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Abstract 
We have developed a high-performance Network Content Analysis Platform (NCAP) 

suitable for a variety of applications requiring access to all layers of network traffic 
including the content of TCP/IP network data exchanges. NCAP is capable of operating on 
fully saturated Gigabit traffic using commodity hardware (multiprocessor Intel/Linux boxes 
with Gigabit NICs). NCAP architecture is scalable; it allows for effective utilization of 
multiple CPUs in SMP configuration by breaking up the network sniffing and analytical 
applications into several modules communicating via IPC. While very few technologies 
used in NCAP are particularly new by themselves, we believe that the architectural solution 
in general and in many details is original and produces excellent results in realistic high-
speed network environments.  The white paper describes the architecture in detail and 
provides benchmarking results and comparison with relevant components of popular open-
source solutions.  

Introduction 
Many network content analysis applications are based on a component providing effective 

and accurate reconstruction of network data exchanges. To accomplish this, the component 
should be able to capture individual packets traveling through the network with the help of the 
network interface card operating in the promiscuous mode, decode the packets uncovering the 
underlying transport layer (IP), merge fragmented packets, track the ongoing bi-directional data 
exchanges (sessions), and, for TCP sessions, reassemble both sides of each data session, making 
their entire content available for the content analysis layer. 

Such reconstruction is complicated by several factors. One of the major factors is speed: 
Modern networking equipment supports the latest Gigabit Ethernet standard, so many network 
segments operate on effective speeds reaching 700-800 Mbps or higher. To keep up with such a 
connection, the sniffing component should be extremely fast so that every packet is captured and 
there is enough time left for analysis of its content (individually or as a part of the session). 
Another limiting factor is accuracy: The sniffer, being a passive application, does not have all the 
information needed to reconstruct all traffic in all cases (to do so, it should have access to internal 
state of the communicating hosts). The situation becomes even more complicated if the sniffer 
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needs to analyze Full Duplex stream or asymmetrically routed traffic—several related network 
streams should be captured via separate NICs and analyzed as a single communication channel. 

Existing open-source and proprietary solutions for this problem fall short on many counts. 
The effective ones rely on special hardware such as IBM's PowerNP network processor; those 
that do not are too slow and inaccurate to be useful in realistic high-speed network environments. 

To solve this problem, we designed a solution (the Network Content Analysis Platform, or 
NCAP) that does not rely on any special hardware. The extensive testing performed on real and 
artificial traffic [LL99, CCTF] demonstrates that NCAP is fast enough and accurate enough to 
rival solutions based on custom hardware.  

NCAP Architecture Overview 
NCAP (Network Content Analysis Platform) provides packet sniffing, defragmentation, 

decoding, IP and TCP session tracking, reassembly and analysis of layers 2-7 at Gigabit speeds. 
In addition to these functions, it features a unified event processing backend with temporary event 
storage and event spooler. NCAP software hosted on a 2.5GHz Dual Intel Xeon box with Gigabit 
Intel NICs has enough processing speed to handle saturated Gigabit lines with 7-layer processing 
and several content analysis modules. This is possible because of maximally effective use of all 
hardware, most importantly NICs and CPUs. 

NCA Platform is designed to take full advantage of multiple CPUs, providing maximum 
scalability for sophisticated content analysis algorithms. This scalability is achieved by breaking 
the full application to multiple independent modules and connecting them via flexible IPC 
mechanisms, suitable for the given configuration. The Platform's API has the following methods 
of connecting the processing modules:  

• Inline.  The packet analyzer is compiled together with the framework to the same 
executable and takes its time share in the main packet processing cycle. This method is 
most suitable for single-processor hardware.  

• Packet-level parallel.  After being decoded and initially processed by the IP and TCP 
reassemblers, the packet is made available for further analysis to a separate process using a 
circular queue. Up to 32 external analyzers can be attached to a single queue. There is also 
an option to set up several independent queues, with round-robin packet distribution 
between them.  

• Stream-level parallel.  The TCP stream reassembler puts the reassembled stream data into 
a circular stream queue. This queue serves the programs designed to analyze the content of 
an entire client-server conversation. Up to 32 external analyzers can be connected to a 
single queue. Also, multiple queues can be configured, with round-robin distribution 
between them.  

Both inline and external Content Analysis components generate events by calling up the 
central Event Processing component via a message-based API. The Event Processing component 
runs in a separate process with regular priority; it gets events from the input queue and writes 
them to the temporary file storage. The persistent event storage is needed to withstand network 
outages with minimal information loss. 



The Event Processing component is designed to minimize the possible effect of DoS attacks 
against the sniffer itself. It reacts to a series of identical or very similar events by compressing the 
entire series into one “combined” event that stores all the information in compressed form; for 
identical events, the combined event will contain information from a single event together with 
the event count.  

 
Fig.1. NCAP Architecture 

The information collected by the Event Processor is sent to its destination (a separate event 
analysis component such as Data Mining Console) by an Event Spooling component. The Event 
Spooler keeps track of new events as they are written into a spool directory. Each new event is 
encrypted and sent to one or more destinations. The Event Spooler runs as a separate low-priority 
process. 

The rest of the white paper describes in depth the critical NCAP components: Packet Capture, 
IP Defragmenter, and TCP Session Reassembler. NCAP-based content analysis modules will be 
described in separate white papers1. 

                                                             

1 Our rule-based content analysis module is based on SNORTRAN compiler [SNORTRAN]. 
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Packet Capture Component (DirectWire) 
NCA Platform’s Packet Capture technology (DirectWire) has been developed to satisfy 

specific requirements for a Gigabit-capable network sniffer. In single-NIC half-duplex mode, 
DirectWire technology offers up to 2x speedup over conventional packet capturing methods on 
stock hardware (libpcap on a Linux/Intel box with Gigabit Intel NICs). This speedup is 
achieved by keeping time-consuming activities such as hardware interrupts, system calls and data 
copying to a minimum, thus leaving more time to packet processing. Real-life network traffic is 
heterogeneous. Usual packet size distribution, based on our experience, tends to have maximums 
at about 80 bytes and 1500 bytes. The packet rate distribution over time is highly uneven. Unlike 
the legitimate destination host, a network sniffer has no ability to negotiate packet rates according 
to its needs. Therefore, it should be designed to provide adequate buffering for the traffic being 
sniffed, thus guaranteeing an adequate processing window per each packet.  

Each hardware interrupt potentially causes a context switch, a very expensive operation on a 
modern Intel CPU. To keep interrupts to a minimum, DirectWire relies on customized Intel NIC 
drivers making full use of Intel NIC’s delayed-interrupt mode. The number of system calls is 
reduced by taking advantage of the so-called “turbo” extension to packet socket mode supported 
by latest Linux kernels (PACKET_RX_RING socket option).  

When used to their full potential, modified drivers and turbo mode provide the fastest 
possible access to the NIC’s data buffers; polling at 100% capacity causes only about 0.001 
interrupt/system call per captured packet (amortized). To deal with momentary surges in traffic, 
DirectWire allocates several megabytes for packet buffers. Large buffers also reduce packet loss 
caused by irregular delays introduced by the IP defragmenter and TCP reassembler.  

Unlike standard libpcap, DirectWire packet capture can operate in FD/SPAN modes using 
multiple NICs, providing support for full session reassembly. Packets coming from multiple NICs 
operating in promiscuous mode are interleaved by polling several packet buffers simultaneously. 
The polling strategy used by DirectWire does not introduce additional context switches or system 
calls; each buffer gets its share of attention calculated by a built-in load-balancing algorithm. 

The DirectWire component is implemented as several load-on-demand dynamic libraries. The 
“general-purpose” library processes an arbitrary number of NICs. There are also versions with 
hard-coded parameters optimized for 1(HD mode) and 2(FD mode) NICs, as they are used most 
often in network appliances. The programming API for DirectWire resembles PCAP (full 
compatibility is impractical because of functional differences). The general-purpose library 
accepts interface initialization strings with multiple interfaces (e.g., “eth1:eth3:eth5”). 

Our measurements of real traffic and simulated traffic with a TCP-oriented model for 
distribution of packet arrival times demonstrated that improvements to packet buffering and pick-
up increase the time slot for packet processing by 20% on average. On the same traffic this leads 
to a 30%-50% decrease in packet loss ratio (PLR) in the critical 0.5-1 Gbps zone, allowing the 
sensor to handle 1.5 times or more load given the same PLR cut-off and traffic saturation levels. 

The benchmarking results shown below were prepared using the data collected on the 
following hardware: Entry-level server (Intel 845GE chipset with 33Mhz/32bit PCI bus), 2.4 Ghz 
Xeon processor with 400Mhz FSB, DDR266 memory and built-in Intel PRO/1000 NICs 
(82540EM chip). The actual throughput numbers shown are based on an assumption that packets 



are 1500 bytes long; such an assumption is needed because we established that performance 
figures for both libraries used in our tests mostly depend on packets-per-second rate, not on bits-
per second. Although an average packet length in realistic saturated Gigabit traffic is usually less 
than 1500 bytes (200-500 bytes depending on a variety of factors), the average bit in a 1Gbps data 
stream is most likely to be transferred by a packet of maximal length (in our experiments, 
probability of being in a large packet was 0.7-0.9). We did not use jumbo frames in our 
benchmarks. 

No matter what assumptions one makes regarding the average packet size, the relative 
numbers remain the same. The benchmarking results only give a picture of the relative 
performance of the packet capture components; the overall performance of a complete system 
depends on the entire data processing pipeline and a multitude of other factors, including 
hardware choices.  

Three series were measured for each library using different per-packet delays to model packet 
processing: 10mks, 5mks, and 3mks.  The chart shows that DirectWire provides significant 
performance gains when the processing window decreases to 5mks and less (as network load 
increases). The 3mks window is very small, but sufficient for NCAP working in SMP mode to do 
decoding, defragmentation, TCP tracking/reassembly and offloading of the packet to one of 
several SNORTRAN-based packet processors. In the Full TCP Stream Processing mode, the 
NCAP does not need to offload individual packets, consuming even less processor time. 
 

Packet Loss vs. Network Load (1500 byte packets)
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Fig.2. DirectWire vs. libpcap (see Appendix for actual numbers).  
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IP Defragmenter Component (FSS Defrag) 
 

NCAP’s IP defragmenter has been developed from the ground-up to satisfy specific 
requirements for a network sniffer. Multi-purpose IP defragmenters have been designed under the 
assumption that the traffic is legal and that fragmentation is rare. A network sniffer serving as a 
base for a packet inspection application has to work under heavy loads and be stable in the 
presence of DoS attacks. In addition to providing fast and robust packet reassembly, it has to 
detect and react to illegal fragments as soon as they arrive. This guarantees that the packet 
inspection application has low reaction latency and can withstand attacks specially designed to 
bring down ‘standard’ IP stacks. The IP Defragmenter for a network sniffer should also provide 
the following configurable options: minimum fragment size, maximum number of fragments per 
packet, maximum reassembled packet size and packet reassembly timeout. The IP Defragmenter 
should perform equally well on any fragment order.  

To satisfy these goals, we developed a defragmenter with low per-fragment overhead. 
Focusing on per-fragment, rather than on per-packet overhead, is necessary to handle DoS attacks 
flooding the network with illegal and/or randomly overlapping fragments. Minimization of per-
fragment overhead is achieved by lowering the cost of initialization/finalization phases and 
distributing the processing evenly between the fragments. As a result, invalid fragment streams 
are recognized early in the process and almost no time is spent on all the fragments following the 
first invalid one. Minimizing initialization/finalization time also had a positive effect on the 
defragmenter’s performance on very short fragments, used in some DoS attacks targeted at 
security devices. This improvement is attributed to better utilization of buffering capabilities 
provided by the NIC and a packet capture library. 

To measure the defragmenter’s performance, we developed a fragment generation utility that 
can be programmed to generate fragments of different sizes showing a wide range of invalid 
fragmentation (sizes out-of-bounds, overlap, missing fragments). Combining the real-life and 
artificially generated traffic allowed us to identify and eliminate bottlenecks in the defragmenter’s 
code and make optimal choices for internal parameters including timeouts and hash functions. 

The charts below show the results of FSS Defrag benchmarks on a single-CPU 2GHz Intel 
Xeon server with 1GB RAM. On all fragment sizes and for both valid and invalid fragments, FSS 
Defrag demonstrated throughput above 1Gbps, reaching as high as 19Gbps on large invalid 
fragments. Note that on invalid fragments, the defragmenter’s early invalid fragment detection 
pays off, leading to 6-fold performance gains. Also note that IP fragment order has no impact on 
FSS Defrag’s performance.  

For comparison, the same benchmarks were run on open-source Snort v2.0’s defragmenter 
[RO99]. Snort v2.0’s defragmenter scored consistently lower on all benchmarks (3 times slower 
on average). Low throughput on small fragments and invalid fragments is a serious bottleneck 
that may affect the ability of the whole packet inspection application to handle heavy loads and 
withstand DoS attacks on Gigabit networks.   
 



Valid fragments benchmarks
Defrag Throughput (Mbps) vs. fragments per packet
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Fig.3. FSS Defrag’s vs. Snort 2 defragmenter’s performance on valid fragments. 
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Invalid fragments benchmarks
Defrag Throughput (Mbps) vs. position of invalid fragment
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Fig.4. FSS Defrag’s vs. Snort 2 defragmenter’s performance on invalid fragments. 
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TCP Reassembler Component (FSS Reassembler) 
NCAP’s TCP reassembler tracks TCP sessions, keeps a list of information describing each 

open session, and concatenates packets belonging to a session so that the entire content of the 
client and server streams can be passed to upper levels of content inspection. Since NCAP’s job is 
to provide multi-layer reassembly and content inspection, partial solutions like “deep” packet 
inspection, handling of only one side of a full-duplex connection, or reassembling arbitrary 
regions within the data stream to improve the chances of probabilistic detectors are not adequate. 

Building a reassembler that satisfies these goals is not an easy task; we could not find any 
open-source project that includes a reassembler sophisticated enough to handle the intricacies of 
real-life packet streams. The problems faced by a packet inspector’s reassembler are quite 
different from those of TCP/IP stacks: Packets seen by a sniffer NIC in promiscuous mode do not 
come in the expected order, so traditional state diagrams are of little use; standard timeouts need 
to be adjusted due to various delays introduced by taps and routers; there is not enough 
information in the packet stream to calculate internal states of the client and server, and so on. 

A TCP stream reassembler for a packet sniffer should operate in a harsh environment of the 
modern network better than any ‘standard’ TCP/IP stack. The design should include TCP SYN 
flood protection, memory overload protection, etc. The design is further complicated by the fact 
that there are several different TCP/IP stack implementations with their own idiosyncrasies. And, 
the TCP/IP stream reassembler for a packet sniffer should be fast. 

FSS Reassembler relies on NCAP packet capture layer (DirectWire), allowing it to watch any 
number of NICs simultaneously, interleaving data taken from different network streams. This 
functionality is crucial for reliable reassembly of both client and server data in Full-Duplex TCP 
stream and/or asymmetrically routed packets, because of each stream’s dependency on the other 
for session control information. 

FSS TCP reassembler can operate in 3 modes: 

1. Session tracking only. This mode suits applications that only need to track TCP packet’s 
direction (client->server or vice versa) and validity. In SMP setting, direction information is 
made available to recipient applications via a packet-level API.  

2. Session tracking and Partial TCP stream reassembly. The initial parts of client-server 
conversations are collected in buffers limited by a configurable cutoff value. In SMP setting, 
the reassembled stream is made available to recipient applications via a stream-level API. 
This mode is designed for application logging initial segments of TCP sessions containing 
malicious packets such as Intrusion Detection systems (IDS). The default cutoff value is 8KB 
for a server part of the conversation and 8KB for the client part. 

3. Session tracking and Advanced TCP Stream reassembly. Client-server conversation is 
collected into pre-allocated buffer chains. By default, up to 1600KB of every conversation is 
collected (800KB per direction). The size parameter is configurable and may be increased as 
needed. Reassembled streams are made available to recipient applications in SMP setting. A 
special algorithm watches for ‘TCP Sequence skip’ effects usual for long TCP sessions and 
distinguishes them from malicious and out-of-window packets. This mode delivers precise 
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stream reassembly; it is designed for content scanning applications, where the reassembled 
stream is further decomposed/decoded layer-by-layer and analyzed for content. 

The FSS Reassembler’s design is a descendant of our experimental reassembler based on 
simplified state transition diagrams reminiscent of Markov Networks. In the original design, each 
socket pair was mapped to a separate finite state automaton that tracks the conversation by 
switching from state to state based on the type of the incoming packet, its sequence number, and 
its timing relative to the most recent “base point” (the previous packet or the packet 
corresponding to a key transition). Since the reassembler has to deal with out-of-place packets 
sometimes (request packet coming after the reply packet), transitions cannot rely exclusively on 
packet type. At each state, the automaton keeps several “guesses” at what the real state of 
conversation might be, and chooses the “best” one on the basis of the incoming packet. 
Whichever “guess” can better predict the appearance of the packet is taken as the “best” 
characterization of the observed state of the conversation and new “guesses” are formed for the 
next step.  

The current implementation of the FSS Reassembler is a simplified and streamlined 
modification of the original design based on extensive testing on real networks. Planning and 
transitions are hard-coded; parameters are fixed and inline-substituted to allow for code 
optimization. The resulting reassembler satisfies our requirements for robustness and quality. Its 
average throughput is 1.5-2 Gbps on normal traffic. It goes down to 250 Mbps on specially 
prepared SYN flood/DoS attacks, when the average packet length equals 80 bytes. Benchmarks 
below are run on single-CPU 2Ghz Intel Xeon box with 1GB RAM. For comparison, Snort 2.0 
stream4 engine was tested under the same conditions2. 

As the measurement results demonstrate, FSS Reassembler is fast enough to deal with fully 
saturated 1Gbps traffic. Combined with a separate packet-level inspection process running on a 
second CPU in SMP configuration or one or more separate TCP Stream decoders/analyzers, 
NCAP provides the basis for a wide range of Gigabit-capable network monitoring solutions. In 
contrast, publicly available open-source solutions like Snort’s stream4 require cheats and tricks to 
help them to keep up with Gigabit traffic on commodity hardware. In Snort 2 example, this means 
restricted default settings (client only, several well-known ports) and artificial filters such as 
‘HTTP flow control’ processor, ignoring as much as 80% of the traffic in default mode. Our 
experiments with Snort 2 settings made clear that stream4’s throughput is a real bottleneck; 
allowing more packets in just changes the way Snort drops packets from ‘predictable’ to 
‘random’. 

 

2 In reassembly tests, Snort 2.0’s TCP reassembler (stream4) does not provide functionality comparable to 
modes 2 and 3 of our reassembler. Stream4 reassembles only partial pseudo-random chunks of a TCP 
stream and performs packet-level inspection on these chunks. To provide an approximation of FSS 
reassembler functionality for throughput measurements, stream4’s ‘reinjection’ mechanism has been 
disabled. Also, stream4 reassembles only the client side of the conversation by default and does it only for 
a predefined set of ports. This configuration has also been changed to reassemble both client and server 
streams on every port. 
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 Fig.5. FSS Reassembler vs. Snort 2’s stream4 performance on normal traffic. 
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TCP Anomalies, including DOS attacks (Mbps, average 
packet size down to 80 bytes)
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 Fig.6. FSS Reassembler vs. Snort 2’s stream4 performance on DoS attacks. 
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Appendix A 
The table below shows the results of libpcap vs. DirectWire benchmark. For DirectWire, the 

relative time taken by system calls is shown together with percentage of lost packets.  

 
libpcap %lost DirectWire %lost (%syscalls) 

Mbps pkt/sec 
10mks 5mks 3mks 10 mks 5 mks 3 mks 

525 45871 0.0 0.0 0.0 0.0 (17.5) 0.0 (17.5) 0.0 (17.5) 

678 59259 0.0 0.0 0.0 0.0 (13.6) 0.0 (13.6) 0.0 (13.6) 

823 71942 0.0 0.0 0.0 0.0 (9.7) 0.0 (11.2) 0.0 (11.2) 

887 77519 0.1 0.0 0.0 0.0 (6.6) 0.0 (10.4) 0.0 (10.4) 

962 84033 9.5 0.0 0.0 0.0 (0.0) 0.0 (9.6) 0.0 (9.6) 

1048 91532 19.2 0.0 0.0 4.2 (0.0) 0.0 (8.8) 0.0 (8.8) 

1153 100755 27.6 0.0 0.0 14.9 (0.0) 0.0 (8.0) 0.0 (8.0) 

1282 112044 35.0 0.0 0.0 25.1 (0.0) 0.0 (7.2) 0.0 (7.2) 

1440 125786 42.0 3.9 0.0 33.2 (0.0) 0.0 (4.3) 0.0 (6.4) 

1647 143884 49.5 17.8 0.0 41.4 (0.0) 0.0 (0.0) 0.0 (5.6) 

1923 168067 58.6 32.0 10.7 50.5 (0.0) 14.9 (0.0) 0.0 (4.1) 

2300 201005 67.1 45.0 27.2 60.6 (0.0) 30.5 (0.0) 1.1 (0.0) 

2808 245398 74.1 57.8 43.6 68.6 (0.0) 47.6 (0.0) 21.9 (0.0) 

3722 325203 82.8 71.9 62.8 78.5 (0.0) 63.0 (0.0) 48.2 (0.0) 
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