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SECTION 1
T INTRODUCTION

This report contains the results of an investigation of
microwave propagation prediction techniques for the purpose of

'; N a, D, TR

designing and maintaining wideband microwave communication links.
The work was performed under Contract No. F19628-80-C-0106 for
RADC/EEPS, Hanscom AFB, Massachusetts.

The scope of the report includes multipath fading on line-

S, . & Ty
.

of-sight links, troposcatter signal characterization and diffrac-

e
13
"

2,

tion path calculations, all in the freciency range of 1-18 GHz.

_ The objective of the report is to determine the factors af-
= fecting wideband 1line-of-sight, troposcatter, and diffraction
microwave propagation and to develop the necessary prediction
techniques. As a result of the work performed under this con-
tract, a number of new results have been obtained.

: The background and key results are summarized in this sec-
Q tion, followed by a list of future research required to further
‘ advance the reliability of propagation prediction techniques.
j3 Section 2 contains the background in atmospheric modeling re-
N quired for the remaining part of the report. Section 3 describes
troposcatter communication, the propagation model on which the
computer program TRODIF, developed under this prograd, is based
and a number of new useful analytical results. Section 4 de-
scribes the theory of diffraction and two new computational tech-
) niques developed to overcome the limited applicability of current
@ available techniques. Section 5 develops the theory of LOS pro-
,: pagation, particularly the characterization of refractive
multipath.

..................
.....
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u 1.1  BACKGROUND
k

e This study was motivated by the increasing need for high

data rate links in a modern tactical environment. Communication

links over ranges which are longer than conventional LOS micro-
wave links, and which may reach up to the usual troposcatter path
lengths, are of interest to a number of future military applica-
tions such as netting of radars over inaccessible terrain (e.g.,
arctic), in a tactical deployment (netted radar surveillance), or
in support of mobile command elements for missile control, strike

operations, or air defense. A common feature of such links is
that they must have a high likelihood of being operational when
deployed. The proper deployment of tactical links in a given
climate and time-of-year therefore requires a much better under-
standing of the atmospheric processes underlying the observed
propagation effects.

The system availability (fraction of time that a perfor-
mance measure such as bit error rate is exceeded) of narrowband

systems depends primarily on the yearly distribution of the path
loss for the type of propagation mode. Due to the increasing
data rate requirements, and spread spectrum usage, there is a
need for modeling of channel multipath spreads, fade rates and
diversity correlation in addition to path loss because the avail-
ability of wideband systems depends strongly on these parameters.
Short- and long-term statistics of these parameters are desired,
as well as seasonal and geographical variations. A particularly
severe multipath condition has been identified, both from theory
and measurement, to occur on links with mixed propagation modes
(simultaneous troposcatter and double edge diffraction). This
effect has often been neglected in past propagation models.

Hence a major goal of this study is to provide a unified predic-
D tion model of path 1loss, multipath spread and diversity
correlation.
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When atmospheric effects are not properly taken into ac-
count, it is necessary instead to allow a considerable margin for
prediction error. The dB margin depends on the service probabil-
ity requirement, and can therefore be particularly severe for
tactical links. Including correctly the atmospheric effects on
the propagation can substantially reduce the dB margin required
for a given service probability and in a given geographical loca-
tion and time-of-year. ‘This saving in dB margin, which could be
as much as 10 dB, can then be used to improve other important
link parameters such as transmitter power requirements, path
lengths of operational over-the-horizon links, interceptability,
or ECM vulnerability.

The interest in higher frequencies is a result of spectrum
crowding at the lower microwave frequencies combined with a need
for additional bandwidth to accommodate spread spectrum waveforms
and other ECCM techniques. A side benefit of using higher fre-
quencies would be the feasibility of smaller, more mobile equip-

-ment. The analysis in this report therefore includes new propa-

gation results valid up to and beyond the 15-20 GHz range above
which rain effects will limit system availability.

The best existing LOS, diffraction, and troposcatter pre-
diction techniques (NBS, CCIR) are not capable of satisfying the
requirements of a propagation model for wideband tactical appli-
cations. The most important reason for this is that these tech-
niques offer predictions only of the path loss, not of other im-
portant parameters such as delay spread, fading rate, and diver-
sity correlations. In addition, the path loss predictions of the
existing troposcatter techniques are based on a model developed
primarily for frequencies below 1-3 GHz. At these lower frequen-
cies the propagation mechanism can be totally different from that
at higher frequencies. Typically, over-the-horizon propagation
relies on layer reflection below 1-3 GHz and turbulence scatter
above that approximate frequency range. SIGNATRON has developed

1-3
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a troposcatter model capable of improved path loss prediction as

well as multipath characterization, This model, developed for
prediction of strategic links in a previous DoD contract [Monsen
arnd Parl, 1980], forms the starting point for the model described
in Section 3.

1.2 SUMMARY OF MAJOR ACCOMPLISHMENTS
1.2.1 Troposcatter Propagation

Troposcatter systems are usually evaluated using the NBS
technique ([Rice, et al., 1967] or an updated version of it [MIL-
Handbook 417, CCIR]. The estimates are based on empirical analy-
sis of data mostly below 1 GHz,. The predictions do not agree
with the well established Kolmogorov-Obhukov turbulence scatter
theory. For the NBS model, the scattering cross-section is pro-
portional to £-1, while for turbulent scatter it is proportional
to £1/3, a general model that includes both of the above is one
in which the scattering cross-section of the atmospheric scatter-
ers is proportional to a Von Karman wavenumber spectrum with
spectrum slope.a, where m=5 for the NBS model and m=11/3 for the
Kolmogorov model. Layer reflection is another possible model.
In this report we discuss the fundamental physical processes that
make troposcatter systems work and develop analytical expressions
for many of the key parameters., Some of the specific new results

obtained in Section 3 are:

° A two component model in which radio signals are scat-
tered from two types of atmospheric refractive index
irregularities (turbulence and larger scale layers)
with different scattering cross-sections and possibly
long term statistics is proposed. The model agrees
with NBS measurements at low frequencies and with tur-
bulence scatter at high frequencies. Figure 1-1 shows
the troposcatter transmission loss for a 200 km path
as a function of frequency and for various values of
the structure constant of the turbulence.
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The wvalidity of turbulence scatter up to at least
20 GHz is supported theoretically.

It is shown that turbulence scatter will be stronger
than partial layer reflections above a fregquency on
the order of 1-3 GHz, One reason 1is that gradual
layer transitions appear smooth at higher frequencies.
Another 1is that high strength of fhe turbulence,
measured by the structure constant C,“, is associated
with large gradients.

Anisotropic turbulence primarily affects scatter off
the great circle plane. It is similar to layer re-
flection when the horizontal scales are much larger
than the vertical scale, Explicit expressions are
derived to demonstrate that

- Anisotropy causes an enhancement of the forward
scattered signal.

- Anisotropy, defined by the ratio of horizontal to
vertical scales reduces the azimuth component of
the aperture-to-medium coupling loss.

- Anisotropy reduces the Doppler spread.

- Anisotropy increases correlation between hori-
zontally spaced diversity antennas.

Anisotropy with horizontal scales larger than the
common volume reduces the effective spectrum slope
parameter by 1 (if only the azimuthal scale is large)
or by 2 (if both azimuthal and longitudinal scales are
large). Large scale turbulence is likely to be highly
anisotropic. Measurements of spectrum slope m can
easily be corrupted by anisotropy.

Since frequencies below approximately 1 GHz are af-
fected mostly by larger scale turbulence, anisotropy
should be included in the modeling. The NBS model,
with its spectrum slope of 5, could also be explained
by large scale turbulence with an anisotropic wave-
number spectrum with a slope of 6 or 7. However, the
NBS data do not allow determination of the anisotropy.

At frequencies above 5 GHz, the effects of rain
attenuation and atmospheric absorption must be
considered. Figure 1-2 shows the troposcatter
received signal level (RSL) for a 100 km path as a
function of frequency for various values of the water
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vapor pressure at sea level, The curves assume a
fixed antenna size. The increase in RSL with frequen-
cy is due to the increase in antenna gain. At fre-
quencies above 10 GHz, atmospheric absorption becomes
significant. The dashed curve of Figure 1-2 also
shows that troposcatter propagation at higher frequen-
cies may be le