD [9].

NetSTAT is a tool aimed at real-time network-based in-
trusion detection. The NetSTAT approach extends the state
transition analysis technique (STAT) [3] to network-based
intrusion detection in order to represent attack scenarios in
a networked environment. However, unlike other network-
based intrusion detection systems that monitor a single sub-
network for patterns representing malicious activity, Net-
STAT is oriented towards the detection of attacks in com-
plex networks composed of several subnetworks. In this
setting, the messages that are produced during an intrusion
attempt may be recognized as malicious only in particular
subparts of the network, depending on the network topol-
ogy and service configuration. As a consequence, intrusions
cannot be detected by a single component, and a distributed
approach is needed.

Network-level monitoring and distribution pose some
new requirements on intrusion detection systems:

� Networks produce a large amount of data (events).
Therefore, a network-based intrusion detection system
(NIDS) should provide mechanisms that allow the Net-

work Security Officer (NSO) to customize event “col-
lectors” so that they listen for only the relevant events.

� Relevant events are usually visible in only some parts
of the network (especially in the case of large net-
works). Therefore, a NIDS should provide some
means of determining where to look for events.

� A NIDS should generate a minimum amount of traf-
fic over the network. Therefore, there should be some
local processing of event data.

� A NIDS needs to be scalable. At a minimum, “local”
NIDS should interoperate with other NIDSs (possibly
in a hierarchical structure).

� For maximum effectiveness, NIDSs should be able to
interoperate with host-based IDSs so that misuse pat-
terns include both network events and operating sys-
tem events.

The NetSTAT tool presented in this paper addresses the
aforementioned issues. The NetSTAT approach models net-
work attacks as state transition diagrams, where states and
transitions are characterized in a networked environment.
The network environment itself is described by using a for-
mal model based on hypergraphs, which are graphs where
edges can connect more than two nodes [1]. By using a for-
mal representation of both the intrusions and the network,
NetSTAT is able to address the first three issues listed above.
The analysis of the attack scenarios and the network formal
descriptions determines which events have to be monitored
to detect an intrusion and where the monitors need to be
placed. In addition, by characterizing in a formal way both
theconfigurationand thestateof a network it is possible to
provide the components responsible for intrusion detection
with all the information they need to perform their task au-
tonomously with minimal interaction and traffic overhead.
This can be achieved because network-based state transition
diagrams contain references to the network topology and
service configuration. Thus, it is possible to extract from a
central database only the information that is needed for the
detection of the particular modeled intrusions. Moreover,
attack scenarios use assertions to characterize the state of
the network. Thus, it is possible to automatically determine
the data to be collected to support intrusion analysis and
to instruct the detection components to look only for the
events that are involved in run-time attack detection. This
solution allows for a lightweight, scalable implementation
of the probes and focused filtering of the network event
stream, delivering more reliable, efficient, and autonomous
components.

In order to address the remaining issues, namely scala-
bility and integration with other IDS, NetSTAT is designed

to be interoperable. A NetSTAT instance protecting a net-
work can interact with other NetSTAT instances in an inte-
grated way and it can interact with other IDS. Although the
interoperability of NetSTAT is an important and interesting
issue, due to space limitations it will not be discussed in this
paper.

The remainder of this paper is structured as follows. Sec-
tion 2 presents the NetSTAT architecture. Section 3 de-
scribes NetSTAT at work on an example attack scenario.
Finally, Section 4 draws some conclusions and outlines fu-
ture work.

2. NetSTAT Architecture

NetSTAT is a distributed application composed of the
following components: the network fact base, the state tran-
sition scenario database, a collection of general purpose
probes, and the analyzer. A high level view of the Net-
STAT architecture is given in Figure 1. In the following
subsections the design of the main NetSTAT components is
presented.

2.1. Network Fact Base

The network fact base component stores and manages
the security relevant information about a network. The fact
base is a stand-alone application that is used by the Network
Security Officer to construct, insert, and browse the data
about the network being protected. It contains information
about the network topology and the network services pro-
vided.

The network topology is a description of the constituent
components of the network and how they are connected.
The network model underlying the NetSTAT tool usesin-
terfaces, hosts, andlinks as primitive elements. A network
is represented as a hypergraph on the set of interfaces [11].
In this model, interfaces are nodes while hosts and links are
edges; that is, hosts and links are modeled as sets of in-
terfaces. This is an original approach that has a number of
advantages. Because the model is formal, it provides a well-
defined semantics and supports reasoning and automation.
Another advantage is that this formalization allows one to
model network links based on a shared bus (e.g., Ethernet)
in a natural way, by representing the shared bus as a set con-
taining all the interfaces that can access the communication
bus. In this way, it is possible to precisely model the con-
cept of network traffic eavesdropping, which is the basis for
a number of network-related attacks. In addition, topolog-
ical properties can be described in an expressive way since
hosts and links are treated uniformly as edges of the hyper-
graph.

The network model is not limited to the description of
the connection of elements. Each element of the model has

��

����

��
��
��
��

probe

probe

probe

Network fact base

Analyzer

Scenario database

Security Officer
Network

Internet

gateway

gateway

router

Figure 1. NetSTAT architecture.

some associated information. For example, hosts have sev-
eral attributes that characterize the type of hardware and op-
erating system software installed. The reader should note
that in this model “host” is a rather general concept. More
specifically, a host is a device that has one or more network
interfaces that can be the (explicit) source and/or destination
of network traffic. For example, by this definition, gateways
and printers are considered to be hosts. Links are character-
ized by their type (e.g., Ethernet). Interfaces are charac-
terized by their type and by their corresponding link- and
network-level addresses. This information is represented in
the model by means of functions that associate the network
elements with the related information.

The network services portion of the network fact base
contains a description of the services provided by the hosts
of a network. Examples of these services are the Net-
work File System (NFS), the Network Information System
(NIS), TELNET, FTP, “r” services, etc. The fact base con-
tains a characterization of each service in terms of the net-
work/transport protocol(s) used, the access model (e.g., re-
quest/reply), the type of authentication (e.g., address-based,
password-based, token-based, or certificate-based), and the
level of traffic protection (e.g., encrypted or not). In addi-
tion, the network fact base contains information about how
services are deployed, that is how services are instantiated
and accessed over the network.

Figure 2 shows an example network. In the hypergraph
describing the network, interfaces are represented as black
dots, hosts are represented as circles around the correspond-
ing interfaces, and links are represented as lines connect-

ing the interfaces. The sample network is composed of five
links, namelyL1, L2, L3, L4, andL5, and twelve hosts.
Hereinafter, it is assumed that each interface has a single
associated IP address, for example interfacei7 is associated
with IP addressa7. The outside network is modeled as a
composite host(the double circle in the figure) containing
all the interfaces and corresponding addresses not in use
elsewhere in the modeled network. As far as services are
concerned, hostfellini is an NFS server exporting file
systems/home and/fs to kubrick andwood. In ad-
dition, fellini is a TELNET server for everybody. Host
jackson exports anrlogin service to hostscarpenter
andlang .

The Network Security Officer can access the network
fact base through a graphic interface. The interface pro-
vides functions to design the network topology and to define
the service infrastructure, as well as to browse the network-
related information. Note that while the model is a complex,
formal system, the interface used to manage the network
fact base is intuitive and user-friendly.

NetSTAT is intended to represent large networks con-
taining a large number of hosts that provide diverse ser-
vices. For this reason, as an alternative to the graphic in-
terface, all the information can also be inserted and re-
trieved by using ASCII-based tools. As a result, script-
ing languages like Perl or the Bourne Shell can be used
to automate the retrieval of information from the network
hosts, by querying the network information services (e.g.,
yellow pages, DNS) or by examining the configuration files
of the involved hosts (e.g.,inetd.conf on UNIX sys-

landis

rlogin: carpenter, lang

carpenter

bergman

i6

i8

i10i11

i9

i9

wood

wilder

jackson

lang

chaplin

hitchcock

i1
i

i1

i2

i3

i3

NFS: /home kubrick, wood
 /fs kubrick, wood

TELNET: *

Outside Internet

L4

L5

fellini

i4

kubrick

i5

L1

L2

L3

3

2
i31

2

1

1

2

i7

0

Figure 2. An example network.

tems). Large networks by their very nature are also subject
to changes. Thus, the network fact base component will
provide procedures that allow the Network Security Officer
to verify the internal representation of the network against
the actually deployed infrastructure in order to identify in-
consistencies and incomplete or outdated information.

2.2. State Transition Scenario Database

The state transition scenario database is the component
that manages the set of state transition representations of the
intrusion scenarios to be detected. The state transition sce-
nario database can be executed as a stand-alone application
that allows the Network Security Officer to browse and edit
state transition diagrams using a friendly graphic interface.

The state transition analysis technique was originally de-
veloped to model host-based intrusions [3]. It describes
computer penetrations as sequences of actions that an at-
tacker performs to compromise the security of a computer
system. Attacks are (graphically) described by usingstate
transition diagrams. Statesrepresent snapshots of a sys-
tem’s volatile, semi-permanent, and permanent memory lo-
cations. A description of an attack has a “safe” starting
state, zero or more intermediate states, and (at least) one
“compromised” ending state. States are characterized by
means ofassertions, which are functions with zero or more
arguments returning boolean values. Typically, these as-
sertions describe some aspects of the security state of the
system, such as file ownership, user identification, or user
authorization.Transitionsbetween states are indicated by
signature actionsthat represent the actions that, if omitted

from the execution of an attack scenario, would prevent the
attack from completing successfully. Typical examples of
host-based signature actions include reading, writing, and
executing files. For a complete description of the state tran-
sition analysis technique see [8]. For NetSTAT the origi-
nal STAT technique has been applied to computer networks,
and the concepts of state, assertions, and signature actions
have been characterized in a networked environment.

States and Assertions

In network-based state transition analysis the state includes
the currently active connections (for connection oriented
services), the state of interactions (for connectionless ser-
vices), and the values of the network tables (e.g., routing ta-
bles, DNS mappings, ARP caches, etc). For instance, both
an open connection and a mounted file system are part of the
state of the network. A pending DNS request that has not
yet been answered is also part of the state, such as the map-
ping between IP address128.111.12.13 and the name
hitchcock . For the application of state transition analy-
sis to networks the original state transition analysis concept
of assertion has been extended to include bothstatic asser-
tionsanddynamic assertions.

Static assertions are assertions on a network that can be
verified by examining the network fact base; that is, by ex-
amining its topology and the current service configuration.
For example, the following assertion:

service s in server.services|
s.name == "www" and
s.application.name == "CERN httpd";

identifies a services in the set of services provided by
host server such that the name of the service iswww
and the application providing the service is the CERN http
daemon1. As another example, the following assertion:

Interface i in gateway.interfaces|
i.link.type == "Ethernet";

denotes an interface of a host, saygateway , that is con-
nected to an Ethernet link.

These assertions are used to customize state transition
representations for particular scenarios (e.g., a particular
server and its clients). In practice, they are used to deter-
mine the amount of knowledge about the network fact base
that each probe must be provided with during configuration
procedures.

Dynamic assertions can be verified only by exam-
ining the current state of the network. One ex-
amples isNFSMounted(filesys, server, clie-
nt) , which returns true if the specified file sys-
tem exported by server is currently mounted by
client . Another example isConnectionEstabli-
shed(addr1, port1, addr2, port2) , which re-
turns true if there is an established virtual circuit between
the specified addresses and ports. These assertions are used
to determine what relevant network state events should be
monitored by a network probe.

Transitions and Signature Actions

In NetSTAT, signature actions are expressed by leveraging
off of anevent model. In this model events are sequences of
messages exchanged over a network.

The basic event is thelink-level message, or messagefor
short. A link-level message is a string of bits that appears
on a network link at a specified time. The message is ex-
changed between two directly connected interfaces. For ex-
ample the signature action:

Message m {i_x,i_y}|
m.length > 512;

represents a link-level message exchanged between inter-
facesi_x andi_y whose size is greater than 512 bytes.

Basic events can be abstracted or composed to represent
higher-level actions. For example, IP datagrams that are
transported from one interface to another in an IP network
are modeled as sequences of link-level messages that rep-
resent the intermediate steps in the delivery process. Note
that the only directly observable events are link-level mes-
sages appearing on specific links. Therefore, the IP data-
gram “event” is observable by looking at the payload of one
of the link-level messages used to deliver the datagram. For
example, the signature action:

1The only (possibly) nonstandard notation used in the assertions is the
use of “| ” for “such that”.

[IPDatagram d]{i_x,i_y}|
d.options.sourceRoute == true;

represents an IP datagram that is delivered from interface
i_x to interfacei_y and that has the source route option
enabled. This event can be observed by looking at the link-
level messages used in datagram delivery along the path(s)
from i_x to i_y . It is also possible to write signature ac-
tions that refer to specific link-level messages in the context
of datagram delivery. For example, the signature action:

Message m in [IPDatagram d]{i_x,i_y}|
m.dst != i_y;

represents a link-level message used during the delivery of
an IP datagram such that the link-level destination address
is not the final destination interface (i.e., the message is not
the last one in the delivery process).

Events representing single UDP datagrams or TCP seg-
ments are represented by specifying encapsulation in an IP
datagram. For example, the signature action:

[IPDatagram d [TCPSegment t]]{i_x,i_y}|
d.dst == a_y and
t.dst == 23;

denotes the sequence of messages used to deliver a TCP
segment encapsulated into an IP datagram such that the des-
tination IP address isa_y and the destination port is 23.

TCP virtual circuits are higher-level, composite events.
A virtual circuit is identified by the tuple(source IP address,
destination IP address, source TCP port, destination TCP
port) and is composed of two sequences of TCP segments
exchanged between two interfaces. Each of these two se-
quences defines a byte stream. The byte stream is obtained
by assembling the payloads of the segments in the corre-
sponding sequence, following the rules of the TCP protocol
(e.g., sequencing, retransmission, etc.). The streams are de-
noted bystreamToClient andstreamToServer .

For example, the signature action:

TCPSegment t in
[VirtualCircuit c]{i_x,i_y}|

c.dstIP == a_y and
c.dstPort == 80 and
t.syn == true;

denotes a segment that has theSYN bit set and belongs to a
virtual circuit established between interfacesi_x andi_y
and that has destination IP addressa_y and destination port
80.

Events at the application level can be either encapsulated
in UDP datagrams or can be sent through TCP virtual cir-
cuits. In the former case, the application-level event can be
referenced by indicating the corresponding datagram and
specifying the encapsulation. For example, the signature
action:

[IPDatagram d
[UDPDatagram u

[RPC r]]]{i_x,i_y}|
d.dst == a_y and
u.dst == 2049 and
r.type == CALL and
r.proc == MKDIR;

represents an RPC request encapsulated in a UDP datagram
representing an NFS command.

In the TCP virtual circuit case, application-level events
are extracted by parsing the stream of bytes exchanged over
the virtual circuit. The type of application event determines
the protocol used to interpret the stream. For example, the
following signature action:

[c.streamToServer [HTTPRequest r]]|
r.method == "GET";

is an HTTP GET request that is transmitted over a TCP
virtual circuit (defined somewhere else asc), through the
stream directed to the server side.

2.3. Probes

The probes are the active intrusion detection compo-
nents. They monitor the network traffic in specific parts
of the network, following the configuration they receive at
startup from the analyzer, which is described in the follow-
ing section. Probes are general purpose intrusion detection
systems that can be configured remotely and dynamically
following any changes in the modeled attacks or in the im-
plemented security policy. Each probe has the structure
shown in Figure 3.

Thefilter module is responsible for filtering the network
message stream. Its main task is to select those messages
that contribute to signature actions or dynamic assertions
used in a state transition scenario from among the huge
number of messages transmitted over a network link. The
filter module may be configured remotely by the analyzer.
Its configuration can also be updated at run-time to reflect
new attack scenarios, or changes in the network configura-
tion. The performance of the filter is of paramount impor-
tance, because it has strict real time constraints for the pro-
cess of selecting the events that have to be delivered to the
inference engine. In the current prototype the filter is im-
plemented using the BSD Packet Filter [5] and a modified
version of thetcpdumpapplication [6].

The inference engineis the actual intrusion detecting
system. This module is initialized by the analyzer with a
set of state transition information representing attack sce-
narios (or parts thereof). These attack scenarios are codified
in a structure called the inference engine table. At any point
during the probe execution, this table consists of snapshots

of penetration scenario instances (instantiations), which are
not yet completed. Each entry contains information about
the history of the instantiation, such as the address and ser-
vices involved, the time of the attack, and so on. On the ba-
sis of the current active attacks, the event stream provided
by the filter is interpreted looking for further evidence of
an occurring attack. Evolution of the inference engine state
is monitored by thedecision engine, which is responsible
for taking actions based on the outcomes of the inference
engine analysis. Some possible actions include informing
the Network Security Officer of successful or failed intru-
sion attempts, alerting the Network Security Officer during
the first phases of particularly critical scenarios, suggesting
possible actions that can preempt a state transition leading
to a compromised state, or playing an active role in protect-
ing the network (e.g., by injecting modified datagrams that
reset network connections.)

Probes are autonomous intrusion detection components.
If a single probe is able to detect all the steps involved
in an attack then the probe does not need to interact with
any other probe or with the analyzer. Interaction is needed
whenever different parts of an intrusion can be detected only
by probes monitoring different subparts of the network. In
this case, it is the analyzer’s task to decompose an intrusion
scenario into subscenarios such that each can be detected
by a single probe. The decision engine procedures associ-
ated with these scenarios are configured so that when part
of a scenario is detected, an event is sent to the probes that
are in charge of detecting the other parts of the overall at-
tack. This simple form of forward chaining allows one to
detect attacks that involve different (possibly distant) sub-
networks.

2.4. Analyzer

The analyzer is a stand-alone application used by the
Network Security Officer to analyze and instrument a net-
work for the detection of a number of selected attacks. It
takes as input the network fact base and a state transition
scenario database and determines:

� which events have to be monitored; only the events
that are relevant to the modeled intrusions must be de-
tected;

� where the events need to be monitored;

� what information about the topology of the network is
required to perform detection;

� what information must be maintained about the state
of the network in order to be able to verify state asser-
tions.

Thus, the analyzer component acts as a probe generator
that customizes a number of general-purpose probes using

Network interface

Filter

network link

Inference Engine

Decision Engine

Probe

Figure 3. Probe architecture.

an automated process based on a formal description of the
network to be protected and of the attacks to be detected.
This information takes the form of a set of probe configura-
tions. Each probe configuration specifies the positioning of
a probe, the set of events to be monitored, and a description
of the intrusions that the probe should detect. These intru-
sion scenarios are customized for the particular subnetwork
the probe is monitoring, which focuses the scanning and re-
duces the overhead.

The analyzer is composed of several modules (see Fig-
ure 4). The network fact base and the state transition sce-
nario database components are used as internal modules for
the selection and presentation of a particular network and
a selected set of state transition scenarios. Theanalysis en-
gineuses the data contained in the network fact base and the
state transition scenario database to customize the selected
attacks for the particular network under exam. For example,
if one scenario describes an attack that exploits the trust re-
lationship between a server and a client, that scenario will
be customized for every client/server pair that satisfies the
specified trust relationship2. This customization allows one
to instantiate an attack in a particular context. Using the de-
scription of the topology of that context it is then possible
to identify what the sufficient conditions for detection are
or if a particular attack simply cannot be detected given the
current network configuration.

Once the attack scenarios contained in the state transi-
tion scenario database have been customized over the given
network, another module, called theconfiguration builder,
translates the results of the analysis engine to produce the
configurations to be sent to the different probes. Each con-
figuration contains a filter configuration, a set of state tran-

2Thus, state assertions are treated as if they were universally quantified.

sition information, and the corresponding decision tables to
customize the probe’s decision engine.

3. Example

The architecture of NetSTAT supports a well-defined
configuration and deployment process. Firstly the Network
Security Officer builds a database of attack scenarios. This
database may include pre-modeled well-known scenarios or
may be extended by the Network Security Officer follow-
ing his/her perception of what an attack is and conforming
to the local security policy. The attack scenario database
is created and maintained using the state transition scenario
database as a stand-alone application. Next, the Network
Security Officer builds a network fact base describing the
network to be protected. This task can be achieved by a
combination of methods ranging from manual data intro-
duction to automated information retrieval. This operation
is performed by using the network fact base as a stand-alone
application. In the next phase, the Network Security Offi-
cer invokes the analyzer. Using the integrated network fact
base and state transition scenario database modules the Net-
work Security Officer selects a particular network descrip-
tion and a set of scenarios that have to be detected. Again,
this choice is dictated by the particular level of security that
has to be achieved and by the network security policy. The
Network Security Officer then starts the analysis and cus-
tomization process. This process will be mostly automated,
but in some circumstances it may require some interaction
with the Network Security Officer, for example in order to
manage situations where some attack scenarios cannot be
detected. When the analysis is completed, the probe con-
figurations will be created and sent to the probes installed

��

����

��
��
��
��

Scenario databaseNetwork fact base

Analysis engine

Configuration builder Filter config State/transition information Decision tables

Filter config State/transition information Decision tables

Filter config State/transition information Decision tables

Filter config State/transition information Decision tables

analysis results

Analyzer

Probe configurations

Figure 4. Analyzer architecture.

across the network.
The example attack considered is an active UDP spoof-

ing attack. In this scenario an attacker tries to access a UDP-
based service exported by a server by pretending to be one
of its trusted clients, that is, by sending a forged UDP-over-
IP datagram that contains the IP address of one of the autho-
rized clients as the source address. The receiver of a spoofed
datagram is usually not able to detect the attack. For this
example, consider the network presented in Figure 2 and
assume that hostlang is attacking hostfellini by pro-
viding an NFS request that pretends to come fromwood,
who is a trusted, authorized client. Hostfellini re-
ceives the request encapsulated in a link-level message from
chaplin ’s interfacei33 to fellini ’s interfacei4. Host
fellini has no means to distinguish this message from
the final link-level message used to deliver a legitimate re-
quest coming fromwood. Therefore,fellini cannot de-
termine if the datagram is a spoofed one. The spoofing can
be detected, however, by examining the message on link
L2. In this case, since the link-level message comes from
bergman ’s interfacei91 while it should come fromwood’s
interfacei7, the datagram can be recognized as spoofed. In
general, if one considers a single link-level message that en-
capsulates a UDP-over-IP datagram, the datagram may be
considered spoofed if there is no path between the interface
corresponding to the datagram source address and the link-
level message source interface in the network obtained by
removing the link-level message source interface from the
corresponding link.

This attack scenario is described in Figure 5 using a state
transition diagram. The scenario assumes that two networks
have been defined,Network andProtectedNetwork .
Network is a reference to the network modeled in the fact
base;ProtectedNetwork is a subnetwork that contains
the hosts that must be protected against the attack.

The starting state (S1) is characterized by assertions that

define the hosts, interfaces, addresses, and services involved
in the attack. The first assertion states that the attacked host
victim belongs to the protected network. The second as-
sertion states that there is a services in the set of services
provided byvictim such that the transport protocol used
is UDP, and service authentication is based on the IP ad-
dress of the client. The third assertion states thata_v is
one of the IP addresses where the service is available. The
fourth assertion says thata_t is one of the addresses that
the service considers as “trusted”. The following assertions
characterize the attacker. In particular, the fifth assertion
states that there exists a hostattacker that is different
from victim and that doesn’t have the trusted IP address.
The sixth assertion states thati is one of theattacker ’s
interfaces.

The signature action is a spoofed service request. That
is, a UDP datagram that pretends to come from one of the
trusted addresses, although it did not originate from the
corresponding interface. Actually the signature action is a
link-level messagem that belongs to the sequence of mes-
sages used to deliver an IP datagram from interfacei to the
interface associated with the address of the attacked host.
The IP datagram enclosed in the message has source ad-
dressa_t and destination addressa_v . The IP datagram
encloses a UDP datagram, whose destination port is the
port used by services . In addition, the message is such
that, if one considers the network obtained by removing
the message source interface from the corresponding link
(i.e., Network.detachFromLink(m.src)), there is
no path between the interface corresponding to the data-
gram IP source address and the link-level message source
interface. For example, consider a link-level message ex-
changed betweenbergman ’s interfacei91 andchaplin ’s
interfacei32 . The message is an intermediate step in the
delivery of a UDP-over-IP datagram tofellini ; the IP
source address of the datagram iswood’s a7. Intuitively, it

S1

Service s in victim.services |

s.protocol == "UDP" and

s.authentication == "IPaddress";

2S

Message m in [IPDatagram d [UDPDatagram u]]{i, a_v.interface} |

d.src == a_t and

u.dst == s.port and

d.dst == a_v and

 not (Network.detachFromLink(m.src)).existsPath(m.src, d.src.interface);

Host victim in ProtectedNetwork.hosts;

not attacker.IPaddresses.contains(a_t);

IPAddress a_v in s.addresses;

IPAddress a_t in s.trustedAddr;

Host attacker in Network.hosts |

Interface i in attacker.interfaces;

attacker != victim and

Compromised

Figure 5. UDP spoofing attack scenario.

is clear that a message originated bywood and intended for
fellini cannot come from one ofbergman ’s interfaces,
because there is no path in the network that would require
bergman to act as a forwarder of the datagram. One way
to check for this is by removing the source interface of the
message (i91) and checking whether or not there still ex-
ists a path from the host whose IP address is the source of
the datagram (wood) to the host that contains the interface
that was removed (bergman). The second state (S2) is a
“compromised” state.

The analysis of the attack starts by identifying the possi-
ble scenarios in the context of a modeled network. Thus, the
analysis engine determines all the possible combinations of
victim host, attacked service, spoofed address, and attacker
in a particular network. A subset of the scenarios for the
network in Figure 2 is presented in Table 1. In all scenarios
fellini is the attacked host, NFS is the service exploited,
and the spoofed address can bekubrick ’s or wood’s.

The next step in the analysis is to determine where the
events associated with the signature action can be detected.
For each of these scenarios, the analysis engine generates all
the possible datagrams between the interface of the attacker
and the interface of the victim. In practice, the engine finds
all the paths between the interfaces defined by the scenario
and, for each path, generates the sequence of messages that
would be used to deliver a datagram. For each message the
predicate contained in the clause of the signature action is
applied. The messages that satisfy the predicate are candi-
dates for being part of the detection of the scenario. For ex-
ample, consider the scenario wherecarpenter is attack-
ing fellini by pretending to bewood. In this case, the

spoofed datagram is generated from interfacei11 and de-
livered through three messages tofellini ’s interfacei4.
The first message is betweencarpenter andbergman ,
the second one is betweenbergman andchaplin , and
the third one is betweenchaplin andfellini . Of these
three messages only the first two satisfy the predicate of the
signature action. Therefore, to detect this particular sce-
nario one either needs a probe onL3 looking for link-level
messages fromcarpenter ’s interfacei11 to bergman ’s
interfacei92 , or a probe onL2 looking for messages from
bergman ’s interfacei91 to chaplin ’s interfacei32 . In
both cases, the IP source address isa7, the destination IP
address isa4, and the destination UDP port is the one used
by the NFS service. By analyzing all the scenarios, one
finds that in order to detect all possible spoofing attacks it is
necessary to set up probes on linksL1, L2, andL4.

4. Conclusions and Future Work

State transition analysis has proved to be an effective
approach to host-based intrusion detection. This paper
presents a further application of the state transition anal-
ysis approach, namely to detect network-based intrusions.
The approach is based on formal models of attack scenar-
ios (state transition diagrams) and of the network itself (net-
work hypergraphs). These two models have been composed
in order to determine the configuration and positioning of
intrusion detection probes. The resulting architecture is dis-
tributed, autonomous, and highly customized towards the
target network. In this way probes are more focused and
the high volume event streams generated by networks can

victim s a_v a_t attacker i

fellini NFS a4 a5 Outside i0

fellini NFS a4 a7 Outside i0

fellini NFS a4 a5 hitchcock i11

fellini NFS a4 a7 hitchcock i11

.
fellini NFS a4 a5 lang i10

fellini NFS a4 a7 lang i10

fellini NFS a4 a5 carpenter i11

fellini NFS a4 a7 carpenter i11

Table 1. Possible scenarios for the UDP spoofing attack.

be filtered resulting in decreased overhead.
The current prototype of the NetSTAT tool allows the

Network Security Officer to define a network and the state
transition diagrams describing the attacks. A number of
sample networks have been constructed using the proto-
type network fact base component. In addition, network-
based state transition representations for different flavors of
UDP/TCP spoofing attacks, UDP race attacks, CGI-based
attacks, remote buffer overflows, and denial of service at-
tacks have been defined using the prototype state transition
scenario database component. The analyzer is in a very ini-
tial stage of development. It provides a limited,ad hocset
of analytic capabilities, mostly related to topological anal-
ysis of network hypergraphs. Currently, the analyzer is not
able to produce actual probe configurations and, although
several configurations have been generated manually using
the existing algorithms, it has not yet been tested on real
networks.

Future work will focus on completion of the first pro-
totype and on the refinement of its architecture. In addi-
tion, preparations are being made to test the prototype on
a real network, containing several interconnected subnet-
works, composed of heterogeneous hosts (PCs with Linux
and Windows NT, SPARCstations with different versions of
SunOS and Solaris, and IBM workstations with AIX).

Acknowledgments

This research was supported by the Defense Advanced
Research Projects Agency of the Department of Defense
under contract F30602-97-1-0207.

References

[1] C. Berge.Hypergraphs. North-Holland, 1989.
[2] L. T. Heberlein, G. Dias, K. Levitt, B. Mukherjee, J. Wood,

and D. Wolber. A Network Security Monitor. InProceed-

ings of the IEEE Symposium on Research in Security and
Privacy, pages 296 – 304, Oakland, CA, May 1990.

[3] K. Iglun, R. A. Kemmerer, and P. A. Porras. State Transition
Analysis: A Rule-Based Intrusion Detection System.IEEE
Transactions on Software Engineering, 21(3), March 1995.

[4] H. S. Javitz and A. Valdes. The SRI IDES Statistical
Anomaly Detector. InProceedings of the IEEE Symposium
on Security and Privacy, May 1991.

[5] S. McCanne and V. Jacobson. The BSD Packet Filter:
A New Architecture for User-level Packet Capture. In
Proceedings of the 1993 Winter USENIX Conference, San
Diego, CA, January 1993.

[6] S. McCanne, C. Leres, and V. Jacobson. Tcpdump 3.4. Doc-
umentation, 1998.

[7] B. Mukherjee, L. T. Heberlein, and K. N. Levitt. Network
Intrusion Detection.IEEE Network, pages 26–41, May/June
1994.

[8] P. Porras. STAT – A State Transition Analysis Tool for Intru-
sion Detection. Master’s thesis, Computer Science Depart-
ment, University of California, Santa Barbara, June 1992.

[9] P. Porras and P. Neumann. EMERALD: Event Monitoring
Enabling Responses to Anomalous Live Disturbances. In
Proceedings of the 1997 National Information Systems Se-
curity Conference, Baltimore, MD, October 1997.

[10] S. Snapp, J. Brentano, G. Dias, T. Goan, T. Heberlein, C. Ho,
K. Levitt, B. Mukherjee, S. Smaha, T. Grance, D. Teal, and
D. Mansur. DIDS (Distributed Intrusion Detection System)
– motivation, architecture, and an early prototype. InPro-
ceedings of the 14th National Computer Security Confer-
ence, Washington, DC, October 1991.

[11] G. Vigna. A Topological Characterization of TCP/IP Se-
curity. Technical Report TR-96.156, Politecnico di Milano,
November 1996.

[12] J. Winkler. A Unix Prototype for Intrusion and Anomaly
Detection in Secure Networks. InProceedings of the13th

National Computer Security Conference, Washington, D.C.,
October 1990.

