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SECTION 1

INTRODUCTION

This report contains the results of an investigation of

microwave propagation prediction techniques for the purpose of

designing and maintaining wideband microwave communication links.

The work was performed under Contract No. F19628-80-C-0106 for

RADC/EEPS, Hanscom AFB, Massachusetts.

The scope of the report includes multipath fading on line-

of-sight links, troposcatter signal characterization and diffrac-

tion path calculations, all in the freqiency range of 1-18 GHz.

The objective of the report is to determine the factors af-

fecting wideband line-of-sight, troposcatter, and diffraction

microwave propagation and to develop the necessary prediction

techniques. As a result of the work performed under this con-

tract, a number of new results have been obtained.

The background and key results are summarized in this sec-

tion, followed by a list of future research required to further

advance the reliability of propagation prediction techniques.

Section 2 contains the background in atmospheric modeling re-

quired for the remaining part of the report. Section 3 describes

troposcatter communication, the propagation model on which the

computer program TRODIF, developed under this program, is based

and a number of new useful analytical results. Section 4 de-

scribes the theory of diffraction and two new computational tech-
niques developed to overcome the limited applicability of current

available techniques. Section 5 develops the theory of LOS pro-

pagation, particularly the characterization of refractive

multipath.

I.
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V 1.1 BACKGROUND

This study was motivated by the increasing need for high

data rate links in a modern tactical environment. Communication

links over ranges which are longer than conventional LOS micro-

wave links, and which may reach up to the usual troposcatter path

lengths, are of interest to a number of future military applica-

tions such as netting of radars over inaccessible terrain (e.g.,

arctic), in a tactical deployment (netted radar surveillance), or

in support of mobile command elements for missile control, strike: operations, or air defense. A common feature of such links is

that they must have a high likelihood of being operational when

deployed. The proper deployment of tactical links in a given

climate and time-of-year therefore requires a much better under-

standing of the atmospheric processes underlying the observed

propagation effects.

The system availability (fraction of time that a perfor-

mance measure such as bit error rate is exceeded) of narrowband

systems depends primarily on the yearly distribution of the path

loss for the type of propagation mode. Due to the increasing

data rate requirements, and spread spectrum usage, there is a

need for modeling of channel multipath spreads, fade rates and

diversity correlation in addition to path loss because the avail-

ability of wideband systems depends strongly on these parameters.

Short- and long-term statistics of these parameters are desired,

as well as seasonal and geographical variations. A particularly

severe multipath condition has been identified, both from theory

and measurement, to occur on links with mixed propagation modes

(simultaneous troposcatter and double edge diffraction). This

effect has often been neglected in past propagation models.

Hence a major goal of this study is to provide a unified predic-

tion model of path loss, multipath spread and diversity

correlation.

1-2
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When atmospheric effects are not properly taken into ac-

count, it is necessary instead to allow a considerable margin for

prediction error. The dB margin depends on the service probabil-

ity requirement, and can therefore be particularly severe for

tactical links. Including correctly the atmospheric effects on

the propagation can substantially reduce the dB margin required

for a given service probability and in a given geographical loca-

tion and time-of-year. *This saving in dB margin, which could be

as much as 10 dB, can then be used to improve other important

link parameters such as transmitter power requirements, path

lengths of operational over-the-horizon links, interceptability,

or ECM vulnerability.

The interest in higher frequencies is a result of spectrum

crowding at the lower microwave frequencies combined with a need

for additional bandwidth to accommodate spread spectrum waveforms

and other ECCM techniques. A side benefit of using higher fre-

quencies would be the feasibility of smaller, more mobile equip-

.ment. The analysis in this report therefore includes new propa-

gation results valid up to and beyond the 15-20 GHz range above

which rain effects will limit system availability.

The best existing LOS, diffraction, and troposcatter pre-

diction techniques (NBS, CCIR) are not capable of satisfying the

requirements of a propagation model for wideband tactical appli-

cations. The most important reason for this is that these tech-

niques offer predictions only of the path loss, not of other im-

portant parameters such as delay spread, fading rate, and diver-

sity correlations. In addition, the path loss predictions of the

existing troposcatter techniques are based on a model developed

primarily for frequencies below 1-3 GHz. At these lower frequen-

cies the propagation mechanism can be totally different from that
at higher frequencies. Typically, over-the-horizon propagation

relies on layer reflection below 1-3 GHz and turbulence scatter

above that approximate frequency range. SIGNATRON has developed
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a troposcatter model capable of improved path loss prediction as

well as multipath characterization. This model, developed for

prediction of strategic links in a previous DoD contract [Monsen

an Parl, 19801, forms the starting point for the model described

in Section 3.

1.2 SUMMARY OF MAJOR ACCOMPLISHMENTS

1.2.1 Troposcatter Propagation

Troposcatter systems are usually evaluated using the NBS

technique [Rice, et al., 1967] or an updated version of it [MIL-

Handbook 417, CCIR]. The estimates are based on empirical analy-

sis of data mostly below 1 GHz. The predictions do not agree

with the well established Kolmogorov-Obhukov turbulence scatter

theory. For the NBS model, the scattering cross-section is pro-

portional to f-1, while for turbulent scatter it is proportional

to fl/3. A general model that includes both of the above is one

in which the scattering cross-section of the atmospheric scatter-

ers is proportional to a Von Karman wavenumber spectrum with

spectrum slope m, where m=5 for the NBS model and m=ll/3 for the

Kolmogorov model. Layer reflection is another possible model.

In this report we discuss the fundamental physical processes that

make troposcatter systems work and develop analytical expressions

for many of the key parameters. Some of the specific new results

obtained in Section 3 are:

'  A two component model in which radio signals are scat-
tered from two types of atmospheric refractive index
irregularities (turbulence and larger scale layers)
with different scattering cross-sections and possibly
long term statistics is proposed. The model agrees
with NBS measurements at low frequencies and with tur-
bulence scatter at high frequencies. Figure 1-1 shows
the troposcatter transmission loss for a 200 km path
as a function of frequency and for various values of
the structure constant of the turbulence.

1-4
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* The validity of turbulence scatter up to at least
20 GHz is supported theoretically.

* It is shown that turbulence scatter will be stronger
than partial layer reflections above a frequency or.
the order of 1-3 GHz. One reason is that gradual
layer transitions appear smooth at higher frequencies.
Another is that high strength of yhe turbulence,
measured by the structure constant Cn , is associated
with large gradients.

* Anisotropic turbulence primarily affects scatter off
the great circle plane. It is similar to layer re-
flection when the horizontal scales are much larger
than the vertical scale. Explicit expressions are
derived to demonstrate that

Anisotropy causes an enhancement of the forward
scattered signal.

Anisotropy, defined by the ratio of horizontal to
vertical scales reduces the azimuth component of
the aperture-to-medium coupling loss.

- Anisotropy reduces the Doppler spread.

Anisotropy increases correlation between hori-
zontally spaced diversity antennas.

* Anisotropy with horizontal scales larger than the
common volume reduces the effective spectrum slope
parameter by 1 (if only the azimuthal scale is large)
or by 2 (if both azimuthal and longitudinal scales are
large). Large scale turbulence is likely to be highly
anisotropic. Measurements of spectrum slope m car.
easily be corrupted by anisotropy.

* Since frequencies below approximately 1GHz are af-
fected mostly by larger scale turbulence, anisotropy
should be included in the modeling. The NBS model,
with its spectrum slope of 5, could also be explained
by large scale turbulence with an anisotropic wave-
number spectrum with a slope of 6 oi 7. However, the
NBS data do not allow determination of the anisotropy.

* At frequencies above 5 GHz, the effects of rain
attenuation and atmospheric absorption must be
considered. Figure 1-2 shows the troposcatter
received signal level (RSL) for a 100 km path as a
function of frequency for various values of the water

1-6

.S .. .. . - . -'



Iw

w0

W z zw .4

40 z

Lu 4 j

CLS 0

of 4l

0 0

Cc.
ui

I w P 1A- -I (3A33?
1-7



- vapor pressure at sea level. The curves assume a
fixed antenna size. The increase in RSL with frequen-
cy is due to the increase in antenna gain. At fre-
quencies above 10 GHz, atmospheric absorption becomes
significant. The dashed curve of Figure 1-2 also
shows that troposcatter propagation at higher frequen-
cies may be less vulnerable to rain attenuation than
line-of-sight propagation. This is due to the fact
that the strength of the turbulent scatter signal
increases with humidity. Figure 1-2 shows that, for
sufficiently short paths, the RSL at 15 GHz assuming a
5mm/hr rain rate is stronger than the RSL assuming dry
air. As the path length increases the effects of rain
attenuation become more pronounced as shown in Figure
1-3. The curves of Figure 1-2 also indicate that the
long-term variability in troposcatter paths is due to
changes in the humidity, or more specifically the
structure constant of the turbulence.

9 A new approximate expression for the power impulse
response Q(T) is derived. This expression promises to
be particulary useful for evaluating the effects of

- height profile of C02 ,

- different antenna sizes,
- long-term variations in path loss,
- long-term variations in delay spread.

* An integral expression for the frequency coherence
function and an expression for the Doppler spread are
derived.

* Expressions for spatial correlation distances at the
receiver are derived.

Figure 1-4 summarizes the components affecting the over-

the-horizon power impulse response (received power per unit

delay). Figure 1-5 shows the theoretical expressions for the

calculation of the troposcatter path loss. Figure 1-6 shows the

expressions for the calculation of other troposcatter parameters

such as spatial correlations, Rh, Rv , power impulse response

Q(T), delay spread a T , and Doppler spread Bc .  The results for

Q(T) can be easily combined with the expression for the Doppler

spectrum at a given delay [Birkemeier et al., 19691 to yield an

analytical expression for the entire scattering function.
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Lt Total Tropo Transmission Loss (in dB)

Lb (Basic Transmission Loss with Omni directional
Antennas)

+ Lh (Aperture-to-Medium Coupling Loss in Azimuth
Direction)

+ Lv  (Aperture-to-Medium Coupling Loss in Vertical and
Horizontal Directions)

+ La (Coupling Loss Correction for Asymmetric Links)

- GT (Transmitter Antenna Gain in dB)

- GR (Receiver Antenna Gain in dB)

The following approximate expressions are obtained as a function of
spectrum slope m:

Lb - -10 log[Cl(m)(kes 2-m/d]; C (l1/3) = 0.0196 C2A

Lh * 10 log[l+C2 (m)Gs/(Abh)] C2 (11/3) 
= 1.85

(equal horizontal beams bh)

-.- v -v (~xy-v
Lv - -10 log [Fml(bTv/es, bRv/esl]; Fv(x,y)=l-(l+x) -(x.y)-+(l+x+Y)

-10 1 -I 0 0eses 0 (IS
*L -1log [l+Ioe/e] .0 0e 0 C n %:

where

- min. scattering angle
d distance
k - 21f/c - wavenumber

bhobTv,bRv - horizontal and vertical beamwidths
A - Anisotropy factor Lov/Loh

Figure 1-5 Summary of Troposcatter Path Loss
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HORIZONTAL CORRELATION DISTANCE

Rh f Ph/max Ph; Ph= correlation function in

horizontal direction at

receiving aperture

AX, mem-i1 (Ye/s)

~ 2(r2(m-l)C (M) [l+C2 (m)Es/(Abh)]; On defined on page 3-23.

VERTICAL CORRELATION DISTANCE

R (m-2)--
s

POWER IMPULSE RESPONSE Q( t) (Wide Beams)

T C3 (m) T )-,/2 / T>T.i~ ~ () 02 PR(T Tn 0J-T/ >0 0

S

C3 (11/3) = 8.89; T0 =a0 a0d/2c 0s = a0 + 0

DELAY SPREAD (Wide Beams)

02
a f /max(Q) = C4 (m) d0s/c; C4 (11/3)=1.78

DOPPLER SPREAD

U0
Bc f B/max(B) 2C 2 (m) -/(l+C 2 (m)os/(Abh))

u = wind velocity perpendicular to path

Figure 1-6 Correlation Distance, Delay and Doppler Spreads
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Figure 1-7 illustrates how the expression for the power impulse

response, Q( T) , obtained assuming wide antenna beams can be

modified to account for variability in the turbulence structure

constant Cn 2 (h) and the effect of finite antenna beamwidths. The

key assumption is that height h is essentially constant at a

given delay. The finite beam pattern can be included approxi-

mately as indicated, or can be calculated using the computer

program. Calculations and plots of Q(T) for wide and narrow

beams are presented in Section 3.5.7.

1.2.2 Diffraction

Diffraction loss calculations are needed on most troposcat-

ter systems, particularly for the evaluation of the long term

distributions of the path loss and the delay spread. The delay

spread can be unexpectedly large and exhibit a great deal of

variability on mixed mode links (troposcatter and diffraction).

The analysis of diffraction links is discussed in Section 4. The

results include:

0 Development of computer techniques using Huyghens'
principle to evaluate the loss over knife-edges and
shaped edges with arbitrary ground reflection char-
acteristics. Huyghen's principle for a knife-edge is
illustrated in Figure 1-8. The field at the oI erva-
tion point, R, is composed of the field radiated from
secondary sources in the plane of the knife-edge. The
extension to multiple knife-edges consists of treating
the field incident on each subsequent semi-infinite
aperture (knife-edge) as the superposition of the
field re-radiated by each secondary source in the
plane above the previous edge.

The technique is evaluated with multiple knife-
edges, and shows perfect agreement with other
multiple knife-edge results [Vogler, 1982].

The effect of square, round, and wedge-shaped
obstacles is evaluated and shows good agreement
with other published results [Hacking, 1970],
although the rounded edge results are less
accurate and computationally difficult to get.
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0 eff~r) Q (T) Cn 2 (h(T)) G TR(h(T))

WIDE BEAM RESULTI'

INSTANTANEOUS C1,
2 PROFILE

- APPROXIM4ATE EFFECT OF ANTENNA PATTERNS

4f

Figure 1-7 Modification Of Q(T) for long term
variability of path loss and delay
spread
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*" It is demonstrated theoretically that the diffraction
loss in some cases is reduced by increasing the height
of the obstacles.

*,-A number of existing ad hoc techniques are discussed
and a new ray technique is developed which is much
simpler to use than the cumbersome integration tech-
nique using Huyghens' principle and which is more
accurate than the adhoc techniques currently used such

-..i as the Deygout [1966] method.

* In the ray technique, the received field consists of
the addition of the field due to each ray scattered by
the edges as shown in Figure 1-9. The field due to
each ray is calculated by using edge diffraction
coefficients.

- In order for the field calculated using the ray tech-
nique to be continuous as the height of the receiver
is increased (or decreased), the edge diffraction
coefficients must be determined by treating the
previous edge (or transmitter) as the source and the
receiver as the observation point (not the next edge).
We refer to this technique as the UGTD method for
multiple edge diffraction. Figure 1-10 compares the
diffraction loss calculated using the UGTD method
(dashed line) with that calculated using Huyghens'
principle (solid line) for the geometry shown also in
the figure. Excellent agreement is seen for receiver
heights of less than 140 meters or greater than 270
meters. The UGTD is not as accurate when the receiver
is the transition region of two or more edges. Figure
1-11 compare the UGTD ray method with ad-hoc tech-
niques such as the Deygout method [19661 , Epstein-
Peterson [1953] method and Japanese-Atlas [1957)
method. Of these, only the Deygout method is in close
agreement for all receiver heights. The Epstein-
Peterson and Japanese-Atlas methods break-down when-
ever there is more than one ray. The Deygout method
is not always in as close agreement with the more
accurate integral method results (Huyghens' principle
or Vogler's results) as is the UGTD method because it
includes contributions from non-existent rays in some

" cases as shown in Section 4.4.

. The UGTD ray technique can be used with rounded edges
as described in Section 4.4.

1
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1.2.3 Line-of-Sight Propagation

Refractive multipath is the principal source of frequency

selective fading on wideband LOS links. The multipath arises

when a ducting layer is formed above a non-ducting layer. In the

ducting layer rays are refracted down towards the layer inter-

face, while in the non-ducting layer the rays are effectively

turned up towards the layer interface. The multipath character-

istics depend strongly on the height profile of the refractivity.

Constant gradient layers are commonly observed in the atmosphere

and represent an appropriate model for calculating the multipath

characteristics. Based on such a model we have obtained analyti-

cal results and computed a set of curves characterizing complete-

ly the amplitudes and delays of the various multipath rays and

their angle-of-arrival. In the neighborhood of caustics a cor-

rection factor to the amplitude found from the geometric optics

approach is described.

The main conclusion of our investigation is that a three-

ray model is necessary to adequately characterize the frequency

selective fading. While a modified two-ray model such as that of

Rummler (19791 is adequate in a wide range of static multipath

conditions only a three ray model can completely characterize the

. fading on wideband LOS systems. This is particularly true if the

dynamic change of the multipath must be characterized, as is re-

quired for evaluation of adaptive equalization and synchroniza-

* tion systems. Dynamic changes in the multipath structure occur

because the height of the ducting layer above local ground, and

relative to the terminals, varies with time of day. As the

height of the layer relative to the terminals increases (or de-

creases), the number of rays, their relative delays and angles of

arrival also change. Figure 1-12(a) shows an example of how the
delay of the various multipath rays varies as the layer height
relative to the transmitter increases from -30 m (transmitter in

ducting layer) to +90 m. An important characteristic of the
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various multipath rays is the angle-of-arrival variation as duct-

ing layer boundary rises up through the terminals. Figure

1-12(b) shows how the angle-of-arrival changes with layer height.

It is seen that the angle-of-arrival can change suddenly by an

amount which may be comparable to the antenna beamwidth of some

systems. This effect is not explicitly included in the Rummler

* ' model, which considers only multipath delay dispersion.

Some of the major accomplishments of the LOS research pre-

sented in Section 5 are:

1. The effective earth radius transformation has been
used to derive multipath equations which are exact for

-a particular class of refractive index height pro-
files. The conditions for which the effective earth
radius transformation is exact have also been derived.
A small-angle approximation to the exact equations
leads to a set of quartic equations for the take-off
angle or angle of arrival. The quartic equations are
equivalent to those obtained by Pickering and DeRosa
[19791 using a flat-earth approximation.

2. Three-ray multipath has been found to be typical.
! Higher order multipath occurs when both terminals are

close to the layer interface. The higher order multi-
.path rays show much smaller delay and angle spreads.

3. Multipath rays occur in pairs. Figure 1-13 shows the
rays for two different terminal heights relative to
the layer and illustrates how two rays appear simul-
taneously as the layer moves closer to the terminals.
That the number of rays is odd can be seen by consid-
ering the height of all rays at the distance of the
receiver: rays with extremely negative take-off
angles will pass well below the receiver and the
height of the ray at a fixed horizontal distance will
decrease with decreasing take-off angles. Similarly,
rays with extremely large positive take-off angles
will pass well above the receiver and their height at
a fixed receiver distance will increase with increas-
ing take-off angle. For intermediate take-off angles

-0 the height of the ray will change continuously. If the
height of the ray increases monotonically with the
take-off angle there is only one ray, the line-of-
sight ray. In general, the continuity of height vs.
take-off angle and the asymptotic behavior guarantees
and odd number of rays.

1-22
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4. It is shown that the number of rays reflected from an
elevated duct for fixed terminal heights and separa-
tion distance actually occur in groups of four once
the total number of rays (including the direct ray)
exceed three, in the following sense: If there are
five rays for some layer height, then there is another
layer height yielding 7 rays. In general the maximum
number of rays is 1, or 3 +4p where pO.

- - 5. More than three rays occur only when both terminals
- are close to the layer. This can occur for terminals

with unequal heights only when the layer is tilted
sufficiently.

6. Multipath rays whose relative delays are indistin-
guishable may be easily distinguishable based on
angle-of-arrival. Modeling angle variations is there-
fore an important requirement for an LOS multipath

.o model.

7. A possible angle diversity system is described in
Section 5. It is shown that angle diversity may be an
efficient technique against refractive fading.

8. Equations for calculation of the ray amplitudes have
been derived. These are similar to those obtained by
Pickering and DeRosa [1979], and are valid everywhere
except near caustics. A means of evaluating the field
correctly near caustics has also been derived.

1.3 RECOMMENDED FUTURE RESEARCH

1.3.1 Troposcatter

0 Evaluate long term path loss and delay spread v ,ia-

tions based on the principles outlined in Figure 1-7.

* Develop graphs of path loss and delay spread.

0 Modify the computer model to account for anisotropy.

" Compare the model with TRC-170 measurements to deter-
mine limitations of the present theory and find
empirical or analytical corrections to the theory.

1-24
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* Compare with world-wide path loss data and atmospheric
parameters to determine geographic and seasonal varia-
tions of path loss and delay 2 spread. Estimate the
physical parameters such as Cn , scale sizes, refrac-
tive index, and long term correlations.

0 Perform multi-frequency experiment to validate the
theoretical model, including anisotropy effects.

* Evaluate experimentally and theoretically the diver-
sity performance of different diversity systems with
variable atmospheric parameters.

1.3.2 Diffraction

* Refine the integration techniques in Section 4.2 to
speed up the computation.

* Compare the techniques in Section 4.2 with known
results for a wedge.

1.3.3 Line-of-Sight

* Evaluate long-term distributions based on atmospheric
data. This includes probability of multipath and mul-
tipath fading distributions.

* Extend the evaluation of angle diversity techniques by
considering more links and antenna patterns.
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SECTION 2

CHARACTERISTICS OF THE ATMOSPHERE

2. THE STANDARD ATMOSPHERE

Microwave propagation on terrestrial line-of-sight and
over-the-horizon links is greatly affected by variability in the

mean refractive index of the lower atmosphere and random refrac-

tive index fluctuations about the mean. In order to understand

and quantify the long term variability in microwave radio links

it is important to determine the variability in the atmospheric

parameters which affect each mode of propagation.

The mean refractive index in the atmosphere has a value

that is near unity. Its departure from unity is so small that it

is usually expressed in parts per million, i.e.,

n = 1 + N x 106  (2.1)

where n is the mean refractive index and N is referred to as the

refractivity.

The refractivity N depends on atmospheric pressure, tem-

perature, and humidity as indicated by the formula [Smith and

Weintraub, 1953]

N 77.6 (p + 4810 e. (2.2)T T

where p is the atmospheric pressure in millibars, e is the water-

vapor pressure in millibars and T is the absolute temperature in

degrees Kelvin.
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Since the atmospheric pressure decreases with height, the

mean refractive index under normal conditions decreases exponen-

tially with height, i.e.,

n(h) ; 1 + Ns x 106 exp{-bh} (2.3)

where NS is the surface refractivity, h is the height in km and b

* - [ is a parameter with units of inverse kilometers. For sufficient-

. - ly small heights the decrease in refractive index is approximate-

ly linear. The mean refractive index gradient AN/Ah in the first

Nkilometer of height is defined as

AN/Ah = N(1) - NS = -Ns{l-eb} (2.4)

*- where AN is negative under normal conditions.

Since temperature and humidity vary seasonally and geo-

graphically, the surface refractivity Ns and the refractivity

gradient also exhibit geographical variations. The average or

standard atmosphere is one for which Ns  315 and b = .136 [CCIR,

-*-- 1978] which corresponds to a 1-km refractivity gradient of ap-

*O proximately AN/Ah = -40 N-units/km.

2.1 VARIABILITY OF THE REFRACTIVITY GRADIENT

The yearly median value of the refractivity gradient in

most temperate regions is -40 N-units/km. The variations in the

refractivity gradient about the median depend on the height in-

terval over which they are measured. Measurements of refrac-

tivity gradients over height intervals of 75m, 150m, 500m, and

1000m conducted in the United Kingdom [Hall and Comer, 1969]
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showed that the refractivity gradients measured over the smaller

height intervals exhibited more variability than those measured

over the greater intervals. In each case, however, the median

gradient was found to be -40 N/km. This is significant because

the gradients measured over height intervals of 1 km are applic-

able to over-the-horizon propagation (troposcatter and diffrac-

tion) while gradients measured over smaller intervals, say 75

meters or less, are applicable to line-of-sight propagation.

Analysis of measurements of the refractivity gradient over

a 1-km height interval have shown AN/Ah to be inversely cor-

related with the surface refractivity. This dependence can be

modelled as

AN/&h = -A exp[BNs] (2.5)

where 2.1 < A < 9.3 and 0.0045 < B < 0.0094 [Hall, 1979]. In the

continental United States the constants A and B have values A =

7.32 and B = .005577 [Rice, et al., 1967). World maps of monthly

mean values of the 1-km interval refractivity gradient have been

prepared by Bean et al., [1966]. Monthly mean values of AN/Ah

range from -30 N/km in dry climates, to -100 N-/km in the Persian

Gulf and West Coast of Africa.

Maps of refractivity gradients in the lowest 100 m of the

atmosphere have also been published in the "World Atlas of Atmos-

pheric Radio Refractivity" [Bean, et al., 1966]. The maps give

the refractivity gradients not exceeded for 10% and 2% of the

time. Complete cumulative time probability distribution of the

100 m gradients at a number of specific locations distributed

world wide are available in [Samson, 1975]. The median values of

4 the 100-m gradients are similar to those measured over a 1-km

height interval. However, the gradients not exceeded with small
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probability tend to be much greater. Large negative gradients

which cause ducting (AN/&h < - 157 N/km) occur with probabilities

ranging from the negligible in some dry mountainous regions of

the world, to 5% of the time in mild temperate hot humid regions

(Charleston, S6uth Carolina), to 40% in tropical maritime cli-

mates with mixed wet and dry seasons (Dakar, Senegal).

2.2 EFFECTS OF REFRACTIVITY GRADIENTS

The main effect of refractivity gradients is that radio-

waves do not propagate in straight lines. If the height above

the surface of the earth over which the radiowave propagates is

such that the refractivity gradient can be assumed to be con-

stant, then the bending of the radiowave ray path trajectory can

be accounted for by use of an effective earth radius transforma-

tion or an earth flattening transformation.

The effective earth radius transformation consists of

transforming to a spherical coordinate system in which rays

travel in straight lines and the earth (or atmospheric layers in

which the rays propagate) is modelled as a sphere with effective

radius of curvature, ae , given by

a = a (2-6a)e N 10-6

1 + a -L- x10

where a is the true earth radius (6370 km). If the refractivity

gradient, AN/Ah is -40 N/km then ae = 8548 km. The ratio

a -6
K - e = (i + a --N 1 (2. 6b)a (1+ Th

is referred to as the effective earth radius factor.
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A second transformation often used is the earth flattening

transformation in which rays propagate in arcs of effective

radius, re, given by the right-hand side of (2-6a) and the earth

is flat. Figure 2-1 illustrates the flat-earth and effective

earth radius transformations for the case AN/Ah > -157 N/km. In

this case, the ray radius of curvature is positive (rays bend up-

wards). When AN/Ah < -157 N/km, the ray radius of curvature (or

effective earth radius factor) is negative (rays bend downwards).

When AN/Ah = 157 N/km rays propagate in a straight line (re = c)

in the flat-earth model. For this reason it is often convenient

to define a modified refractivity M as

M(h) = N(h) + 157 h (2.7a)

and the modified refractivity gradient, dM/dh, as

dM bd- = + 157 (2 .7b)
dh -h

Therefore when dM/dh>O, rays are bent upwards and when dM/dh<O

rays are bent downwards.

A positive effective earth radius factor, K, (or positive

modified refractivity gradient) has the following effects on

microwave propagation. In line-of-sight paths, as K increases

from its normal value of 4/3 to -, the earth appears to flatten

resulting in greater distances to the horizon for a fixed trans-

ritter height. If K decreases below 4/3, the horizon distance

will also decrease and may result in blockage of the path between

two terminals which under normal conditions (K = 4/3) have line-

of-sight propagation between them. This condition is known as

fading due to blockage by the bulge of the earth. In tropo-

scatter and diffraction paths, as K increases, the effective

2-5
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scattering or diffraction angle decreases because of the earth

(or ray curvature) flattening effect resulting is smaller propa-

gation loss and hence stronger signals. Conversely as K

decreases below 4/3 the scattering or diffraction angles increase

resulting in weaker signals. Most of the long term variability

in microwave (below 10 GHz) diffraction paths can be attributed

to variations in the refractivity gradient. In troposcatter

paths, it partially accounts for variability in the path loss and

multipath spread.

Negative effective earth radius factors (or negative modi-

fied refractivity gradients) cause either ducting or multipath

fading on line-of-sight paths. These are discussed next. In

beyond-the-horizon paths (troposcatter and/or diffraction) nega-

tive K factors result in enhanced received signal levels due to

ducted propagation.

2.3 DUCTING AND LOS MULTIPATH FADING

Ducting is a meteorological condition in which the modified

refractivity M, decreases with height above the surface

(AN/Ah < -157 N/km) rather than increase with height as under

normal atmospheric conditions. This condition may persist up to

a certain height H above which M may increase at its normal rate

(dM/dh - 117 M/km). If we use the earth flattening transforma-

tion, it can be seen that rays leaving the transmitter at an

angle 0 (measured from the horizontal) smaller than some critical

angle, Ec, are trapped within the duct of thickness H. If the

surface is relatively smooth and is a relatively good conductor

(e.g., sea water), then the trapped rays may propagate over dis-

tances substantially greater than under normal conditions. This

situation is illustrated in Figure 2-2.
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If the layer of thickness H where the modified refractivity

decreases with height ( N/Th < -157 N/km) is elevated, then rays

leaving the transmitter with take-off angles, 0, such that -®c

e < ec are trapped in the region between the top of the elevated

layer and the ground. The angle 0c is a critical angle which

depends on the refractivity gradients of the elevated anomalous

layer and the region below the layer, and the location of the

transmitter as illustrated in Figure 2-3. If the elevated layer

forms a surface duct, then rays trapped within the duct include

ground reflections (Figure 2-3a). If the elevated layer forms an

elevated duct then ground reflections are not trapped within the

duct (Figure 2.3b). At sufficiently long distances or for trans-

mitter and receiver heights sufficiently close to the elevated

anomalous layer, multiple ray paths between transmitter and

receiver are possible. This condition is known as multipath

fading.

Groundbased ducting layers may be formed when the water

vapor pressure, e, decreases rapidly with height or if the tem-

perature increases with height or a combination of both (see Eq.

2.2). The movement of a mass of hot dry air over cold wet air

(advection) will cause the temperature to increase with height

producing a region of low refractive index (ducting layer) above

a region of high refractive index. This is most likely to occur

in the early evening with the onset of a land breeze. Radiation

cooling at night also produces positive temperature gradients.

Air next to the ground becomes colder than that higher up creat-

ing a surface duct. The duct becomes thicker during the night.

In the early morning solar heating of the ground produces an

elevated duct. Figure 2-4a shows the number of seconds that

refractive fading occurred in a 57 km LOS link during two 3 month

periods (summer and fall) for each 1 hour period of the day.

These recordings indicate that during the warm summer months

advection was the more likely mechanism as fading occurred in the

2-9

"

.



ww

ILL W u
Co C/I CJ' 1z

m uI <

I 2I10



S6- Diurnal disrifbation of reilrc fading
0=r=for two 3-montb periodis in 1930.

5-a~a vW Iies am toali number of noonds that
4-r~a minal K Wa9 1 at loust 20 dB below

somel 110PL1-
0I

12 4'1 8 1

PM AM

0

Manthly tdie mumi of ftfractive fading
aocrrawe; sold line !q ep u moGhy

'1egra1i00 beon 20 y dB below Domari leve

* 0 3 a176M. madb-12.

-00

Figure 2-4 Refractive Fading Modeled as a Function of Windspeec
(Schiavone, 1983)
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evening hours. In the fall, however, radiation cooling followed

by solar heating of the surface was the probable mechanism as

fading was found to occur more often in the early morning hours.

Ib both cases the occurrence of fading, and thus elevated ducting

layer formation, was found to be highly correlated with the

C a.m. monthly average surface wind speed [Schiavone, 1983]

r4fonths having low average 4 a.m. wind speeds are months with fre-

qpent occurrence of nonturbulent nocturnal atmospheric boundary

layers, a condition which results in fading. Figure 2-4b plots

the total number of seconds in a month during which fading occur-

red for each month in a two year period. The figure also shows

that predicted by the relationship

t = a (b/v - 1)2 (2.8)

where t is the number of fading seconds in a month, v is the

4 a.m. monthly average surface wind speed in miles per hour, and

a: and b are parameters which depend on climate zone. For the

Palmetto, GA link where the measurements of Figure 2-4 were made

they are given by a = 17600 and b = 12 [Schiavone, 1983]. The

plots of Figure 2-4a and 2.4b can be used to generate diurnal and

annual statistics of fading occurrence on LOS links.

In addition to the probability of duct occurrence it is

useful to know the duct thickness and the refractivity gradient

4 w.thin the duct. Distributions of ducting layer thickness have

been compiled by Bean and Dutton [1966] for various regions of

th-e world and are reproduced in Figure 2-5. The layer thickness,

AV. is seen to vary from 40 to 280 meters. Median values for

three climates are

66 meters, arctic climate

= 97 meters, temperate climate (2-9)

106 meters, tropical maritime climate
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For a given ducting layer thickness, AH, the refractivity

gradient depends on the duct intensity, defined as the difference

.* in the refractivity (or modified refractivity) at the bottom and

top of the layer, AM = AN. Meteorological data collected at 6

stations in Japan over a period of 6 years yielded the distribu-

tions of duct intensity &M and modified refractivity gradient

ad = -AM/AH shown in Figure 2-6 [Sasaki and Akiyama, 1979].

Median values of the modified refractivity gradient within the

layer were found to be around -60 M/km which corresponds to re-

fractivity gradients of AN/AH = -217 N/km. Modified refractivity

gradients of -300 M/km (or AN/AH = -457 N/km) were found to occur

1% of the time.

2.4 SMALL SCALE IRREGULARITIES

Small scale turbulent irregularities in the refractive

index give rise to forward scatter and scintillation of radio-

waves at microwave frequencies. The random fluctuations in the

refractive index are usually described in terms of the spatial

correlation function, n, or by a three-dimensional power

spectral density (wavenumber spectrum), n' which are defined asinr

2= E{5n(r) 6n(r 2 )} (2.l0a)

1 I f r . d 3 r (2.10b)
(21) -

where !n is the refractive index random fluctuations due to tur-

bulence an = 2,/ where z is the scale of the turbulence.

When th-e - ' .'nce fluctuations are isotropic, the correlation

functi-,n ar. , the thiree-dimensional wavenumber spectrum are func-

,0 tions of t.te m'aj-,tides r = 1rl-r 21 and <, respectively.
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The turbulent flow theory of Obukhov [19411 and Kolmogorov

11943] indicates that turbulence results from the breaking of

eddies ('blobs') into progressively smaller and smaller eddies.

Turbulence is characterized by a series of scale size

parameters. The largest eddies are anisotropic, and larger than

the outer scale L0 of isotropic turbulence. This region of the

wavenumber spectrum is called the buoyancy region, and little is

. known about the shape of the spectrum in this region. For

troposcatter a power law of n (K)-K5 is recommended by NBS and

CCIR. The size of the largest eddies contributing to the

isotropic turbulence is the outer scale L0 . The smallest eddy

size is called the inner scale to. Turbulence of a scale size

smaller than to is dissipated rapidly due to molecular viscosity

* and does not contribute to the refractive index fluctuations.

For turbulence scale sizes in the range £0 < 9 < L0 (inertial

* sub-range), the Kolmogorov-Obukhov theory predicts a wavenumber

spectrum of the form [Tatarskii, 19711

•~~~~(c 21/3 221/ -<0/21r)2

( ) = 0.033 CnL 0+ 1/3(1 + c2L 2)- 11/6 e (2.11)

where C is the structure constant of the isotropic turbulence.n
This is a modified von Karman spectrum. For anisotropic turbu-

2
* lence Cn will be used to denote the vertical structure constant.

This description of the refractive index fluctuations as-

sumes that the turbulent fluctuations are isotropic and in the

inertial subrange. Refractive index fluctuations at larger scale

sizes are highly anisotropic and cannot be modelled by Eq.

(2.11). Refractive index fluctuations due to anisotropic

" " turbulence may be modelled, locally, by a wavenumber spectrum of

.- the form

SnKx'Ky Kz) A[I+(aKx 2 + K y  + (cKy)2-m/2 (2.12)

S 2-16
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where a, b and c are the outer scales of the turbulence in the x,

y and z planes, and m is called the wavenumber spectrum slope.

In this region (Z>L 0 ) the spectrum slope is not 11/3 as predicted
by the Kolomogo.-ov-Obukhov theory. The spectrum slope is less

than 11/3 for horizontal wavenumbers and larger than 11/3 for

vertical wavenumbers (Crane, 1980b).

2.4.1 The Structure Constant C2 For Isotropic Turbulence
n

U ~~~The structure constant, Cn , saprmtrwihi rpr

tional to the mean squared fluctuations of the refractive index

and inversely proportional to the outer scale of the turbulence.

It is defined by

E[(Inl(r)-nl(r')1 ] C2 -r n m -

C2 ha
where 1 + nl(r) is the refractive index at the point r. Cn has

units of (meters)- 2 /3 when the power law dependence of the wave-

number spectrum is m=l1/3. Its significance stems from the fact

that the scattering cross-section is proportional to C and in-n
dependent of the scale of the turbulence when in the inertial

subrange. The structure constant is related to the variance an
of the refractive index and the outer scale of turbulence L0 by

00

C2 = 2 2 2 1 3<m<5n n -1 2 L0 )m 3  '

where m is the spectrum slope parameter in (2.12), usually as-

sumed to be 11/3 for turbulent scatter. For that case we have

(isotropic turbulence)
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C2 11 2 2/3
c2 1 = 1.91o /L
nm nO

Note that C2 is only defined when the spectrum slope is in the
n 

2interval (0,3). On the other hand, a is defined for all m>3.
2 n

The parameter C2 exhibits temporal (long-term), geogra-

phical (climate zone dependent) and height variations.

Long-term measurements made by Chadwick and Moran [1980] at

fixed heights indicated that the hourly and monthly statistics of

2 were well described by the lognormal distribution, i.e.,Cn

(y-10 log 2
p(y) _ 1 exp{- y l (2-13)

2 a 2a

where y =10 log C 2 and n is the median of C2 and a is the

standard deviation in dB. The measurements of Chadwick and Moran

[1980] indicated the standard deviation of 10 log C2  was 6-dBn
for all time blocks in which the data was analyzed (hourly and

monthly). The median, Cn, was a function of the hour of day,

month, and height. When viewed ab a function of time-of-day, the

structure constant peaked at about midnight and midday with the

lowest values occurring at sunrise and sunset. The ratio of the

highest to lowest observed values in the course of a day was

about 5. The monthly variations in C were greater than then

diurnal variations with the greater values occurring in the sum-

mer time and the lower values in the winter. The ratio of the

summer values to the winter values was around 10-20 and the April

and September values were about half of the summer values.

The diurnal and yearly cycle variations in nmeasured by

Chadwick and Moran in Colorado can be modelled as

2 2(1 + .66 cos 71T (1  - .85 cos 'M (2.14)
n n
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where T is the time-of-day in hours, 1 4 M 4 12 is the month

(northern hemisphere) and C2 varies with height and climate zone.n
The ratio of summer to winter values may also be climate depen-

dent.

The height dependence of C2 has been investigated by
n

several authors. The simplest model is that of Fried (1967)
2

for Cn at optical frequencies,

C 2  = C 2 h -b exp(-h/h0 ) (2.15)n opt no

where b = 1/3, h0 = 3200m, and C 2 4.2-10- 1 4m -1 / 3 . A moreno
recent model is that of Hufnagel (1974)

216-2h 1 0  -h/h 2  -h/h 3 _2/3
2 2h I e + e ]m (2.16)C 2  2.7.0-1[3u2(.--)
nl,opt 1

where

-2 mean square windspeed, typically 100-1000(m/s) 2,

hI  10 km,

h2  = 1 km,

and h3  = 1.5 km.

These optical models apply to radio frequencies only if the

humidity is low. At microwave frequencies fluctuations in water

vapor pressure (humidity) and their height dependence contribute

significantly to the refractive index fluctuations, i.e., struc-

ture constant, at altitudes below 10 km. Sirkis [19711 has in-

vestigated the effects of water vapor pressure fluctuations and
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their height dependence on the structure constant height profile

assuming that temperature and water vapor pressure fluctuations

are uncorrelated. Figure 2-7 shows the structure constant as a

function of height for various values of the water vapor pressure

at sea level. These curves show that at low altitudes 1-3 km,

the structure constant for very humid conditions is 200 times

greater than under very dry conditions. The rate at which the

structure constant decreases with height increases as the surface

water vapor pressure increases. These theoretical height pro-

files of the structure constant indicate that at microwave fre-

quencies the strength of troposcatter signals will be less

sensitive to rain attenuation as the occurrence of rain is accom-

panied by an increase in the humidity (water vapor pressure).

C 2 can be related to other atmospheric parameters,n

[Tatarskii, 1971; Ottersten, 1969], i.e.,

C2  2.8 L4 3 M2  (2.17)

n * 0

where L0 is the outer scale of the turbulence and M is the mean

vertical gradient of the refractive index. The formula shows

that is large when the mean gradient is large and is associ-

ated with high wind shear. M can be calculated from [Van Zandt

et al., 1978]:

M -77.6-10 - 6 P 1 36 [1 + 15,500g(_ 1 __ (2.18)
T 8 3z T 2 q az/ - ) ]

I
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K71

where

P = atmospheric pressure

q = specific humidity - 0.622 e/p,

e = water vapor pressure

T = absolute temperature

-e = potential temperature.

Van Zandt et al. [1978], suggest that this expression can
2be used to calculate C averaged over a 1 km height and overn

several minutes, by using rawinsonde data with samples only every

100 m. They develop a layered model of C2 that also takes inton
account the wind shear. Van Zandt et al. [1980], suggest an

improved statistical model. The models have only been used above

4 km where humidity is less of a factor, but appear to give good

results in that range.

Weinstock 11981] considers the turbulence to exist in rela-

tively thin layers, which seems to agree with many observations
2of C He gives

Rf 2 a LB ) 4 / 3 M2C n 1- Rfa P C2 Tr (2.19)
f 1

where

LB is the layer thickness,

Rf is the flux Richardson number

Rf ~ 0.25 (clear turbulence)

a'/a" is the ratio of diffusivity of the refractive index and of

heat. When significant turbulence exists we have
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The constants a2 and C1 are given by

2
a ~2.8

and

C1  ~1.5

Hence

2 2 4/3C2  0.047 M2 L (2.20)nB

Comparing this with (2.17) suggests that typically the layer

thickness is 20 times the outer scale. This result applies to

stable stratified turbulence only, which is more likely to occur

above the tropopause than in the lower troposphere.

The climate zone dependence of the structure constant is

correlated to humidity fluctuations. Gossard [19771 describes a

technique for calculating the structure constant at microwave

frequencies from measurements of temperature and water vapor

pressure fluctuations and their correlation. Figure 2-8 shows

height profiles calculated by Gossard [1977] for three types of

air masses: continental (those originating over land), maritime

(those originating over sea) and superior (masses formed at high

levels in the atmosphere). These profiles show summer values

about ten times greater than winter values. Median values for

the year can be modeled as
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0

Cn(h) C -h/h 0 < h < h1  (2.15a)

where Cn2o and h0 are climate zone dependent. For the three

types of air masses in Gossard's measurements, they are given by

1.5 x 10-15 m- 2 / 3, Continental

C2  5 x 10- 1 5 M- 2 / 3  Maritime (2.15b)nO

1.5 x 10-15 m- 2/ 3, Superior

f 2200 m, Continental

h = 2000 m, Maritime, (2.15c)

2200 m, Superior.

The vertical height dependence modeled by Eq. (2.15)

assumes that the structure constant decreases monotonically with

height while in practice this is not the case as indicated by the

measured profiles of Figure 2-8. Smoothing of the structure con-

stant height profile will not have a significant effect in the

prediction of troposcatter signal strength. However, vertical

stratification of the structure constant will have an effect on

the long term variability of the delay spread as the largest

delay spreads will occur when strong layers of turbulence occur

in the upper part of the common volume. While there are no

specific data available, the C measurements to date suggest thatn

turbulence layers have a thickness of 500-1000 m.
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2.4.2 The Outer Scale of Turbulence

" - The outer scale L0 usually depends on whether the tur-

bulence is observed horizontally or vertically. The large scale

turbulence can be extremely anisotropic. For troposcatter links

the vertical scale is the most important. Fried (1967) suggest

the simple model

L0 ~2/h

where h is the height above sea level in meters. Crane (1980b)

suggests a constant value of 21TL 0 ~70m in the lower troposphere.

Van Zandt et al., (1978) used L 1 ~ 10 m to fit their model to

high altitude measurements. Other measurements have indicated L0

* in the range of 1-100 m. Crane (1981) suggests a typical value

of 27rL 0 -5m-20m

2.4.3 The Inner Scale of Turbulence

Below the smallest scale of turbulence t0 the wavenumber

spectrum falls off rapidly. For m = 11/3 the following modified

Von Karman spectrum is often used:

*n(k) = 0.033 C2 k -I I exp(-(kZ /2
n n 0

t o0 is on the order of a few millimeters. Fried (1967) uses 0

10- 3 h1 / 3 . In the lower troposphere h - 10 mm is a reasonable

approximation.

2.5 ATMOSPHERIC ABSORPTION

At frequencies above 10 GHz oxygen and water vapor absorp-

tion as well as attenuation due to precipation will be signifi-

cant. The attenuation due to oxygen and water vapor absorption

for a path of length, d, is given in dB by
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d
AG = I [Y0 (r) + yw(r)]dr (2.16)

0

where yo is the specific attenuation of oxygen in dB/km, and Yw

is the specific attenuation of water vapor.

For line-of-sight or diffraction paths, the specific atten-

uation of oxygen and water vapor can be assumed to be constant

along the entire path, so that Eq. (2.16) reduces to

AG = [y 0 (0) + 7 yw(0) (2.17)

where y0 (0) and yw(0) are shown in Figure 2-9 as a function of
3frequency and p is the water vapor concentration in grams/m

This also applies to troposcatter paths provided the height of

the common volume is less than 2 km as absorption due to water

vapor occurs mainly at heights of 2 km or less. Absorption due

to oxygen occurs mainly at heights of 4 km or less.

The specific attenuation due to water vapor can be modeled

as [Liebe, 1969]

( 2 2  2.69x10-3 f2  2.69x10-3 f2Y (0) = 2.1x.L0 f + )2 + )2(2.18)

9+ (f-22.235 2 9+(f+22.235 2

where f is the frequency in GHz. The second and third terms

account for the absorption due to the 22 GHz absorption line

while the first term is the so-called residual absorption.
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At frequencies below 45 GHz, the attenuation due to oxygen

is mostly due to the 60 GHz oxygen absorption line. It can be

modelled as [VanVleck, 1947]

6.4x10-3f 2  1.9x10-2f 2  1.9x10-2 f 2

Y0(0) 2 2 2 (219)
f.32 5.07+(f-60) 5.07+(f+60) 2

The specific attenuations of Eqs. (2.18) and (2.19) and

Figure 2-9 assume an atmospheric pressure of 1 atmosphere, tem-

perature of 201C and water vapor density of 7.5 g/m 3. Since

these parameters vary geographically and seasonally some vari-

ability in the atmospheric attenuation will occur.

2.6 RAIN ATTENUATION

Attenuation due to rain arises from the absorption of the

energy by the water droplets and from the scattering of energy.

For wavelengths which are long compared with the rain drop sire,

i.e., microwaves, the attenuation due to absorption will be

greater than that due to scatter. At millimeter wavelengths,

however, scatter will predominate.

The total attenuation due to rainfall over a path of

length, d, is given in dB by

d
AR = f YR(r)dr (2.20)

0

where YR(r) is the specific attenuation of rain in dB/km.
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The specific attenuation for a medium of sparsely distri-

buted rain drops is given by [Ishimaru, 1978),

YR 4.343 Qt (D)N(D)dD (2.21a)
0

where 0,.(D) is the sum of the absorption and scattering cross

sections (extinction cross section) of a rain drop of diameter D

and N(D) is the rain drop size distribution. The extinction

cross section, Qt(D), of a rain drop depends on the frequency and

closed form solutions of Eq. (2.21a) valid for all frequencies

cannot be obtained. Propagation experiments in short radio paths

show that the measured specific attenuation, when plotted as a

function of rain rate, R, is of the form

= aRb (2.21b)

where R is the rain rate in mm/hr and a and b are constants which

depend on frequency and temperature. Olsen, et al. [1978] have

shown that (2.21b) can also be arrived at from Eq. (2.20) if the

extinction cross-section Qt(D) at a given frequency is of the

form

Qt(D) = cDn (2.22)
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where c and n are constants which depend on frequency and temper-

ature, and the rain drop distribution is of the form

N(D) = AIDPexp{-A 2 Dq } (2.23)

where A1 and A2 are of the form alR  and a2R
- , respectively.

When p=O, q=l, and 01=0, this distribution reduces to the expon-

ential distributions used by Marshall and Palmer [1948] and Joss,

et al. [1968].

Figure 2-10 plots the specific attenuation of rainfall as a

function of frequency for various rain rates. The attenuation

for all rain rates increases up to about 100 GHz. These curves

correspond to the experimental rain drop size distribution of

Laws and Parsons [1943], the terminal velocity of rain drops

model of Gunn and Kinzer [1949] and an empirical model of the

refractive index of water [Ray, 1972].

The specific attenuation gives the relationship between the

rain rate at a point along the path and the attenuation which

would be measured over a 1-km path if the rain rate were constant

over the entire path. This is not true in practice. A number of

methods for predicting the path attenuation given the point rain

rate have been proposed in the literature. These methods fall

into two categories:

1. Direct conversion methods, which use reduction coef-

ficients to convert the point rain rate, Rp, to a path

average rain rate K from which the path attenuation

and its distribution can be calculated [Battesti,

et al., 1971; Lin, 1977; Crane, 1980].
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2. Parametric methods which employ an analytic approxima-

tion to the point rain rate distribution (e.g., Gamma

distribution or lognormal distribution) and models of

the spatial distribution of rain (e.g., constant over

a cell of radius which depends on point rain rate) to

derive a path average rain rate distribution from

which the path attenuaticn distribution can be ob-

tained [Misme, et al., 1975; Morita, et al., 1976].

0-
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SECTION 3

TROPOSCATTER PROPAGATION

3.1 INTRODUCTION

This section describes the properties of troposcatter com-

munication and the most recent advances in the understanding of

the physical mechanisms that have led us to the development of a

new propagation model. This discussion includes the relation to

previous models, quantitative estimates for the important channel

parameters, and the relations between troposcatter at frequencies

above 1-3 GHz (dominated by locally isotropic turbulence) and at

lower frequencies (dominated by anisotropic turbulence and layer

reflection).

The troposcatter model has been developed over the last

five years as a part of several contracts. The model is based on

the philosophy that predictions must be directly related to the

physical processes that govern the tropospheric scatter path. A

well founded theoretical model is the only approach that allows

extrapolation of observations to prediction of performance in

cases where only limited data are available. We first developed

this approach when faced with the task of predicting multipath

characteristics and diversity correlations when the available

empirical models only predicted path loss. The result is a model

which relates path parameters (e.g., loss, multipath, diversity

statistics) and modem performance to a few directly measurable

atmospheric parameters. From the statistics of these parameters

both short-and long-term statistics of the path parameters can be

inferred. While this is not a trivial task, at least the

methodology for solving the general problems is already defined,

and should lead to significant new results in the future research

to be performed.
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The discussion of the model emphasizes

1. Frequencies above 1GHz

2. Low signal levels, i.e., abnormally strong signals due
to ducting or rare layer occurences are not explicitly
considered.

3.2 THEORIES OF SCATTER PROPAGATION

A large number of theories have been advanced to explain

the observed behavior of microwave signals received far beyond

the horizon. Both theory and practice started developing around

1950, when Booker and Gordon [19501 explained the signals by

scattering from turbulence. A number of different turbulence

theories were proposed [Megaw, 1950; Villars and Weisskopf,

1954]. The theory that has received the widest acceptance today

is the turbulence theory of Obukhov [1941) and Kolmogorov [1943],

based on research first reported in 1941. This theory predicts

that the path loss depends on a wavelength as X5/3 (isotropic an-

tennas) and on the scattering angle as 0- 11/3 (pencil beam anten-

nas). The theory is based on single scattering from locally iso-

tropic turbulence and has been validated experimentally. In the

earlier days of troposcatter only very few local turbulence

measurements were available, and many of these measurements

showed apparent disagreements with the Kolmogorov-Obukhov

theory. There were two reasons for this:

1. Many measurements were made at frequencies well below
IGHz where atmospheric layering and turbulence
anisotropy can cause partial reflection of the
electromagnetic waves.

2. Actual path data used assumed relatively wide antenna
beams and did not properly take into account the

large-scale inhomogeneity of the turbulence layerq
or the effect of the exact antenna pattern.
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Theories of layer reflection [Friis, et al., 19571 and re-

flection from small local inhomogeneities (feuillets) [DuCastel,

1966] were developed to account for the data measured at lower

*" frequencies.

Based on these theories, but mostly on empirical results, a

number of path loss prediction techniques have been developed,

most notably the NBS method [Rice, et al., 1967] and the related

CCIR method ICCIR, 19781. These techniques which predict a scat-

tering angle dependence of 0-5 are structured to calculate the

path loss composed of sevetal terms:

S1. Basic transmission loss, the loss with ideal lossless

isotropic antennas;

2. antenna gains GT, GR;

3. line losses;

4. polarization losses;

5. aperture-to-median coupling loss, the loss due to the
fact that non isotropic antennas may not illuminate
all of the turbulent atmosphere entering in the calcu-
lation of the basic transmission loss.

This structuring of the calculation assumed a model of the atmo-

sphere at all elevations, since all of the atmosphere enters in

the calculation of the basic transmission loss. The different

models will therefore exhibit different aperture-to-medium

coupling losses and different basic transmission losses, even if

they all predict the same total path loss. It is therefore clear

that one should be careful comparing different published expres-

sions for the aperture-to-medium coupling loss.

The main deficiency of all the existing models is that they

do not lend themselves to evaluation of
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* delay spread

* receiver correlation distances

* fade rate

0 angle diversity correlation

* h, crowave frequency dependence

* relation to standard atmospheric parameters.

The remainder of this section describes the theory required to

allow prediction of the above parameters or relationships.

3.3 PATH GEOMETRY

A typical path is shown in Figure 3-1 defining some of the

parameters involved. The parameters needed for characterizing

the received waveform are

0 Frequency f

* Transmitter Power P

* Distance d

* -Antenna gains GT and GR

S- Heights hT, hR of transmitter and receiver sites

Heights hT0, hRO of antennas above ground

0 Radio horizon elevation angles above horizontal CT,

0 at transmitter and receiver. These angles can

depend on the atmospheric conditions.

* Antenna boresight elevation angles above horizontal

(0TI, CRl) at transmitter and receiver.
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* Note that ETl- 0T and 0 R1-0R are then the elevation

angles of the antennas above the horizon. The def-

inition of "boresight" need not be the direction of

*maximum gain, but may be defined from geometrical

considerations (e.g., the normal to a phased array).

* Azimuth pointing angles T'R if horizontal diversity

is employed, or beam swinging experiments are

performed.

* Gain patterns gT(0,0), gR(G00) of transmitting and re-

ceiving antennas. Determination of the gain patterns

requires a number of additional parameters - size and

type of antennas, height above ground, ground profile

* and reflectivity. The patterns should be referenced

- with respect to the boresight direction. Both ampli-

tude and phase of the voltage gain patterns are re-

quired when the cross correlation between two (diver-

- sity) paths is to be calculated.

* Polarization of transmitter and receiver.

* Other system parameters such as bandwidth, power, and

noise figure.

•0 Atmospheric parameters such as the effective earth

radius factor K, the structure constant C 2 , the re-
2

fractive index variance an  turbulence scale param-n
eters L0 and t0 , wind velocity, humidity, etc.

0.

3.4 CHARACTERIZATION OF THE TROPOSCATTER CHANNEL

, The received signal is a sum of signals from a large number

of scatterers in the common volume. The received waveform can
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therefore be taken to be complex Gaussian. This means that the

phase is uniformly distributed on [0, 21] and the amplitude is

Rayleigh distributed,

p(A) = 2A e-A

where PR = E(A2 ) is the average received power. In terms of the

received complex waveform r(t), we also have

Ejr(t) 12  = R"

This is easily generalized to the case of multiple received sig-

" .nals which occurs on diversity systems. Let r(t) be the received

waveform. The covariance matrix at the receiver is then

ER E{(t)r'lt)}

Let the transmitted waveform be s(t). Ignoring transmitter and

receiver filters, the received waveforms are

r(t) = f h(T,t)s(t-t) dT
0

where the vector h( T,t) is the channel response at time t to an

impulse at time t-T. For a nonchanging channel, this is indepen-

dent of time t. The troposcatter channel is usually summed to be

a complex Gaussian uncorrelated scatter channel. We show later

that this is true as long as the relative bandwidth is small com-

pared to the wavelength divided by the vertical scale L0 and the

scattering angle. In that case, we have
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The channel is said to be wide-sense stationary when Q depends

only on the time difference tl-t 2, Q(T; tl-t 2 ). When the channel

variations are not considered, the delay power impulse response

is defined by

) S( T,o )

The covariance matrix PR of the received signal is

R =PT Q( T)dT

where PT is proportional to the transmitted power. For a single
.channel, the delay spread aT is the width of this function. The

frequency correlation function B(f) is defined as the Fourier

transform of Q(T). The coherence bandwidth, or Doppler spread,

- , is the width of B(f), so

Bc - 1/a.

For a single channel, or a linear combination of several chan-

nels, we can also define the coherence time, Tc, and Doppler

spread, Bd. The coherence time is the width of the temporal cor-

relation function defined as
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b(t 1 -t 2  = I Q(T,tl-t 2 )dT

The Doppler spread Bd is the width of the Fourier transform of

b(tl-t2), so

1
Bd T

C

Another common characterization of the troposcatter channel is

the scattering function:

S(T,f) - I dt Q(T,t)ej 2 ft

The width of the scattering function in the T direction is the

, .,~ multipath spread, while the f-dependence displays the Doppler

" spread. The convenience of using the scattering function is a

result of the two basic assumptions: uncorrelated scattering,

*and wide-sense stationary fading.

3.5 SCATTERING FROM ISOTROPIC TURBULENCE WITH A SCALE SMALL

COMPARED TO THE COMMON VOLUME

Detailed knowledge of the scattering mechanism and the

characterization of turbulence is needed for reliable performance

prediction involving not just path loss but multipath and diver-

sity correlation as well. This section contains specific results

for many of the important channel parameters.
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3.5.1 Scattering Equation

In Appendix C we derive the following expression for the

scattered field assuming the common volume i: much larger than

the size of the eddies,

"' P P G G R " 2  j g T ( r ) 1 2 g ( r ) 1 2

"R TPGd 3 TG(2)r 2  27 ( D n(k e s(O(r))) (3.1)
V R (r) RR(r)-'.. T  RR

-' where

e is a nearly vertical vector and

Ik e5 - 2k sin[E(r)/2]

PR, PT are the received and transmitter power
levels.

GT,GR are the transmitter and receiver antenna
gains.

" gTgR are the voltage gains relative to bore-
sight of the transmitter and receiver
antennas, in the direction of the point r
of scattering volume.

RT,RR are the distances from the point r to the
transmitter and receiver antennas.

k 21r/X = 2wf/c is the wavenumber.

S0 0 is the scattering angle, i.e., the angle
between the lines from the transmitter
and receiver terminals to the point r.

0 n(k) is the wavenumber spectrum of the turbu-

lence, or the three dimensional Fourier
*. transform of the spatial correlation

function of the refractive index fluctua-
tions.
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For convenience, we define the function H(r) implicitly by (3.1)

and (3.2):

PR I d3r H(r) . (3.2)
V

The expression (3.1) was first defined in the context of

troposcatter by Booker and Gordon [1950]. It relates the trans-

mitted and received power levels in terms of parameters known

from the link geometry, except for the spectrum On- Although not

indicated in (3.1), the spectrum On can be a function of r. This

is discussed in Appendix C.

Equation (3.1) is valid under fairly general circumstances.

All of the assumptions required in the derivation are discussed

in Appendix C. The most important ones, however, are

1. the scattering volume must be large compared to the
size of a correlation cell. This limits the antenna
gain that is practical. The condition is

RR 6R' RTT > LOh

where

6T, 6R = beamwidth
and

LOh = horizontal outer scale of turbulence.

As long as this condition is satisfied anisotropy does
not affect the functional form of the result.

2. The Fresnel zone condition

3 2 2
2L 0 /X < RT, RR

0. Both of these conditions put an upper limit on usable frequencies
* for troposcatter. The Fresnel zone condition above indicates the

validity of the expression (3.1) for troposcatter at frequencies

much higher than would be expected form Tatarskii's conditions.
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ANTENNA COUPLING LOSS

If we increase the antenna gain at the receiver, the

received signal does not necessarily increase in proportion to

the antenna gain since the volume in the integral (3.1) gets

smaller. It is convenient to separate the effects of increased

antenna gain and decreased common volume. The loss due to the

decrease in the common volume is called the aperture-to-medium

coupling loss; denoted Lc . If the path loss with omnidirectional

antennas is Lb (basic transmission loss) then the total path loss

--Lt is

- Lt = LbGTGR+Lc,

where GT and GR here denote antenna gains in dB.

The coupling loss is a mathematical convenience which is

different for different models of the atmosphere and different

again from what one would actually measure with two antennas one

of which is omnidirectional. We will use the coupling loss ex-

tensively in the following, but the rebults should not be com-

pared with other published estimates (NBS, CCIR, Yeh, Collins,

etc.). Only the total path loss can be compared.

A heuristic explanation of aperture-to-medium coupling loss

is simplified by assuming

- 1. Ideal beam shape (zero gain outside the beam, constant
inside)

2. A volume of scatterers of finite extent.

. Figure 3-2 illustrates the situation where the antenna

beams are so large that the common volume illuminated by the

antennas encompasses all the scatterers. With the idealized

assumptions above it is convenient to define

3-12
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Coumon Volu=e of
VoluMe Scatterers

Receiver beam

Transmitter Receiver

Figure 3-2 Link with No Coupling Loss: The common volume
contains all scatterers.

Common Volume of
Volum /cattarers

Transmitter Receiver Beam

Beam

Transmitter Receiver

Figure 3-3 Link with Significant Coupling Loss:
The common volume contains only a
fraction of the scatterers.
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Common Volume: The volume in space which is
illuminated by both the trans-
mitter beam and the receiver
beam

Scattering Volume: The part of the common volume
which contains scatterers.

Volume of Scatterers: The total volume containing
scatterers.

When the common volume is larger than the volume of scat-

terers then all scatterers contribute to the received field and

there is no coupling loss. This is illustrated in Figure 3-2.

When the beams are narrower (Figure 3-3) only a fraction of the

scatterers are illuminated by both apertures and the received

field does not include contributions from all scatterers. This

lack of scattering contribution reduces the total realized

antenna gain. This is the coupling loss, and will be evaluated

in the following as a part of the path loss calculation. In

Section 3.5.6 it will be seen that the coupling loss can also be

considered due to the-phase incoherence across a large aperture.

ANTENNA CORRELATION

For multiple receivers we have the correlation between the

n'th and the m'th receiver as

03
(.ER nm = f d3r H nm()

V
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where

.r-G i k 2  I g T - 1E 2

Hnm(r )  PTTR 2 t(kes(r) 2 2 gR (r)gR'm(r)
nm T 2 s R 2(r)R 2(r) Rn-~T - R-

x exp(-jkrrR +jklrrR (3.3)

where gR,n(r) is the normalized voltage gain pattern of the n'th

receiver and -,n is the location of the n'th receiver. This

assumes that all receivers are far from the common volume so the

distance to the scatterers can be assumed to be the same except

in the complex exponent. Assuming the coordinate system is cen-

tered at the receiving site and that Ir<<IrR,nI we have

I _r.(r, n-r, m
H nm(r) gR,n(r)g R,m(r) jk r

e (3.4)
(H nn(r)Hmm(r) gR,n(r)gR,m(r)

*. 3.5.2 Path Loss with Widebeam Antennas

We now describe briefly how the integral in (3.1) can be

evaluated. The same steps are used later to evaluate correla-

- tions and delay spread. The integration is performed by inte-

grating over the angles a and 8 shown in Figure 3-4 and the dis-

*O tance y from the great circle plane with both transmitter and

receiver. a is the angle at the transmitter between lines to the

projection of the scattering point onto the plane and to the

receiver. a is the analogous angle at the receiver. The minimum

values a0 and 80 are determined by the radio horizons. It is

assumed that the scattering angle is small so that the straight
line distance do between the terminals is approximately equal to

d. The scattering angle, or angular distance, is Os, as oted i'i

Figure 3-4.
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In the great circle plane (y=O) the scattering angle is

0 0 = 0(a, ,O) a +

when y*O the scattering angle is well approximated by (Parl and

Monsen, 1980]

21[2 sin -= [2 sin 0 (a, ,0)] 2  + y (3.5a)
2ir22 2 R2

where R0 depends on the distances to the scattering point,

V0

R R
OT OR aBd(3 5b)

R R3.5R0 R ROT + ROR (a+$)2

We have used the approximations

ROT = -in$/sin80  8d/ 00

* "and

O ROR = d sina/sino0  ad/0.

Equation (3.1) then becomes, assuming omnidirectional antennas

(g1 = gR = 1) and small angles,

.- =C k2 _m /2 n/2 RoTRoR 1 -mS- da OT d f dy , O ,,y) (3.6)

a0  - RR 0
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• where r(m-l)sin(m-3)

C PGG (3<m<5)T TR 8 Tr n

( GTG 0.0518 C2 for m=ll/3) (3.7)n

Integrating over y we get, replacing the upper limits by

~-m
- 1 - E)__0rPn- Ck2- 1, -- f  dS (3.8)

R.' 2 d 0 RoT+RoR

where B(2, 1M-1 is the beta function. For m=11/3, it equals

1.68. A good approximation for 3m5 is B&2, ) 8/(+l).

Replacing RoT+RCR by d and using that O0 = a+a we easily

get the basic path loss

CB(l, 2 jmLJ
"P " 2?I'@ (kOSs)2-/ (3.9a'

,R - R,basic - (m-l)(rn-?) "

where S = ao + $0. This result applies to wide beams. For

m=11/3, we get

=PGG 0.0196 C ( k
S - / d .3 .9b)

-. jt. 2

r The result can be used also for m;5, but the definition of C no[" n

- longer makes sense. Instead we can use the refractive inite×

variance n 2 and the outer scale L0 directly to get

3-18
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P =PG G m-3 a 2 L3 m(ko) 2 m/d (3.10)R T T R 4(m-l)(m-2) n Os

A spectrum slope m < 3 is not possible for large k.

3.5.3 Path Loss with Finite Beamwidth Antennas

First, let us assume a narrow horizontal beamwidth. Due to

the weak scattering angle dependence on y (see Equation 3.5),

this assumption is very often satisfied for practical antennas.

Let LH be the horizontal width of the common volume. If the

transmitter and receiver antennas have the horizontal beamwidth

bTh and bRh, respectively, we have approximately

d
LH ~ .0 min(ObTh, abRh) . (3.11)

To simplify the results, assume equal beamwidths,

bTh bRh h

LH can be approximated quite well by using the bounds

xy 4 min(x,y) 4 2
x+y x+y

From (3.6) we then get, assuming broad beams in elevation,
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P k2- b,_7___7d3 2a~d
R C m hf d ROR Ga0  a OT OR 0

-(-l C bh (kOS) 2 _m/d (3.12)

For a non symmetrical link we may use the following approximation

P2C 8 0 a 0  -l 2-rn(.3
R (m1)9- (- +--)(ks) /d (.3

m~m-l) b bTh S

Comparing this with (3.9a), the additional loss associated with
the finite horizontal beamwidth is the horizontal coupling loss,

Lh -10 log(1 + 2m2 0 L0EJ) . (3.14a)

This has been found to be a good approximation in computer cal-
* culation with bRh =bTh- For m=11/3 and bRh =bTh this becomes

L Ch -10 log(l+l.850 S/b h). (3 .14b)

Now suppose the beamwidth cannot be assumed to be infinite i.n

elevation. Equation (3.12) then becomes

0 ~Tv 0 ~Tv 1-rn
P k2-mnd 8L (0+8)PR C af d 2 (3.15)

a 0  sod aa
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Now, use the equality

rnin(x,y) =2y/(l + Lx-YL)x4-y x+y

The denominator only varies by a factor of 2 (3 dB) and will be

* taken outside the integral in (3.15). For equal horizontal beam-

* width we therefore use, at the point a,$

2dh +___
LH 2 0(3.16)

0 0 S

* Hence,

2-mn 2 b h a 0 bTV 0 0+b TV -P Ck d~+0-I0Jf da f IaB
0 0o

= r-1r (keS)l1-m /d 2b h F rn-i (..I, - R- (3.17)
(M-Im t1100- M-1OS S

where

F (x,y) - -(l+x) _V -(+y) *V+(l+x+y) V
V

Comparing this with (3.9) shows that the coupling loss with rela-

* tively narrow horizontal beamwidths is
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Li -- 1 log F1 (TX -6-)
s S

+ 10 log (l 1 0 a

2 b (m-2)
-10 log ( IH-

OB(~ 2)m

Combining this with (3.14) yields an expression good for most
links with equal horizontal beamwidths,

b b
Lc -10 log FmiTI R) (vertical loss)

C S S.

+ 10 log(1 + JaG N) (asymmetry loss)

+10 og + 2 2 ) (horizontal loss). (3.18)
lg1 2(m-2) b h

This equation, in conjunction with (3.9) is useful for hand cal-
* culations of the path loss. It has been verified in numerous

numerical integrations. The total loss is

* ~R,total P R,basic L C (3.19)

* where PR,basic is the basic path loss given by Eq. (3.9) and L
is the aperture-to-medium coupling loss given by Eq. (3.18).
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3.5.4 Horizontal Correlation at the Receiver

Now assume the receiving antenna is omnidirectional but

that the transmitting antenna is arbitrary. We wish to develop

approximate expressions for the horizontal correlation distance

at the receiving site. This is useful for space diversity appli-

cations and for explaining the coupling loss in terms of phase

decorrelation across a large receiving aperture.

Let z be the horizontal separation of two small antennas at

the receiver. From (3.4) and (3.6) we have the correlation

mCkm df dBfdy ROTROR I m jkyz/R OR

'.".2 2 0-
CL 0 00 RTRR 0 (3.20)

i~\"" " PH(z )  "P

H R:

In the case of wide beams the derivation proceeds as in Section

3.5.2. The details can be found in Monsen and Parl [1980]. We

get

R R m-2 0m(-1 ( es)

I(z)dz P -i (3.21)ji

where k
O<x<l.

k-0

The horizontal correlation distance is defined by0.

RH P [ PH(Z)dz/PR

(3.22);O ~ M-2 Om- (aO0S )  (.2

s B( , m
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" For a symmetrical link we have a= 0 Substituting m=1l/3 we
0 2 s.

get

RH(rn= )~ 0.6 e (wide beamwidth) (3.23)

Now assume the transmitter beam is sufficiently narrow so that 0

does not depend on y. The y dimensions are ROTbTh, so

2 -m d 01-r sin(kzbthROT/(2ROR))

PRPH(z) = 0 d 0 ROTROR kz/(2RoRJ

When integrating over z this reduces to (3.21) when the transmit-

ter and receiver have sufficiently wide elevation beamwidths and

where PR equal PH(0) is given by (3.13). Therefore, the hori-

zontal correlation distance is increased by the horizontal

coupling loss, leading to

.4

R X 0  _1  0/es) (3.24)
H OS bh 2(m-l)

for the case of a narrow horizontal beam. RH is only slightly

affected by the vertical beamwidth.

A direct expression for the correlation coefficient is

sometimes desirable. It can be shown that

0.

m- 2Ph(z) = (m-2)0 2 f dx(OS+x)1mf M-1i(" (B+x)
0 2Y
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where

f V(x) r 2V (x) KVK(x)

f (x) can be approximated by

f (x) 1+3x x07
4/3 l+3x+1.5x2  'xO5

1.114(1 + x4-0.063) e- xS x>0.75.

The integral above must be evaluated numerically in general. The

asymptotic form is

m m

Ph(z)-2) /f 2 2 e~(kzB0) e -k% z large

or -1- / kz O
Ph(z) -1.9 OS'(kzSO)" 6 e ~.(3.27)

This expression can be used to find the required space diversity

separation.

3.5.5 Vertical Correlation at the Receiver

* For vertically displaced receivers, the correlation dis-
tance is defined as

f fP v(z)dz
* RV maxpv (Z)

3-25



. ..... . . . . . .

It can be shown in the same way as before that for a widebeam

transmitter

Rv = (m-2) - (3.25)

For a narrow beam transmitter, we find

-S

- R = (m-l) ( 3.26)
-

almost the same as in (3.25).

3.5.6 A Second Look at Aperture-To-Medium Coupling Loss

The coupling loss is often explained in terms of the decor-

relation of the phase front over a large aperture. We now show

that this is equivalent to considering it in terms of the common

- volume restricting the number of scatterers.

Let E(y,z) be the received field. The output of an aper-

ture A in the y-z plane is (assuming perfect polarization match)

r f f dy dz E(yz) (3.28)
A

The received power is then

P =El = R f dyldzl f f dY2 dz2 p(yl-y2'zl-z 2 )
A A 2
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where p(y,z) is the correlation function and PR is the received

power. The coupling loss is

ff dyldZ ff dy2d-

C 772 Ifd~z 2 p(yl-y 2 fz,-z 2 )A

For a large square aperture of dimensions ah x av , this is

approximately

L - R h R v
L-l -h V (3.29)
C a h av

where Rh is the horizontal correlation distance and Rv is the

vertical correlation distance. It is therefore possible to eval-

uate the coupling loss from the correlation distances derived in

Sections 3.5.4 and 3.5.5. The results may deviate slightly from

the results for LC in Sections 3.5.2 and 3.5.3, but only due to

differences in approximations. That the equivalence is exact can

be seen directly from (3.26). The received field E(y,z) is of

the form given in Appendix C, Equation (C-10)

-jkRR

E(yz) 1 f dV n1 e E2 = V RR

where E0 is the incident field in the common volume, n, is the

random refractive index fluctuation (turbulent scatterer) and RR

is the distance from the integration point to the observation

point (y,z). Inserting this in (3.28) and interchanging the

order of integration yields
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dV E0V R

where gR is the antenna pattern. This is the form used in the

preceding sections, so the two viewpoints are equivalent.

3.5.7 Delay Spread

If the integral in (3.1) is performed only over the part of

the common volume where the delay is in the range [T, + dT] we

- would get Q(T)dT, where Q(t) is the power impulse response. In

general an accurate representation of Q(T) requires a numerical

integration. However, we will apply some rather crude approxima-

tions to get an approximate analytical form. It is important to

, note that the commonly defined rms delay spread,

12

R

does not lead to a convergent integral with omnidirectional

antennas due to the slow fall off of the tail of Q(T). To see

this note that the delay relative to the baseline is approxi-

-, mately

T= d a8 (3.30)

*. using in (3.6) or (3.8) it is seen that the fall off is too slow.

- Instead we find an approximation to Q(T) directly. Assume that

S T--T0 is small, where To is the minimum delay
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T 2 00 C 3.31)

Next we make the approximation that T is independent of y

in (3.6). This is a good assumption for narrowbeam antennas but

can lead to some error for wide beam antennas. We will correct

for this error later on.

For the case of wide beam at rnas we set

8 = 2cT
ad

and

d 2c dT

in (3.8), and get

A/$o
Q( T)dT = Ck 2 mB a 2(a + A/a) Md (3.32)

a0  ad 2

where

A 2cT/d

When A is small we can replace a + A/a by its geometric mean

value,

= AaO 1/2

0
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yielding

2Ck-mBrlml-
2 ,-- c -m/2 a2 2 2cT ,2cT 0 0Q(T) loga 0 0a d' +

From (3.9) we get

Q(t)/p 2(m-l)(m-2)c T -m/2

= d 2 0 0O TO, (3.33

where

Sa 0 0 d/(2c)
0 0 2

For a symmetric link T 0  2 d/(8c), and thus

Q( )/P (m-1)(m-2) log- -m/2 T T
R 4T0 0 0

Even though the approximations are not likely to be good f -r

large T, it is of interest to integrate (3.33). Define q( )

S Q(t)/PR. We get, after some simple algebra,
", R'

2-

fq( - r- ~~1 /2 - 2

." " ~~~~~~...... .... "...........,.-.-. .. .... .... . .•
J. T d T -. .+ s . . .



a0"

where s = is the asymmetry parameter. For a symmetric link

s = 1 and %he error in the integral of Q(T) is only (1 +

1/(m-2)), or 2 dB.

The delay spread can be defined by

fQ( T)dT
Tsq max Q(T)

The maximum of Q(T) is achieved for

a0 80d e2/m 2/m
T Tm = 2c e T 0e (3.34)

For m = 11/3 Tm = 1. 73 to .

The delay spread for wide beams is then, from (3.33)

Sd 82 me

Ss 1 m (3.35)

= c m-cm-2)

for m = 11/3 a T,sq 0.56 dO

Now include the additional delay from off-axis scat-

terers. We have

Y + 2

where R 0 is given by (3.5b).
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The y component contributes significantly to the delay when

the horizontal beamwidth satisfies

bh > 0 s/(l+lao-0ol/o s ) .

From (3.6) we have, using RT~ROT and RR~ROR,

2_m

Q(T)dr = C k 2 - m fdafd~fdy 1 2

dvl(T) ROTRoR(a+ 8 ) [(a+) + 02

where dvl(T) is given by

d dr d-2 d
2 2R 0 c 2' T4 0 , .

We next substitute

= xi' 'oC r

and note that

2(l-x2)t = aQd/(2c) ) 0

where To is given by (3.31). Interchanging the order of integra-

tion yields (defining xI = ,_l-o/_

x1
Q(t)dr = C k2-m 2 f dxfdafd(+)-m ( 2) m/ 2 -1/ 2 /d

0 dv 2( )
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where

dv2(T) = a, 0ic~ 8 8
j .00 2d c[(-x2 )T-d T/2, (-x2 )T+drT/2]}

Eliminating a this becomes,

2C~mx 1  P(x)/80  (1x

Q =T d fd x f dc ad )c(a+P(x)/a)- m( 1 2(m)
0 0

where P(x) 2CT(1-x)/d.

The following approximation is good for small T:

a+P~)/a- const. 0 p(x)]1 /2 + [-L2. p(x)]1 /2

0 0 a0

With this approximation we get

() 4C 2-m x P(x)8 0
d d aT0 0 0

2-m mt T
4Ckm c (_.L) 2 e-mf 0 dx1l-x 2 log[-L-- (1-x 2)

d d T0 S 0 T0

For small T(t.-t0 ), this becomes

Q 0 4Ckm C eM(T .)-m/ 2,l... /T log Ti- (3 .36a)
d0 0

3-33



or

(,)R=4(m-1)(m-2) c -m/21(3.36b)

(t)/P B(.L-, m dGOvlt/ t/& lgtt)

Comparing this with (3.33) we see that the correction factor

2 ,.i_ tO/r

is due to the off-axis contributions to the delay.

For m-11/3 the maximum of Q(T) in (3.36) is achieved for

T - 1.47 TO

and is
max, (r/ .6 C

T R did'
so that the delay spread is

s- 1.78 2 d/c•sq S

This is three times larger than (3.35), showing that off-axis

scatter can contribute significantly to the power impulse

response. Note that we have assumed PR given by (3.9) so the in-

accuracy of the tail of (3.36) does not significantly affect this

result.

Figure 3-5 shows the theoretical profiles (3.33) and (3.36)

together with the results of numerical integration. The oscilla-

tions in the tails of the numerical curves are due to delay quan-
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tization errors in the computer program. It is seen that the

approximations are good at least to the maximum of Q(T), which is

sufficient to generate the accuracy of' the delay spread approxi-

-.. mations. The approximations to Q(T) are too large for large T,

but the discrepancy is almost insignificant.

The integral of (3.36) is

4Ck2-m cr0  -m 3m m+lfQ(T)dT 4C 0 d 0s  B(l, -l)[,(T -+' -1)

. where B(x,y) is the Beta function and P is the digamma function.

For m=ll/3 this becomes using PR from (3.9)

.Q(T)/PR ~ 6.57 a00

This is 2 dB too large for a symmetric link, less for asymmetric

links. The error is due to the fact that the tail of Q(T) in

(3.36) is too large.

Next, consider ideal narrow beams with directivity pattern

(1 for jcil < n /2

g(a,y) = and II < 0h/2
0 otherwise

0 where a is the vertical angle and y is the azimuth angle. The

horizontal (y) integration is limited by
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y a ~hmin (R OT' ROR)

hdmin( a, )

where c1 2 is a constant in the range l4c1 2 42. For small delays,

c12 (1+I 0- $01/0.). Using the same transformation as before

y - xV'2R 0CT

we must have

or

x 1/(l+(e /(C Ph) 2)

Defining

= min(1-T /r, [+[e /(Cl Qh1 2 '

we get 2-r a(
4CfC dx f da(/a
d 2 0 aa
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- . where8
2 a 0 aa a axfa.0 .,x - T-F,

= mi a '- )a r 2b 1 01 0 2

1 0 v

and rl,r 2 are the real positive roots of

-12cr 2 -

a + d -(lX) a h C 1 2 VI/,c -1

The contribution of the limits ri and r 2 will be ignored in what

*. follows. For narrow beams X is small and we again set x0O in

the integral and get Oa-[ bIa /2 _ 9 .'TT The last approxima-

tion is good for nearly symmetrical links and for small T.

Hence,

-4 C 1 2-m c 0-M T-a

T) (i) 2log -X 2 T) , T< T a 8/a 00 a

(3.37)
* The following approximation is sometimes useful:

00



Eq. (3.37) is shown in Figure 3-6 together with the power impulse

response using the computer program TRODIF. The agreement is

reasonably good in spite of the somewhat crude approximations.

The tails of the power impulse response Q(T) will usually

differ from (3.33), (3.36), or (3.37) due to the decay in

the C2 profile, or due to finite antenna beamwidth. It is

necessary to take these factors into account to calculate the 2a

delay spread.

The height above the baseline is

h d

When we are looking at a constant delay,

8-2ct
d

then h is also nearly constant. a + 8 varies in the range
1/2 1/2

2 L) (oSo)1 o+a 80+aO (i , where we have assumed

a 80 . For most links we can assume T << 2T 0 in which case

the ratio of the upper limit and the lower limit is only 1.06, so

the scattering angle changes only by 6%. Replacing a + 8 by its

geometric mean we get

4 h v2cd/(s 1 / 2 + s - / 2J . (3.38)

Hence height is proportional to the square root delay.
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2Now assume a C n profile of the form

C C (h )ee (3.39)

where ho is the bottom of the common volume . Q(T) in (3.33) is

then modified to

-m a_0__0_

Q(T) =A log(T )(T-- eo o

define B ao 08d/ (h, 0 0 ) . Then the moments of Q can now be found

from

n--- ]Y-~
n- n~l dt ____n

-nr

2
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The same approach is used to modify the wide beam result

(3.36). When the vertical antenna patterns limit the width of

the common volume the power impulse response Q( -) falls off

rapidly for T > TI , where

a d
'l = 2c

In this case, (3.37) should be used together with (3.39).

3.5.8 Doppler Spread

The Doppler spread, i.e., the inverse of the coherence

time, is another important parameter, particularly for a realis-

tic evaluation of adaptive troposcatter techniques. In order for.

the adaptive loops to operate, the channel coherence time must be

longer than the time constants of the loops. In other words, the

channel must be essentially time invariant long enough to allow a

reliable measurement of the channel.

The Doppler spread is found from the refractive index spec-

trum using Taylor's hypothesis of frozen turbulence. The re-

ceived spectrum is then

SR(f) = d d3r H(r) S T(f- (T- t1 ) " /X (3.40)
v

where

- R direction vectors of the incident and scat-
tered fields
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ST(f) spectrum of the transmitted waveform, nor-
malized to unit power,

Uwind velocity vector,

H(r) = integrand in (3.1), see (3.2).

the 1'th moment w, of the Doppler spectrum is then found from

f d 3 rH(r) (T -eR X) (3.41)
v

The rms Doppler spread is defined from

°p

2 2 2 ( .2
0 2 - l/2 (3.42)

Doppler

In the special case where the wind is perpendicular to the

path (worst case) we find

(UT UR) X X + 2 d (3.43)

where u = lul is the wind velocity perpendicular to the path.

From (3.40) and (3.6) the Doppler spectrum is

R R2 -mr OT OR a3 __

B(6f) = Ck2I da f da 2 2 3 u (3.43a)
a0  0 RT  0
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where

y( 6f) =a$ Xd S

* Instead of evaluating the moments we calculate the Doppler spre~i

by the definition

B =rs JB( f)/BCO)

B(O) is

2-rn X 1
B(O) =Ck - fdafd 6 0-1r7d- 0

*Ck 
2-m x 1-rn
m~-l Gu~ (3.44)

From (3.9a) we then have

* Doppler spread for wide beams:

B J~q B v) dv/B (0

* mB m-~i 0u

rn-2 (3 .45a)
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For m = 11/3 this reduces to

B = 3.70 0 U/X . (3.45b)
csq s

For a beam with narrow azimuth beam width B(0) is unchanged.

. Hence the Doppler spread is reduced by the aperture-to-medium

coupling loss. Using (3.14b) we get

3.70 0sU/X ubh
B - -2- (.6c,sq 1 + 1.85 Os/bh . (3.46)

The results are also easily generalized to the case of arbitrary

vertical beamwidth, again assuming an ideal square beam. This

approximation is not as good for the Doppler spread calculation

since the antenna sidelobes may contribute to the spectrum. How-

ever it is still useful and we get

1-m
B(0) Ck2 - m -Fs bTv bRvB(O m(m-l) ud F9 M_1 "

s 5

and thus from (3.17)

2ub h
Bc,sq - b / (1 + aO / Os) (3.47)

Using the same approximation as in (3.18) we find the general

result

0
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" Doppler spread for arbitrary beamwidth (bTh = bRh = bh):

A 0 /
d sB c d [l/bh)l + 2b0 8OI/0s) (3.48)

cds s )1 + aO a /

where

mB(1 ,m1 )

A = ( = 3.7 for m = 11/3)
d m-2

These results assume isotropic scattering. The Doppler spectrum

narrows considerably with nonisotropic turbulence [Birkemeier et

al., 1969]. This is due to the small amount of off-axis scat-

tering with near specular reflections. It is shown in Section

3.6 that Ad in (3.48) should be reduced by the anisotropy factor,

* . the ratio of horizontal and vertical scales.

3.5.9 Validity of the Uncorrelated Scatterer Assumption

The validity of the uncorrelated statter model presumes

that resolvable delay cells are small compared to the correlation

- distance of the turbulence. Consider a link with slant range d

* and the angles a,8 as defined in Figure 3-7. It can be shown

[Monsen et al., 1981] that the relative delay is

,'0

a.
sin sin

~dJ/ 2d=(RoT+ R - d/cO ORc Csa +
os 2

Differentiating this expression yields

AT d sin B
T a 2c cos 2(1 + a

"i . 2
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Figure 3-7 Geometry for Determination of the
Uncorrelated Scatter Condition
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The change in height, At, with a change in the angle a by Aa is

given by

2
AL =d [ sin 2
Aa s5 in( a+a)

Hence if At- L0 , the vertical correlation distance of the tur-
bulence we get

L .in2 L 02
A = 0 sina+ 8) L0 0
2c (0+6) 2C Ssin cos(S-2

The condition for uncorrelated scatter is

AT << l/W

where W is the bandwidth. Assume 0 0 . Since 0/28 is on the

order of one we get the condition

W L 0
es < 1 . (3.49)f X

This condition is almost always satisfied. As an example take

Lo = 70 m and 0s = 12 mrad (corresponding to a 100 km link).

Then the condition is

W << 350 MHz
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3.6 SCATTERING FROM ANISOTROPIC TURBULENCE

3.6.1 Small Scale Turbulence

The results of Section 3.5 are modified in certain ways

when the turbulence is anisotropic. The assumption here is that

the outer scale of the turbulence is small compared to the common

volume. For simplicity assume that the two horizontal scales are

identical. Then the modified Kolmogorov spectrum is of the form

2 2 k 2 .  -m/2

0n(kvkh) = CO[l + k2Loh + k2L0 ] (3.50)

.".Co L L r (-,)/(w3/2r(m-!)),0 n L0 h Ov

where kh and kv are the horizontal and vertical wave numbers and

LOh and L0v are the corresponding outer scales. For m=ll/3, we

have

L L -m/2
n(kvfkh) = 0.033 Cnv(-O-) k v + L2 ]

,Ov

where C is the vertical structure constant. The covariancenv
function is

0 n(r~) io Lr 2 +(Lz)2)
n (~z)= ~Oh + Ov
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* where Dis o is the covariance function for isotropic turbulence

with unit correlation scale,

a 2w (5-m)/2
o() = n *(m-3)/2iso r(-! ) m-0 K--

- The received power is determined from (3.1), where, to the first

"" order approximation,

ke s - k(O,y 2/(a8d),o). (3.51)

The coordinate system is the same as in Figure 3-4. The longi-

tudinal component is ignored, but the off-axis component is

included. The dominant component is the vertical component 00.

Hence we find (3.6) is modified

iR-R -m/2

P= C k2 -m da f dO fdy ROT ROR 1 r002 + A 
2 y 2 / R 2

Ro a o  R 2 RR 0

(3.5 2)

• where R0 was defined in (3.5) and A is the anisotropy

OhA= L . (3.53)
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. Data indicate that A can be much larger than one. The propaga-

tion constant for the anisotropic medium is

1 -mn

a  PTGTGR CoL v .(3.54)

This is the generalization of (3.7). For m=1l/3 it becomes Ca

0.0518 Cnv 2 A2 PTGTGR. Integrating (3.52) over y, a, and 8 we get

the equivalent of (3.9)

.C- 1  rn-i• .'" CaBl)

=R a2' 2 2-inP ,R-y (kGs2-/d
R R,basic A(m-l)(m-2) d

(3.55)

[= 0.0196 C vA (kOs)-5/3/d for m=ll/3]

This is proportional to (-3.9). Note that for a given measured

* Cnv 2 this is increased by a factor A over what is predicted from

- the isotropic case. The main differences from Section 3.5 will

be the effects of off-axis scattering. This means that the hori-

zontal coupling loss is affected. The equivalent of (3.12)

- yields the received power with a narrow beam (in azimuth)

" 2Ca bh (k)2 m/d (3.56)
O R m(m-l) k6

s

and the horizontal coupling loss is approximately

m m-1

Lch 1 10 log(l + 22- ) (3.57)
h
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We conclude that: For narrow beams the horizontal coupling loss

is reduced by the anisotropy factor.

The other coupling loss terms in (3.18) are not affected.

Next consider the horizontal correlation distance.

Following (3.20) and (3.21) we have

= C k2 -m s d a -) (3.58)
R a (r-i) 2 Bmi )

so the horizontal correlation distance is

X m-2 B-i(Ca/es)R A A-5- - (3.59)
H r-I

Hence, the horizontal correlation distance is increased by the

anisotropy factor when compared with (3.22).

The vertical correlation and the power impulse response

depend primarily on the vertical scale, and are unaffected by the

anisotropy.

The Doppler spread, however, relies almost exclusively on

off-axis scatter and is clearly dependent on A. Assume a wind

perpendicular to the path.

It is easily seen that the spectrum is simply scaled by A,

B(v ; A) = B(v/A ; 1) (3.60)

where B(v;l) is given by the isotropic result (3.43a). The

Doppler spread, as defined in (3.45) is
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B - (3.61)

cpsq m-2 A X

For sufficiently narrow beams this is reduced by the coupling

loss and equals (3.46), independent of A. The general expression

is that of (3.48) with Ad replaced by

A 2 B~ 2 (3.62)d (m-2)A

3.6.2 Large Scale, Highly Anisotropic Turbulence

When the pancake-shaped eddies are so large that they are

not completely contained within the common volume, then all the

parameters, including path loss, have a different form. Such

large anisotropic turbulence has effects similar to layer

reflection. Layer reflection will be considered in the next

section.

In Appendix C, Equation (C-29) we found the following

general expression for PR'

PRGTGRk2  3 1_()121R(r) 1
2

P 2 f d r - I(r) (3.63)
16w V - IRTr) 1 (-) 2

where I(r) is proportional to the scattering cross section, and

is given by

I(r) = f d3 r r )e Jkrl 2S

Vl(r)
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The volume V1  consists of points {r'-1r''and r" and in V

and r'+r"=2r1. Until now we have assumed I equals (2w) 3 ¢n(ks ).

Now suppose the beamwidth is narrow so that the anisotropic

eddies in the x (along the path) and y (perpendicular to the path

direction) may be larger than the size of V. We assume, however,

that the vertical scale (z direction) is small. We consider two

limiting cases

A. Large Scale Perpendicular to the Path.

This is likely to happen with azimuthally narrow beams in

the presence of highly anisotropic turbulence. Then

jkr e*2
I(E) - LHffdxdz on(X,0,z)e

where LH is the average width of the common volume in the y

direction. In terms of the spectrum this equals

21(r) (2)2LH , dk y 0n kesx, ky, kes Z)

2 2 + 2 wefn
Using (3.50) with k= k + k we findh x y

(2T)2 LBl m- 1-m
I -( ) ~ 2 L~h Co[1+(kesxL h) 2 +(keszL~v) 2 ]

3-54



0I

Using (3.51) we get

2mirLB( 
1 2 m"2 H 2 ' 2- ° [ C )21 2

2r) ~0 [h+(kE L~ ] (3.64)
2L O h 0

For m = 11/3 the effective spectrum slope is now 8/3. This means

that the frequency dependence is only f2 / 3 with a spectrum slope

of m = 11/3. If m = 6 the frequency dependence of the NBS

technique is obtained.

B. Both Horizontal Scales Large.

In this case the above results are modified to (LHi and LH2

are the horizontal dimensions of the common volume):

mm

I(.r) -27 LH, H2 f dkx f.dky 'rk x , ky, kesx)

(2) 2 2 C -m/2

(272LLHC 0  dkhkh[1+k2L0+ (hesxL0 v)
2 1

0

2 71 2 LliLH2) -m/2
2  Co[l+(k9OLOv)21 (3.65)

(m-2) LOh

0 In this case the effective spectrum slope is only 5/3. A value

of m = 7 is required to model the NBS spectrum slope of 5.

Note that in both cases when the scale is large in the

direction perpendicular to the path there is no off-axis contri-
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butions to the fields. The effect is very similar to that of
layer reflection. There will be no horizontal coupling loss, and

the horizontal correlation distance approaches infinity.

Since the common volume is much larger in the x direction
than in the y direction, condition A is more likely to happen.

The main conclusion is that anisotropy will tend to decrease the

apparent spectrum slope.

3.6.3 Common Volume Dimensions

It is helpful to have an idea of the common volume dimen-
sions in order to interpret the anisotropy effects. Assume equal

beamwidth at both ends of the link,

beamwidth =

Then,

paO+ 82+ 0 0s
Height difference of common volume d 0 (3.66)

5

Length of common volume 2 d 0 + a (3.67)
s

Width of common volume d- (3.68)
S

For the special case of narrow beams on a symmetric link (a0=60),

1 n
Height :

1

Width -2

Length : d/o

For small 6 the common volume is much longer in the x-direction

than in the other two directions.
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* 3.7 LAYER REFLECTION

At frequencies below approximately 1GHz, over-the-horizon

communication is thought to rely primarily on layer reflection.

It is difficult to establish a unified theory of layer reflection

due to the many different layer structures that can cause reflec-

tion. This is evidenced by the wealth of theories developed to

"* explain the statistical behavior of early troposcatter experi-

- ments. We will discuss briefly the effect of well developed

layers in this section in order to compare layer reflection with

troposcatter. The layers will be assumed large, so that they can

be assumed to be of infinite extent.

Consider a layer with a linear gradient, so that the re-

fractive index as a function of height is

" n(0) - 39 1 h below the layer (h < 0)

n(h) n(0) - (39 • 10- 9 + n1 )h in the layer (0 < h < Z)

n(l) - 39 • 10- 9 (h-£) above the layer (z < h)

where h is the height above the layer boundary in meters, 2 is

the layer thickness and n, is the gradient relative to the normal

gradient of -39 N/km. This is the type of profile used by Friis

et al [1957]. The reflection coefficient is

S2 2 nl1 sin(rZ0/X) 2 (3.69a)
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where 0 is the grazing angle (half the scatter angle). In most

practical cases at high frequencies we will have nto/X >> 1, so

that the mean power reflection coefficient is

2 2 6 n (3.69b)

ir 0

[ Note that this is independent of layer thickness. The reason is

that the reflection is primarily due to the discontinuity of the

gradient at the layer boundary. The effect of the layer thick-

ness is primarily to modulate P2 by a number between 0 and 2.

The fact that the discontinuity is the primary cause of the re-

flection coefficient makes the above layer model questionable at

- wavelengths of 10 cm or less. A layer model which does not ex-

hibit discontinuities is given by

nh 2 (1 - A X emh (no - 39 - 10- h )2

After the usual effective earth radius transformation we get

2 mh
n(h)

I + e

and the reflection coefficient [Brekhovskikh, 19601

.:-Ir 2 V
2 sinh [- (sin E - -in2- A,) 1,

sinh [-!s (sin e + Fsin2 Atj
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Here A± represents the total change in n2 across the layer, and

,-y .. S 4 -

* is a measure of the layer thickness relative to the wavelength.

In contrast to (3.69) the reflection coefficient falls off ex-

ponentially with layer thickness.

Let us compare layer reflection and scattering assuming

relatively broad beams. The effect of narrowing the beams would

be to

1. reduce the scattered signal due to aperture-to-medium

coupling loss,

2. reduce the median reflected signal due to the lower

likelihood of a layer in the common volume.

The relative strength of reflection and scattering with narrower

beams is therefore more complicated to evaluate. For broad beams

the layer reflection loss is

L P 2 (-- 2 (3.71)I P GG '4 'rDT T R

where D is the path length. The scattering loss is (see Sec-

tion 4.7)

0P

L R = 00196C 2 (2'rO/X)- 5" 3 /D (3.72)t PGG n
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2

where C2  is the structure constant. I the first layer model

is assumed; then

2 2 62p

so that the frequency, scattering angle, and distance dependence

is

L-I f-4 0-6 D-2

and

L- I ~f- 5/3 c-5/3 D-1
t

From Equation (3.70) note that perfect reflection occurs for

sin E < /A- We saw in Section 2 that multiple internal

reflections (refractive multipath) can occur in that case.

Clearly troposcatter will dominate for

1. high frequencies

2. large scattering angles

and 3. large distances.

The distance dependence is even more dramatic if the scattering

angle is approximated by

0 D/Re
e

where Re is the effective earth radius.
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With the smooth exponential transition we have

2_~ 4i2r8

2 Am zp -e

assuming the effective layer thickness is large compared to the

wavelength. This shows exponential falloff with both frequency

and scattering angle.

From (3.69b), (3.71) and (3.72) we can find the value of
2/2

C 1/n required for equal values of the reflection and scatter

losses:

c2

required-n - 1.4 X7/3 0 13 /3 /D
n 1

This is shown as a function of frequency and distance in Table

3-1.

If the gradient is -300 N/km Table 4-2 shows that tropo-

scatter is dominant if C2 is 2.5 • i0 1 3  at 4GHz. Such values
2nof Cn are not uncommon, especially in connection with a steep

gradient layer as assumed in this example. It is interesting to

note that C2  will tend to be large when n2  is large. In
*n I

fact, C2  is proportional to the square of the gradient of the

potential refractive index M [Tatarskii, 1971, Ottersten, 19691:

C= 2.8 L4/3 M2
n 0

If we use (2.20) and assume M2 n 2 then we see from Table 3-1

that scatter dominates at 1 GHz and above for turbulent layers of

10 m thickness or more.
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Table 3-1

RATIO OF STRUCTURE CONSTANT AND THE
SQUARED REFRACTIVE INDEX GRADIENT

C 2n/n2 Required for Equal Layer Reflection and Scatter

1Distance 1 GHz 4 GHz 16 GHz

40 km 67.3 2.7 .10

60 km 103 4.1 .16

80 km 95 3.8 .15

100 km 71 2.8 .1

Note: 75 m obstacles a quarter of the path distance away
are assumed at each end to represent a typical tactical
environment. This accounts for the non-monotonic de-
pendence on distance.

0
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For the idealized constant gradient layer it appears that

reflection is significant at IGHz or below. However, if we

consider the exponential reflection model with smooth transitions

the reflection coefficient is so small that reflection can be

ignored even at 1GHz. For instance, with a layer thickness of

100 m and a gradient of 1000 N/km the reflection coefficient is

so low that a reflection is 106 dB below the troposcatter signal

for a 100 km path with the same geometry as in Table 3-1.

Layer reflection is associated with large changes in the

gradient over an interval less than the wavelength. This will be

a relatively infrequent event above 1-3 GHz. It is therefore

reasonable to base performance prediction on a pure troposcatter

model which will exhibit all of the critical parameters including

low level signal statistics, large multipath spread, and the fade

rates associated with wind motion.

3.8 RAIN EFFECTS

3.8.1 Pathloss Above C-Band

At higher frequencies rain can cause complete outages. For
troposcatter the scattering crosssection of the atmospheric tur-

bulence is larger when the atmosphere is humid and this fact

helps to reduce the path loss. In addition, rain in the common

volume will cause additional scattering, as discussed in Section

3.8.2.

0 Figure 3-8 illustrates how the RSL increases with in-

creasing humidity (water vapor pressure) and that rain attenua-
tion in light rain (5 mm/hr) still yields a stronger signal at 15

GHz than one would have on a dry day. The dashed curve for rain

is pessimistic because it assumes that scattering from turbulence

predominates in the common volume. The results of Section 3.8.2

indicate that the scatter from rain drops is greater than that

from turbulence at frequencies above 5 GHz.
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- Figure 3-9 shows the distance dependence with rain at 5 GHz

and 15 GHz. The rain attenuation model is described in

Section 2.

3.8.2 Rain Scatter

Assuming single (Rayleigh) scattering, the scattering

crosssection per unit volume is

5 eI l2 6n

(AS)rain = c+ 2' (2a) n(a)da
0

where n(a) is the number of drops of radius [a, a+da] per unit

volume, and e is the dielectric constant. At microwave

frequencies at normal temperatures we can take I(e-l)/(c+2)I to

be unity. Next assume a Marshall-Palmer drop size distribution,

n(a) = e-Aa

where

N0 = 1.6.10 m 4

A = 8.2.103 R 
0 2 1 m

and where R is the rain rate in mm/hour.

Then

4
0. ___f 1 .47(As)rain 1 i0-i(i GHz R
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The scattered power is

a 2
PTGTGR A d As (r)gT (-)gR(r)PR T r f d 3r  p2

(4 ) v -2

where Ar is the rain attenuation outside the common volume V.

For troposcatter from turbulence we have seen that the

scattering cross section per unit volume is given by

(As)turb n8S2 k4 )n k s

1/3

7.18 C( 1 GHz)es

Rain scattei increases sharply with frequency, but does not

have the scattering angle dependence of troposcatter. As a nu-

merical example take 1015m2/3 f =5 GHz, and e s 2n sThen

9 -1

(Astb - 2.7.10 m

and

(As rain 6.25.10 9 R1 4 7 m-

Rain scatter dominates turbulent scatter for R > 0.6 mm/

hour which is very light rain. For smaller angles rain will be

*less important. At higher frequencies rain attenuation must be

*O included, but both scattering modes are equally affected.
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For wideband links, the key effect of rain could be an in-

creased delay spread when rain occurs high in the common volume.

3.9 A PROPOSED 2-COMPONENT MODEL

The Kolmogorov turbulence scatter model applies at high

frequencies. At lower frequencies no reliable physical model

exists. The observed effects can be explained by isotropic tur-

bulence with a spectrum slope of 5, anisotropic turbulence with a

spectrum slope of 6, or by layer reflection. Both anisotropic

turbulence and layer reflection do not involve off-axis scatter

and therefore predict a large spatial correlation. For simplicity

we assume isotropic scattering here, the effects of anisotropy

can be evaluated by scaling by the anisotropy factor A as des-

cribed in Section 3.6.

To match solutions at high and low frequencies assume a

wavenumber spectrum of the form

n = nl + n2(i)

where 0nl is the Kolmogorov turbulence scattering model

and *n2 is the, possibly anisotropic, low frequency model

matching the NBS measurement. Both terms have long term

variations which are likely to be independent.

The NBS model has a spectrum slope m=5. Since C2 is notndefined in this case the refractive index variance is used in-

stead. From (3.10),

2 -2

PR PTGTGR n 2 4 (ks - 3 /d
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This matches the NBS model when anL 0 depends on the height
hc of the bottom of the common volume (h c- d/8) if

5.810 1 5 m 2exp{-h /1635m} O<h <1250m

22-hh14m- 2[ h c  -3/4

2.47•-1 m exp{-hc/2560} 1250m<hc<6250m

The approximation h ed/8 is based on an approximation requiring

a nearly symmetrical link.

The coupling loss can be calculated from (3.18). However,

this expression does not include the effects of the height depen-

dence of anL -2 This effect can be accounted for, however, by

using the delay spread evaluated in Section 3.5.7. The NBS

coupling loss can also be used.

An important topic for future work would be the further de-

velopment of this model, particularly as it is simplified on the

basis of the analytical expression for Q(T).

For a numerical comparison assume m = 11/3 in Dnl and
2 nathat Cn is given by the continental air mass profile in (2.15),

C = 1.5.1- 1 5 exp(hc/2200)
n

Figure 3-10 shows the two components for a 200 km link.

The NBS method is good up to about 10 GHz. Figure 3-11 shows the

losses for a 500 km link. Here the NBS method is good up to

2 GHz. Figure 3-12 shows the effect of different values

of2 for d =200 km.
o n
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While the turbulence scatter model is expected to be accu-

rate at high frequencies it is not clear exactly what the cut-off

frequency is, or that the NBS model can be used unmodified as

different values of are used.
n

03
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SECTION 4

DIFFRACTION

Diffraction over terrain obstacles is a frequent mode of

propagation on some over-the-horizon microwave links. In this

section we describe some analytical and computational techniques

useful in predicting the propagation parameters, path loss and

delay.

4.1 BACKGROUND

Communication systems relying on diffraction propagation

are rare. Usually a diffraction mode of propagation occurs when

the link parameters are not as expected in the link design. The

diffracted signal will then often be considered as interference

with the desired signal. Assume the frequency is high enough so

that ray theory is meaningful. Figure 4-1 shows how an obstacle

can interfere with a line-of-sight path. Under normal conditions

the ray scattered from the obstacle will bd suffSbiently attenu-

ated that the interference with the direct ray is minimal. When

the obstacle is within the first Fresnel zone of the direct ray

the interference can be significant. When there is a direct ray

. as in Figure 4-la the receiver is said to be in the lit zone. In

this zone the diffracted ray is also a reflected ray. When the

direct ray is blocked, as in Figure 4-lb the receiver is said to

be in the shadow zone, in this case we talk about a diffracted

ray. Keller [1962] has developed a complete Geometrical Theory

of Diffraction (GTD) for diffracted rays which will be applied

later in this section. Note from Figure 4-la that the diffracted

(reflected) ray will have a different delay than the direct ray,

causing multipath that may degrade wideband communications. This

delay dispersion effect can be much more serious on troposcatter

links, as shown in Figure 4-2. Two separate horizon obstacles
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are common on troposcatter links. When the double diffracted ray

is strong enough it can combine with the troposcatter signal to

produce a large delay spread on the received signal. This effect

* has been found to degrade the new digital tactical troposcatter

- system AN/TRC-170 in tests on some links.

The above mentioned diffraction effects are strong reasons

-. to investigate techniques for predicting the diffraction path

loss and delay. In addition many over-the-horizon links depend

solely on diffraction. In fact, the received signal level can

* sometimes be improved by introducing a knife-edge obstacle. The

reason is simply that the reflection interference (Figure 4-1a)

may produce a deep fade and hence a weaker signal than a diffrac-

ted ray in Figure 4-lb. Predicting diffraction effects is dif-

* ficult, however, since the results are extremely sensitive to the

assumed link parameters. Past experience with standard predic-

tion techniques have proved them to be quite unreliable. This

section will describe both the existing techniques as well as

some new technique that may prove more successful when powerful

digital computers are used to gather the necessary data as well

as calculate more precisely than before the diffraction path

loss.

Historically, the study of diffraction of radio waves by

terrain features has been approached from two different points of

view. One is diffraction by isolated obstacles such as mountain

ridges or hills and the other is diffraction over the bulge of

the earth. Transmission loss prediction methods based on dif-

fraction theory for isolated obstacles have been used for radio

paths where both the transmitter and receiver have a common radio

horizon. On the other hand, prediction methods based on the

theory of diffraction over the bulge of the earth (ground wave

propagation) have been used for radio paths where transmitter and

receiver do not have a common radio horizon [e.g., Rice, et al.,

1967; CCIR, 1978]. These prediction methods are most useful at

VHF (30-300 MHz) where obstacle and terrain irregularity are
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relatively small compared to the radio wavelength. However as

the applications have progressed from VHF to microwave frequen-

cies, these approaches have become increasingly unreliable.

There are several reasons for the unreliability of the dif-

ferent methods:

1. Diffraction loss calculations based on diffraction

theory for propagation over the bulge of the earth are

only accurate when the surface of the earth is smooth

and devoid of any prominent obstructions (the ocean

surface is the best example). This technique is in-

practical with highly irregular surfaces.

2. Prediction based on multiple knife-edge diffraction

theories is ideal for highly irregular terrain such as

mountains. They fail when the edges are rounded or

when the terrain is flat. When diffraction is over

more than one edge many techniques fail in the transi-

tion region between the lit zone and the shadow zone.

3. Modification to rounded edges can be used with some of

the techniques when the edges can be approximated by

circular cylinders. Keller's Geometrical Theory of

Diffraction can be extended to multiple rounded edges

but the technique fails in the transition region

between the lit zone and the shadow zone.

4. Edge irregularity can significantly affect the dif-

fraction loss [Hacking, 1970; Haakinson, 1980; Reudink

and Wazowitz, 19731. It can cause multipath and

fading which may be difficult to model. Theory and

experiments show that edge roughness make a rounded

edge behave more like a knife edge. [Bachynski, 1963;

Hacking, 1970]
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Two different techniques have been investigated to treat

the problem of diffraction by multiple edges. These two tech-

* niques are discussed in detail in this section. We start off by

discussing in Section 4.2 the application of Huyghens' principle

to knife edge diffraction. This leads to the introduction of a

IP, direct numerical technique for the treatment of the multiple

knife-edge diffraction problem. This technique is shown to

reduce to the classical results of Millington et al. (1962) for

double knife-edge diffraction. Then the technique is compared

with the recent results of Vogler [1982] for multiple knife-edge

diffraction. The technique is then extended to include ground

reflections and is applied to diffraction by rounded and square

-. edges. Comparisons are made with the theoretical results of Wait

and Conda (1959] and the experimental results of Hacking [1970].

- The direct application of Huyghens' principle can be quite

- time consuming even with a powerful computer. A number of

simpler techniques have been used in the past to treat the mul-

tiple knife-edge diffraction problem, the most popular being the

- * Epstein-Peterson technique and the Deygout method. These tech-

.. niques are described in some detail in Section 4.3. Then a new

uniform GTD (ray) technique for treating the problem of dif-

fraction by multiple knife edges is described in Section 4.4, as

-' well as its extension to rounded edges.

We conclude the section with discussions of the effects of

O the edge profile perpendicular to the path, spatial and long-term

temporal variations in diffraction paths.

4

4-6

. .. ,e h .i, - ,



* ""4.2 APPLICATION OF HUYGHENS' PRINCIPLE

4.2.1 Single Knife Edge

Huyghens' principle is illustrated in Figure 4-3. The

field at R is composed of the field radiated from secondary

sources in the plane of the knife edge. This representation can

-. be made precise as we shall see. When the diffraction angle 0 is

large only the secondary sources near the top of the edge con-

tribute, and the field at R can be computed as if there is only a

single diffracted ray through the point P. This is the basis of

GTD which is asymptotically valid (high frequencies) as long as

the receiver (R) is in the shadow zone. When R is in the transi-

tion region GTD fails because the higher secondary sources can

not be ignored.

In applying Huyghens' principle it is assumed that the

field above the edge depends only on the field incident from the

transmitting source (T) (Kirchhoff's assumption). In other

words, the edge must not distort the incident field significantly

- . and for any obstacles on the far side of the edge, reflections

back to the plane of the edge are ignored.

Let ul(r) be the field incident on the knife edge plane.

Let R(r) be the distance from a secondary source location to the

* receiver. The field at the receiving point _ can then be found

from Helmholtz's integral,

au -1 (r) 3v(r)

u (rK f [v r) u1 (r) r) (4.1)
- S an -1 n d
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where the integral is over the (half plane) surface S above the

edge and v(r) is given by

-jkR(r)
v(r) 41R(r) (4.2)

u(4) then satisfies the wave equation on the receiver side of

the plane, V2u + k2u = 0 with the boundary condition u = u I on S

and u = 0 on the edge. Equation (4.1) requires knowledge of both
the value ul (r) of the incident field on S and the derivative of

uI along the normal to the surface. This actually over specifies

the solution to the wave equation. To see this in general

requires introduction of the Green's function, and this will be

done in Section 4.2.5 when ground reflections are taken into ac-

count. For the plane surface considered here the Helmholtz
formula (4.1) can be reduced to the Rayleigh formula

2 f _1 (r)2dv dS
P S x

where the X-coordinate is perpendicular to the plane S. In terms

of the Y and Z coordinates in the plane we have

u(rp) - 2 f dy 7 dz ul(X,y,z) V(XpX, yp-y, Zz
- 1  P(

-,--. * ...



0

where hiis the height of the edge and

-jk x 2 ~~2

v(x,y,z) = e- (4.4)

4 r x2+y+z2

IV( x, y p- y, z p-z) is the f ield at due to a monopole at the
location of the secondary source r. Assume now that the incident

field is cylindrical, i.e., independent of y. Integrating (4.3)

over y yields

u (x z i~xz ()( x J2(u1(xz) ~E1~~~(k x 2 (4.5)
p x 0 p

At high frequencies the Bessel function in (4.5) can be replaced

by its asymptotic expression, yielding

e j w 4 (x _xj -jk (x P x)2 +(z p z)2

1 u(x~ p z p h 1 xz [(x x )2 +(z z)2 3/~4

-"k~ -x) -jk(x -x p2 (+ 47 7 2\

= x~ I x jl2 e fj h' (x,z) e P 21 3/4

1 hfl +

-fu 1 (x,z) v1 (x -x, z - z) dz (4.6)
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where

z -Z
= 1 ~pZ) X 

Ix -

p

S-4

and v, (x PX 1  z Pz) represents the field at (xp,,z ) due to a

cylindrical source at (xz). Vi is sometimes called the

gator. For most propagation links 'pis much less than one and

then we have the approximation

2

1l/2 -jk(x PxJ -)jk(x P-x)f /2
u(x iZpx- e f u(x,z)e dz (4.7)

P h

In essentially this form the Huyghens' principle was applied to

the case of two knife edges by Millington et al [1962].

For the single knife edge consider the case where the in-

cident field is a cylindrical field from a source at (x.e Z),

S- U 1(xZ) = [j ]1/2 -j (k (xp -X 5) 2  (z-j 2 -)

-x* el(~ ~ d 47

" - x s en ia l thi form th Tu e s ri c ews ap l ed t

-~x -k 2 Zsl/4

[(x-xS) 2 +(-Zs

-
k4-1
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Assuming again that the angles are small (z-zs << x-xs) we have

(Z-Zs 1

u_(xz) ejk(XXs) e-k 2x SX /s

Hence

-jk x s ) x z 2
j eJi/4 Xp (z-z ) 2 (z -z

U(X ez e f dz exp[-jk(2 s +
*) p p ftX 2l -x 1 x-x 2 + 2x -x5pX-Xs (Xp-X )  h1 p

and the attenuation due to the edge is found to be

u(x , z k(x-x)(x -x)
2( 4 - - (4.8)u I Xp 2[p-X s j

where
rO

j yr/4 O 2

F(x) e ej t dt
x

is the Fresnel integral and 0 is the diffraction angle,

- (Z-zs)/(x-x s ) + (Z-z)/(xp-X).
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This is the usual single knife edge solution. Deep in the lit

zone F(x) 1 as would be expected since the obstacle can then be

ignored. At the transition we have F(0)=l/2 corresponding to a 6

dB attenuation independent of range. In the deep shadow region

we get

( ( (z -h 2)-jk -\$ x xs+ s e 2(x p-k D 2

uIXp,ZpV- e . e\ • D( 0)

pp/x-x S Vk x p-X)

(4-9)

where the first term is the cylindrical field from the source to

the first edge and the second term is the field at the receiving

point (xp,z) due to a cylindrical source at the edge. The

factor D(0) is Keller's diffraction coefficient. Geometrical

optics can be extended in this case by including the diffracting

ray and the diffraction coefficient. The coefficient D(0) is

*given by

D( ) e- j i/4

D( 0) (4.10)
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The Geometrical Theory of Diffraction uses (4.9) iterative-

ly on successive edges. This technique is successful only when

in the deep shadow zone of all the edges. Near the transition

region it breaks down since D(O) as 0 + 0. A number of

uniform asymptotic techniques for single edge diffraction

[Ahluwalia et al., 1968; Kouyoumjian and Pathak, 1974] have been

developed that avoid this difficulty. A generalization of the

Uniform Geometrical Theory of Diffraction (UGTD) of Kouyoumjian

and Pathak [1974] for the treatment of multiple edge diffraction

is discussed in Section 4.4.

* 4.2.2 Iterative Computational Technique for Multiple Edges

The numerical evaluation of (4.6) and (4.7) requires a

truncation of the infinite integral and a Riemann sum approxi-

mation to the resulting finite limit integral.

A truncation of the integral is equivalent to approximating

the edge by a slit as shown in Figure 4-4. If an artificial

obstacle in the form of an upside down knife edge is introduced,

the lobes caused by a reflection from the artifical obstacle can

distort the waveform at the receiver. It is therefore practical

to use a window function to eliminate most of the reflection from

the upper obstacle. Another way of looking at this is to perform
a weighted average of knife edges located at various heights

above the actual obstacle. Assume a window function, w(z; hla,

hlb) which satisfies

for z < hla < hlb

w(z)

0 for z > hlb

4-14
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For the numerical examples in this section, a raised cosine

window is assumed. With the window function we have the

-" approximation to (4.6),

h lb

U(Xpzp) ~ I w(z; h a; hib) Ul(x,z) Vl(X . (4.11)
p pla l)u p

where hlb is usually large enough when it is several Fresnel

zones removed from hi (or from the LOS ray if in the lit zone)

The convolution in (4.11) is best implemented with an FFT, but

care must be taken when approximating (4.11) by a finite sum.

Let us assume that the step size 6 is small enough so that the

*- incident field ul(z) does not vary much between adjacent samples

z = n6 and z = (n+1)6. Assume also that the magnitude of v, in

(4.6) is slowly varying (which it is) but that the phase may have

a linear dependence on z between samples. In other words

approximate vl(xp-X, zp-z) in the vicinity of z =z n 1 + n6by

v l (x-x, ZpZn-z' ) v l (x p x , zp-zn)exp 2z
" ' "+ V 1 +

where

S(z-z)/(x X)
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Hence

N-i sin U
nU(x 'Z) w(zn h la' h lb)ui(xZn )vl (xp-X'z p-zn )6 U (4.12)

pp n=O nbu~~

where

6 = (hlb-h )/(N-1)

and

U--"- "_ _

Un n + k* 6/2
:'-"" 1 + 41 2

It is convenient to define

v 2 (x p - x , Zp-Zn) = v l (x p - x , ZpZn) sin U (z pZn )/Un (z -z nJ

The numerical approximation (4.12), although looking rather for-

. midable, is relatively easy to evaluate with an FFT. It is

simply a discrete convolution of w, uI and v2. Let U and V be
two 2N dimensional complex vectors and fill Unl n = 0, ... , N-I

with the N weighted samples of the incident field uI and fill the

rest of U with zeros,
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w(zn; h hxz n  n = 0, 1, ... , N-i

U n

0 n N, ... , 2N-I

Next fill the V vector with the samples from the v2

function,

- v 2 (xp-x,h 2 -h 1 + n6) , for n = 0, 1, ... , N-I

V n

- t-X,h hl + (n-2N)6) , for n = N, N+l, ... , 2N-1

- where h 2 is the height of the next edge at x = P,

Then

U(X ,h 2 +m6 ) = INV.FFT{FFT{U} FFT{VI} . (4.13)

With a 2N-point FFT the field at n points above the obser-

vation point (xp,h 2 ) can then be calculated from the field at the

N points above the edge at (x,hl). This can be used iteratively

to compute the field over several knife edges. This technique is

similar to that of Vogler (1982). Vogler uses a more efficient

complex integration path that reduces to repeated integrals of

the error function. The advantage of the technique described

here is that the integration is over real physical rays, simpli-

fying the interpretation of the results and the extension to non-

knife edges.
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With N edges an N-I fold integration is required. If infi-

nitely many edges are introduced the integration reduces to a

Feynman path integral. This point of view can be quite illumi-

nating. Consider a number of edges and assume that they are all

significant, i.e., that each edge is in the shadow of the

previous edge or at least is close to the transition region.

Figure 4-5 shows an example with 4 edges where the shortest path

over the edges is drawn. We can now consider rays with a

slightly longer path length, say X/2. This yields the rays

within the first Fresnel tube around the shortest path. It is

intuitively clear that the integral over all paths connecting

transmitter and receiver can be approximated by including only

the first N Fresnel tubes, or rays within NX/2 of the shortest

rays. When many edges are involved, this gives us a good way to

pick the upper limit hlb in the truncated integration at each

edge: simply use the upper limit of the N'th Fresnel tube.

4.2.3 Numerical Comparison with the Results of Vogler [1982]

As a check on the accuracy of the technique consider some

cases also evaluated by Vogler 11982]. The first case (Figure 2

in Vogler's paper) is a 30 km link with three knife edges. The

first is 10 km from the transmitter and 100 meters high. The

second is 15 km from the transmitter and varies in height. The

third edge is 20 km from the transmitter and 100 meters high.

The frequency is 100 MHz. The results of the iterative technique

are shown in Figure 4-6. It shows the diffraction loss which is

defined as the total loss relative to normal line-of-sight. It
is found using up to the 20th Fresnel tube with a varied cosine

window on the 10th to 20th tube, using the truncation windowing

technique described in the previous section. The results agree

with Vogler's. Note that maximum signal strength is achieved for

h2 M 270 m, where the middle obstacle is so high that it has

direct line-of-sight to both transmitter and receiver. This is

4-19
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an example of the situation mentioned in the introduction, that

introducing an obstacle can actually improve performance. When

h2 is high the result approaches that of a single knife edge,

while for small h 2 only the attenuation of the two fixed

obstacles is observed.

Figure 4-7 reproduces the results of Figure 3 in Vogler

(1982) using the technique in 4.2.2. This is for a 50 km link at

500 MHz with N obstacles with distances

d = 2 42 km , n =1, 2,..., N

n N

and heights

h = 420 m , n 1, 2, ... , Nn N

The diffraction loss is shown as a function of the height of the

receiver.

These results validate the iterative technique described in

Section 4.2.2. In Section 4.2.5 it will be shown how the tech-

nique can be extended to include ground reflections and approxi-

mate rounded edges.

4.2.4 The Double-Knife Edge Case, and Other Special Cases

It may be instructive to summarize the results for two

edges, and also describe special cases where an analytical solu-

tion is possible.

Consider the 2-edge geometry in Figure 4-8. By repeatel

use of (4.7) we get
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U c ejk(a+b+c) k z
c, : j e fdz 1 f dz 2exp[2{--2 ,a2-bc 2a- hI  h 2

*which is the expression used by Millington et a:
it is possible to get an asymptotic expression

* geometry, a much simpler uniformly valid ex

possible. The diffracti'n loss relative to LOS i

A YT.j ab~c I,

where I is the integral above. Following Milling

* this can be written as

A fdr r(02,r)+ 0, r) e

where r0 is the distance detour, the length of t!

*over the edges relative to the straight line c

transmitter and receiver.

2 2

0 2a 2b 2c

r0

4. *1 (r) = 1-Arcsin[-- sin *1]

r0

* 2 (r) = i2 -Arcsin[--. sin *2]
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and

h+b 11/2

SIf rl 1 2c(a+b)
0

sn"2 r r2a(c+b) 1/

The integral can, be evaluated numerically in terms of the

* :'.function

G (ro a) S t[Qt-Arcs in (T-sn a) ]eJtdt, (4.14)

yielding the diffraction attenuation

A =- .JG(r )~2 + G(r0,ip1 } . (4.15)
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A few special cases can be evaluated directly:

. (i) h =h =0 (T-R line just grazing both edges)
1 2

then

r 0
0

and

A + *
1 2).

1/2
" 2 [ r - Arctan[b(a+bc)i ] (4.16).- 2n ac

a result first found by Millington et al [19621. Simply squaring

the single edge result would indicate a 12 dB loss independent of

a,b, and c. It is seen that the actual loss is between 6 dB (b

small) and 12 dB (b>>a, b>>c).

(ii) ac= b(a+b+c)

*O and

a

h 1 =h 2 a+ > 0 (edges lined up with transmitter).
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In this case we have pi j, 2 so that
. 1 F 2 =

A = F(0)F(/k r0 + F (/k/2 r0 )

when F(x) is the Fresnel integral in (4.8)

(iii) b >> a,c (Edges far apart)

so *1 + P 2 = 11/2

Then

A = F(/k J0 1 2)F( rk J 1 2 3 )

where J012 is the distance detour over edge 1, going from 0 to 2,

2 2 2 )2 2 201 2 +Yb 2 (hf j 2- (a+b)2+ 2
012 =  

1 2-hl h2

and similarly

2 c2+ 2  2
J c ~+ h+ b + (h- 2_V b 2+ 2123 2 2 1 1

This is simply the repeated application of the single edge result

in (4.8). The GTD solution is therefore valid in this case.
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(iv) Asymptotic solution (r0 / large)

Even for large values of the detour parameter r0 we have

[Millington et al., 1962]

2
-jkr 0

G(r 0 ,a) - -tan(a)e /(2kr0) 2

Then

2-jkr 0

A- 4irk 2 (tan 1 + tan *2)

* -jkr 0
2  sin l+ *2)

4rk er 0 cos *i (r 0 cos *2)

If E012 is the diffraction angle at the first edge,

and 0123 is the diffraction angle at the second edge, then

r Cos ab 1/2

I r 0 cos *I = e01 2 [ 2 (a+b) ]

and

cb 1/2.rcos *2= 12312(cob)
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since

sin(p b(a+b+c) 1/21i ,+2) = (a~b)(c+b) ,

we get

':[! -jkr02 kabc

A ~ kr (ka)(kb)(k D(0012) D(0 12 3 ) (4.17)

where the diffraction coefficients are given by (4.10). This

expresses the loss of cylindrical propagation to the first edge,

. followed by cylindrical propagation from the first to the second

- edge and finally from the second edge to the receiver, relative

to a free space ray directly from transmitter to receiver. This

result is the basis of the GTD solution discussed in Section 4.2.

(v) For a triple knife edge link Vogler (1982) has found

the following exact result for the case of hl=h 2=h 3=0 (LOS ray

grazing all edges):

0
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1/2)
2 t

iT -1 - -t

A()=(1/41r)[ + tan a+ tan( aJ
<-= (I/4ir)[ + tan-lal + tan-la2

'"~ aa

+ tan 1 ( 1/2 )

2 2 12

2+ 2)
-1 -

= (1/47)[ + tan- al/C + tan- a2 /C 3

+ tan- I (aI a2 /C3 )]

In this expression we have

a. = a 3  i = 1,2

2 r0 1 r2 3a
1 r0 2 r1 3

2 r1 2 r3 4
2 r1 3 r2 4

l -r r 2  r
2 = 12 23 r 04
3 r0 2 r1 3 r2 4

* . 'and rn is the distance between edge no. n and edge no. m, where

0 indicates the transmitter and 4 indicates the receiver.
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4.2.5 Extension of the Computational Technique to Include Ground
Reflections

The repeated use of the Huyghen's Principle in Section

4.2.2 assumes there are no foreground reflections. Such reflec-

* tions play a key role in the diffraction over rounded obsta-

cles. The basic assumption we need to make is again that there

is no backscattering. We need to introduce the Green's func-

tion G(r sr p. Referring to Figure 4-9 we place a source at the

point Q and a receiver at the point Pl, on opposite sides of the

interface S and above the obstacle surface B. G(Is,r is the

field at r due to a monopole at r5 , subject to the boundary con--p -
ditions on B. The Green's function satisfies

Reciprocity: G(rs , r) = G(r s
-p -p

Wave equations: V2 G(rs , rp + k2G(r s , 1 6)=-( -s )
p p - -p

-Boundary conditions: az( r)G( Es,p +O1rp) n r -ps, on B

where n is the normal to the boundary.

Let u(E) be the field at r. For simplicity a scalar field is

• . assumed, this could be the vertically polarized component of the

-. field, for instance.

From the wave equation for G and u we get by integrating

'O. over the volume V enclosed by S and the boundary B,
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I

f u(,r)V2 G(r,r: )-G(r,r )72 u v(. dr 4.18)

=-f u (r)E (_E-!:r)dr
V

=- p

From Green's Formula, (4.18) reduces to a surface integral over S

and B,

aG~rrr
u~r =-f (I:~ - dr

S+B a

On B both u(r) and G(r,rp) satisfy a homogeneous boundary
p

condition of the form

Du()
a~~~)+ 0(inr

The integral over B is therefore zero, and we get

uaG(r,r au(r)

u(p - u(r an r G(r,_p ) - dr . (4.19)
p S

This expresses the field at r in terms of the field on the
-p

interface S. It assumes there are no sources in the volume V and

that the observation point r is inferior to V. It is similar to

-p
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- (4.3) except that both u and @u/an must be known on S. However,

we assume that the part of the obstacle on the source side of S

does not affect the field at P1 when the field on S is known. In

other words, backscatter is ignored. Assume S is a plane

surface. The obstacle can then be assumed to be symmetric with

respect to S.

For a symmetric obstacle, calculate the field at P2 where

P2 and P1 are symmetric points relative to the plane S. Since

both Q and P 2 are outside the volume V we have

aG(r,r' Du (r~
U -- _ __

Sf (r) r G r,ra'd r (4.20)
s

By symmetry we have that

G(r, r' -) G(r, r )

and

an r anr

Inserting this in (4.20) and subtracting the result from (4.19)

yields

U(.r -2 f1 u~r) a T--T a r . (4.21)
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This is the generalization of (4.3). Without the ground reflec-

tion the Green's function is simply

G(_, t,) = v(r)

where v(r) is given by (4.2).

When the surface B is plane the Green's function is

Gr v v(E) + P 6v (r'J

where r' is the point r reflected in the surface B, and p( 9) is
the reflection coefficient. This is illustrated in Figure 4-10.

Let 0 be the slope of the ground,

S-tano (h 2 - hl]/, x p - x)

The grazing angle at the point of reflection is e, where

n (zp-hl) + (z-hl)cos 2
tan{G- O) ='xp -X) - (z-hl)sin 2

Eq. (4.6) is then generalized to

ux,z f u(xz)vl(-x'z-z z)+(e)vrx -x' -z' 'Vz

* (4.22)
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where

x = x+(z-hl)sin 2e

z' = hl-(z-h l )cos 20.

Eq. (4.12) is similarly generalized, but the integral in (4.22)

is no longer a convolution so the FFT solution is not directly

applicable. However, in practice only points with a small

grazing angle e will contribute. It is therefore possible to do

the integration in (4.22) on a point by point basis.

The reflection coefficient p(6) can be found from most text

books on electromagnetic propagation. For a smooth earth we have

for vertical polarization (Beckmann and Spizzichino, 19631

) y2 sin6 -y 2 -cos 2 (. p v ( )  =( 4 .2 3 )

Y2 sinO + y2 -cos2 0

and for horizontal polarization

-= sin (4.24)

sin8 +y2-os2e

where Y is the normalized ground admittance

2 E
Y 0 i 60 XS , (4.25)

= dielectric constant of the ground,

a = conductivity of the ground.
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Typical values are e/c0 =10 and a=10 mho/m for ground, and

C/C0=80 3nd a=10 - 3 mho/m for the sea. At microwave frequencies
it is usually reasonable to ignore the conductivity. Figure 4-11

shows the horizontal and vertical reflection coefficients at var-

ious wavelengths.

When the surface is rough the power in the specular reflec-

tion is reduced in favor of a diffusely scattered component. The

* -specular reflection coefficient due to surface roughness can be

modeled as (Beckmann and Spizzichino, 1963]

4"' it 4 Oh s i n e 2

P2 = exp[- h e 1 (4.26)

where

ah - rms standard deviation of the surface height.

The total reflection coefficient is

p(e) = PH,V( S ) Ps( E)

4.2.6 Diffraction Over a Flat-Top

By incorporating the ground reflection we can determine the

0. diffraction loss over a square topped edge (Figure 4-12). The

example in Figure 4-12 was chossen to match the experimental

results by Hacking [1970]. In that paper scale models of the

obstacles were used to measure directly the diffraction loss.
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Figure 4-12 shows the diffraction loss, relative to the unob-

structed field, as a function of the Fresnel parameter v. For a

smooth edge (Ah = Om) the results match the theoretical predic-

tions in Figure 18 in Hacking's paper, but predict a larger loss

than measured (6 dB more for v = 7). This can be attributed to

the difficulties of producing a perfectly smooth surface, and

other measurement difficulties at high diffraction losses. The

measurements agree with the theory in Figure 4-12 for small

v(v45). Hacking also presented a set of measurements for the

diffraction loss due to a rough edge, with Ah = 3.3m at 1 GHz.

The prediction of the diffraction loss in Figure 4-12 shows about

* 5 dB more loss than measured at v = 10, but the measurements

would match the prediction if the latter were performed for

Ah - 5m. This shows that surface roughness is extremely

U important for the prediction of microwave diffraction losses, and

also that the smooth edge model often used in prediction

techniques such as NBS or CCIR are very inaccurate at microwave

* frequencies.

4.2.7 The Computational Technique with Straight Line Approxima-
tions to Rounded Edges

Diffraction over rounded edges is frequently studied in the

literature. At microwave frequencies a completely smooth and

rounded profile is unlikely to occur, but it is a good verifica-

tion of the computational technique to consider the diffraction

loss due to a rounded edge.

A rounded obstacle can be approximated by a series of inner

or outer chords. Due to the excessive computer time required we

have been unable to get a consistently good approximation to a

rounded edge this way. However, it is interesting to note that a

properly scaled flat-top obstacle will have approximately the

same loss as a rounded obstacle. Figure 4-13 illustrates a

rounded edge and the flat topped square edge approximation.

Figure 4-14 shows the diffraction loss as a function of the

parameter
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1/3

where 8 is the diffraction angle and R is the radius of curvature

of the rounded obstacle in Figure 4-13. The flat-top loss is

within a few dB of the rounded hill. It should be noted however,

that this result may not apply to diffraction over multiple

rounded edges due to the drastically different shapes.

It is surprising that the flat-top, although completely

contained within the rounded obstacles, sometimes has a larger

loss than the rounded obstacles. Perhaps even more surprising is

the result that a wedge outside the rounded edge (also shown in

Figure 4-13) has a smaller loss, as seen in Figure 4-14.

This effect, that enlarging the obstacle can reduce the

loss, is an extension of the similar result for the knife-edge

seen in Figure 4-6. To see this, we repeat the case in Figure

4-6 but with the edges joined by plane surfaces. The result is

shown in Figure 4-15.

Several results are noted from this figure.

1. At high diffraction angles the loss of a perfectly

reflecting edge is approximately 6 dB higher than if a

knife-edge is assumed.

2. A moderate amount of surface roughness will bring the

loss at high diffraction angles down to that of a

knife-edge.

4

3. At more shallow angles the surface roughness plays a

more important role.

4
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4.3 AD-HOC TECHNIQUES FOR CALCULATION OF MULTIPLE EDGE
DIFFRACTION

The extension of the Fresnel-Kirchhoff Theory (Huyghens'

Principle) to treat the problem of diffraction by two or more

edges results in multiple integrals which are difficult to handle

analytically. Due to the complexity of the Fresnel-Kirchhoff

theory for multiple knife-edges many simple geometric methods

have been proposed such as those of Bullington [1947], Epstein

and Peterson [19531, the Japanese Atlas [1957] and Deygout

[1966].

4.3.1 Bullington Method

The Bullington method consists of replacing the multiple

edges by a single virtual edge whose height (above source!

receiver line) is- determined by the horizon lines from each

terminal. This method has been shown to be inaccurate under most

conditions [Millington, et al., 19621 and is not discussed

further.

4.3.2 Epstein Peterson Method

In the Epstein-Peterson method, the diffraction loss is

calculated as the product (sum in dB) of losses obtained from

each diffraction edge. The loss for an edge is obtained assuming

the path is from the previous edge (or transmitter for the first

edge) to the subsequent edge (or receiver for the last edge).

This is also the method recommended by NBS Technical Note 101

[Rice, et al., 1967] and hence merits discussion.

Consider the geometry of Figure 4-16 where multiple dif-

fraction occurs with three ridges. The source (transmitter) is

situated at T0 and the receiver at R with P1 , P2, and P3 repre-

senting the intervening edges, and the interseparations being dI ,

d2 , d3 and d4 as shown. The angles of diffraction at each edge

are 01, 02, and 03, respectively.
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The relative field strength at P2, which is in the shadow

cast by PI, is first calculated. When the obstacle at P1 is a

knife-edge, the relative field at P2 will be F0 (vI ) where vI is

the Fresnel parameter for the path ToPlP 2 and F0 ( v) is given by

(4.26). The relative field at P3 is obtained by multiplying

F0 (vi) by the relative field which would be obtained at P3 if the

source were located at PI; this second factor is denoted F0 ( v2 )

where v2 is the Fresnel parameter for the path PlP 2P3 . Finally,

the relative field at R is obtained by multiplying the relative

field at P3 by a third factor F0 (v3 ) calculated by assuming t

source is located at P2 ; thus3 is the Fresnel parameter for t

path P2P3R, and the field strength at R is given by

E(R) =Eo(R)Fo(VI)F 0 (v2 )F0 (v3 ) (4.27)

where E0 (R) is the free-space field at R, F0 (v) is the Fresnel

integral defined as

eJ/4 a -jjt 2

Fo(v) - Je (4.28)
V

and the Fresnel parameters vI , v2 , and v3 are defined as

1 2dld
2

V2 = 02V (d2+d 3

4-49



and 2d3d4
V 3 ~ 4 Ov3 = 3  ~d 3 +d 4)

Note that in their notation, the Fresnel parameter is positive

when the terminals and edges are in the shadow zone and negative

when they are in the lit zone.

This method has also been analyzed by Millington, et al.

[1962] for the case of two edges and has been found to underesti-

mate the diffraction loss when the loss due to both edges are

large, and to overestimate the diffraction loss when both edges

lie on or near the line-of-sight.

The Epstein-Peterson method breaks down completely when one
or more of the diffraction angles is negative as it does not

account explicitly for the appropriate number *of rays. Consider

for example the geometry of Figure 4-17 where there are three ray

paths between transmitter and receiver. Since the diffraction

angles at the second and third edges are negative, the Fresnel

parameters v2 and v3 are also' negalive. Furthermore, making use

of the fact that F0 (v) = l-F0 (-v), it can be seen that mechanical

application of the Epstein-Peterson method to thi2 geometry

yields a received field strength given by

E(R) = E0 (R)F0 (V1 )F0( v2 ) [1-F 0 (-v3 )]

which gives the field strength due to two rays: one double

scattered ray and one -riple scattered ray. The geometry of

Figure 4-17 shows three rays, one of which has undergone single

scattering.
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In order to arrive at the correct result each ray must be

accounted for explicitly. A uniform GTD technique which does

just this is discussed in Section 4.4.

4.3.3 Japanese Atlas Method

The Japanese Atlas method [1957] is similar to the Epstein-

Peterson method with the difference that the distance on one side

of the diffracting edge is measured from the terminal rather than

the adjacent edge. If we refer to the geometry of Figure 4-16

where multiple diffraction occurs over three ridges, the diffrac-

tion path between the source at To and the receiver at R is

ToPIP 2 P3R. The field strength Ed, relative to the free-space

field, E0 , at R is again calculated from Equation (4.27) but the

Fresnel parameters are redefined as

2d d

1  X(dl+d2 )

= 82 2(dl+d2 +d3)

2d4 (dl+d 2 +d3 )
3 : 3 X(dl+d2+d+d4

This method yields the correct result when the diffraction

angles are large and is reciprocal even though the losses due to

each obstacle differ depending on which obstacle is taken as the

transmitter. The total diffraction loss is the same, though.

When one or more of the diffraction angles is negative, mechan-

ical application of the Japanese Atlas method suffers from the

same deficiencies as the Epstein-Peterson method, i.e., it does

not account for the proper number of rays.
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4.3.4 Deygout Method

The Deygout method IDeygout, 1966] is an ad hoc technique

which consists of obtaining a loss for each diffraction edge in

turn as if the remaining edges were absent. The largest of these

losses is used to divide the path in two and the process repeated

in the two halves as if the edge were a terminal. This process

is repeated until each of the diffracting edges has been used.

The resulting loss factor is the product of the factors corre-

sponding to the larger loss in each of the steps. When there are

only two edges, the Deygout method is the same as the Japanese

- Atlas Method. However, when there are three or more edges, the

two methods will give different answers in general. For the

geometry of Figure 4-16, the Deygout method gives the received

field strength also by Eq. (4.27). However, the Fresnel param-

eters vI, v2 and v3 are defined in terms of the obstacle heights,

hi , h2 and h3 (where h2 > hl, h3 ) as

(d1+d2
V 1  h h1  )dTd

Sh (dl+d 2 +da+d4 )2 h2 )t[d+d 2 J [d 2+d3 J

3 2(d3 +d4 )3F~d 3 4

The Deygout method also yields the correct result for large

obstacle heights (diffraction angles). When one or more of the

diffraction angles is negative, mechanical application of the

Deygout method by defining the obstacles heights to be negative
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can also yield the wrong result as the number of rays included in

the calculation will not always necessarily reflect the actual

geometry.

4.4 UNIFORM GEOMETRICAL THEORY OF DIFFRACTION (UGTD)

The Geometrical Theory of Diffraction (Keller, 19621 (GTD)

is an extension of Fermat's principle of stationary phase paths

(ray theory) to include paths around obstacles (e.g., diffrac-

tion, scattering, etc.). Since the GTD is an extension of ray

theory, it is very intuitive and lends itself to the treatment of

more complicated problems (such as multiple edge diffraction)

where the exact boundary-value problem cannot be solved in closed

-. form. Unlike Sommerfeld's solution, Keller's GTD solution is not

valid at every point behind the obstacle. The region where the

- GTD solution is not valid is called the transition region. Out-

side the transition region, the GTD solution reduces asymptoti-
cally to the Sommerfeld solution as the frequency approaches

infinity. More recently, new solutions which combine the simple

construction of the GTD solution with the more accurate represen-

tation of the diffracted field have been developed. The tech-

*[ nique developed by Kouyoumjian and Pathak [1974] for diffraction

.- by a single edge is referred to as the Uniform Geometrical Theory

of Diffraction (UGTD) and has the property that it is valid

everywhere including the transition region. Another technique

.- called the Uniform Asymptotic Theory (UAT) has been developed by

Ahluwalia, et al. [19681. The two techniques yield similar

results [Boersma and Rahmat-Samii, 1980], but the UGTD approach

appears to be simpler to apply to propagation problems The UGTD

solution also suits itself to the treatment of more complex

problems, e.g., rounded edge diffraction and multiple edge dif-

fraction. Therefore, it will be instructive to summarize the

approach for the case of a single knife-edge. The extension to

more complicated geometries will be discussed in subsequent

sections.
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Consider the geometry of Figure 4-18. Let us assume that a

spherical wave is incident on the edge. Then if the observation

point Ps is in the shadow region (0 > 0, top of Figure 4-18), the

total field at the observation point can be expressed in terms of

the field incident on the edge as follows.

Let E(0) be the edge diffracted field right at the edge.

Then the field at the observation point Ps is given to first

order of magnitude by the geometrical optics stationary phase

solution, i.e.,

" l2 -jkd 2

E(PsJ = E(O) LPI+ d 2 )T[P2 + 2 e (4.29)
5 

2 

2

where

E(P) = diffracted field at point P

pP2 = distance from the diffraction point to the
caustics of the diffracted ray

d2  distance from the diffraction point to the
observation point.

The radical in (4.29) is the ray bundle expansion law of

geometrical optics. The distances, P1 and P2 are the principal

radii of curvature of the wavefront at the reference point (i.e.,

the edge) d2 = 0. In Figure 4-19, p1 and P2 are shown in rela-

tionship to the rays and wavefronts. The intersection of the

* rays at the lines 1-2 and 3-4 of the astigmatic tube of rays is

called a caustic. Equation (4.29) is a valid high-frequency
.- approximation on either side of the caustic; the field at a
* caustic must be found from separate considerations. In the case

. of the diffracted ray, the reference point 0 is a caustic of the

diffracted field in elevation, i.e., P2 = 0, while the source is
a caustic in azimuth, i.e., P1 = dl. On the other hand, the

diffracted field must be independent of the reference point;
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." hence in the limit as p2  0, E(0) / 2 exists. Since the dif-

fracted field is proportional to the field incident on the edge,

lim E(0) P2 = Ei(O)D 0  (4.30)
P2 O 0

where D is referred to as the diffraction coefficient. It

depends upon the angles of incidence and diffraction, the

boundary conditions on the surfaces meeting at the edge, the

" angle between the surfaces, etc. From (4.30) we see that the

diffraction coefficient D has the dimensions of (length)1 /2 so

- we can define a dimensionless diffraction coefficient D as

D D / 6 (4.31)

where A = 2w/X is the wavenumber. Thus, using (4.30) and (4.31)

in (4.29) we find that the edge diffracted field is given by

D d 1  -jkd 2
E(P) = E.(O) 1 e (4.32)

which shows that the diffracted field behaves as a cylindrical

wave close to the edge (d2 << d1 ) and as a spherical wave suffi-

ciently far from the edge (d2 >> dl).

The ratio of received power to transmitted power (transmis-

sion loss) can be obtained by noting that the received power is

directly proportional to the received field intensity, i.e.,
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PR f- (/ GRnE(Ps 4. 33a)

where GR is the receiving antenna gain, GRX2/4w is the receiving

aperture area and 120w is the free space impedance. The received

field intensity is proportional to the field intensity incident

on the edge as seen from Equation (4.32). The incident field

intensity is directly proportional to the transmitted power PT

and transmitting antenna gain GT and is given by

130P tGt
E. (0) d (4.33b)i d1

Therefore, the transmission loss is

PR 2 2DI2  dl
P GTGR 4 -- kd2  d-+d 2  4.34)

The first factor is due to the spherical spreading loss

between the transmitter and the edge, the second factor is the

edge diffraction loss assuming cylindrical wave spreading after

diffraction, and the third factor is the correction factor to

account for azimuthal spreading of the wave between the edge and

the receiver (observation point).

Often it is convenient to express the transmission loss as

the product of two factors, one representing the free-space loss,

i.e., spherical spreading loss between transmitter and receiver

in the absence of an obstacle, and another representing the dif-

fraction loss, i.e., loss due to the obstacle.
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The free-space transmission loss between two terminals

separated by a distance d is defined as

LF :GTGR 4wd)

The diffraction loss can be found from (4.34) and (4.35)

and is given by

L kd 2  [d I + d 2 JdI  (4.36)

that is, it is equal to the edge diffraction loss assuming

cylindrical spreading divided by the azimuthal spreading cor-

rection factor.

Although diffraction effects are normally discussed in

terms of the diffraction loss defined above, we can see by com-

paring (4.34) and (4.36) that the form of the transmission loss

is more intuitive and lends itself to interpretation more easily

than the form of the diffraction loss. In either case, the edge

diffraction effects are completely defined by the edge diffrac-

tion coefficient D. To determine D we must solve a canonical

problem. This is a simpler problem which has the same local

geometry and other local properties. In the case of a knife-

edge, the canonical problem is that of diffraction by a semi-

infinite, perfectly conducting screen. Before we proceed to

discuss the form of the diffraction coefficient, however, a dis-

cussion of the implications when the observation point (receive

location) is in the lit zone is necessary, that is the case when

both terminals are above the obstacle.
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-. When the observation point PL is in the lit region (0 < 0,

" bottom of Figure 4-18) the total field is given by the direct and

reflected rays of geometrical optics. Thus,

pl__2__ -jkd 2

E(PL) - Ei(PL) + Ei(o)R P 1+d 2 flP 2 +d 2 J e (4.37)

where Ei(P) is the incident field at location P, R is the dimen-

sionless reflection coefficient of the surface, a factor

analogous to the diffraction coefficient of Equation (4.37),

while P1 and P2 are the principal radii of curvature of the

reflected wave, i.e., they are distances from the reflection

point to the caustics of the reflected wave. In general, the

principal radii of curvature of the reflected ray differ from

those of the incident ray. The relationship between the radii of

curvature of the incident and reflected waves at the reference

point, in this case at the edge, has been derived by Deschamps

[1972] for the general case of a curved reflecting surface. In

the special case of a knife-edge, the edge is at one of the

* * .caustics of the reflected wave, i.e., P1 = di. If we were to use

these values in (4.37), it would appear that the contribution of

the reflected wave to the total field at the observation point

- would be identically zero. However, the reflection coefficient R

also depends on the extent of the reflecting surface. When the

surface is flat, perfectly conducting and of infinite extent, the

reflection coefficient is +1 if the polarization of the incident

wave is parallel to the plane of incidence (vertical polariza-

tion) and -1 if the polarization is perpendicular to the plane of

incidence (horizontal polarization). In the case of a knife-edge

of infinitely small width, the reflection coefficient can be

expressed in terms of an edge diffraction coefficient as
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lim RVp2 D D/Vk
2= 2

where R is the reflection coefficient of a flat, infinite surface

of similar conductivity as the knife-edge, and D is the edge dif-

fraction coefficient which accounts for the effects of finite

extent and shape of the reflecting surface.

The total field at the observation point in the lit region

is then of the form

V30PtG -2d2a dd  -jkd 2tE(P =  d -jkd + E (0) D 1 2Ld e +EO1+d 2
I. 12

-daT jkd +d,

..
V30.tG d + d I  k d 2  ]. (4.38)

The first term in (4.38) is the direct ray contribution to

the received field and the second term is the scattered (or par-

tially reflected) ray.

In order for the field to be continuous across the shadow

boundary (0=0), the edge diffraction coefficient D must be such

that (4.32) and (4.38) are identical when e=o. In the next two

sections, we discuss the form of the edge diffraction coefficient

which satisfies this condition for the case of a semi-infinite

plate (knife-edge) and a semi-infinite cylinder (rounded edge).
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4.4.1 Diffraction Coefficient for a Knife-Edge

Starting from a spectral representation* of the field dif-

fracted by a semi-infinite half-plane (knife-edge) due to an

incident cylindrical wave, Boersma and Rahmat-Sahmii [1980] have

shown that the field diffracted by a knife-edge is given by

d -jkd
D d1 2E = E (d) [1 - H( -Q)] + Ei(d)d e (4.38);2.ir i d .

1 Vkd 12
r2

where

!1 -e - J k x

E.(x) = V30PtG (4.39)
1 t x

e-j ir/4 F [k(dl+d 2-d)] F [k(dl+d2-dr)]
D e [ ' -R j 1](4.40)

2 27 sin (0-0) sin 1 (D+)
t2

Fkp(x) = 2/i' e jl tJl / 4 F(/',i) (4.41)

F) eJir/4 m .2

F( = e-jt dt (4.42)

x 0
'.._ H(X)

"x)0 x < 0

• NOTE: This spectral (integral) representation is similar to
Equation (4.3) in Section 4.2, except that polar coordinates are
used and angles are allowed to be complex.

4-63

S . . .--. ; , , , . ; •. , _ ..- . .. . . ., .< . . > . .' .. -.



The angles 4 and 2 are shown in Figure 4-20 and represent

the radiation angle of the scattered (or diffracted) ray measured

from the vertical, and 0 is the scattering angle measured from

the plane above the edge. The difference 0 - = 9 is the com-

monly defined diffraction angle. The distance d is the distance

between the source (transmitter) and observation point (receiver)

r, di is the distance between the source and the edge, d2 is the

distance between the edge and the observation point and dr is the

distance between the 'image' of the source (see Figure 4-20) and

the observation point. The first term in (4.38) is the free

space field which contributes to the total field only when 4 <

(i.e., with lit zone). The second term is the field scattered by

the edge and consists of two contributions, the first of which is

that due to the field incident on the edge directly from the

source and the second is the contribution from the 'image' (re-

flection from half plane). This last term contributes negligibly

to the total field in knife-edge diffraction and will not be con-

sidered further. It is often included when a knife-edge is

viewed as a limiting case of a wedge. In the case of the wedge

* the reflections from the sides of the wedge contribute signifi-

* cantly to the total field.

The function Fkp(x) is the function defined by Kouyoumjian

and Pathak [19741 and has the property that it approaches unity

for large arguments and zero for small arguments. Its argument

in Equation (4.40), i.e., k(dl+d 2 -d), is the detour parameter

which approaches zero when 0 =, i.e., at the shadow boundary.

To demonstrate that this edge diffraction coefficient yields a

solution which is continuous across the shadow boundary, and

which reduces to Keller's classical solution for large diffrac-

tion angles, we make use of the fact that
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4kdId 2  2 1
k(d 1 +d 2 -dJ dl+d2 d sin (4.44

The edge diffraction coefficient can now be rewritten as

2kdld 2  jk(dl+d2 -d)
D = - sgn(D-0) dl+d2 d F0 (v) e (4.45)

where we have dropped the contribution from the 'image',

F0 (v) = F(/-/2 v) is the Fresnel integral defined earlier in

Equation (4.28), and v is the Fresnel parameter defined as

21]

2k(d 1 +d 2 -d) 1dd i ~(2~
" Vu = Xfdl+d 2 +d) (4.46)

Note that in the UGTD formulation, the Fresnel parameter is

* positive in the shadow (0 > 1) and lit zones (0 < Q). However

the edge diffraction coefficient is positive in the shadow zone

and negative in the lit zone.

On the shadow boundary (Q = ), F0 (v) 1/2 so that the

total field is given by

Ei(d) if 0 > S1
lim Er =(4.47)mE Eld - T E (d) , if < ( 7
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which shows that the field is continuous across the shadow

boundary.

In the shadow and lit zones far away from the shadow

boundary, where the scattering angle 0 = - is large, the

*argument of the Fresnel integral, v, is large and

2
w'.ej / 4 e- j i/ 2 v 2

Slim F0 (v) =m0

so that the edge diffraction coefficient is asymptotically given

by

e- j w/4
D 1 (4.48)

2/2 sin - (a-0)

This asymptotic form of the edge diffraction coefficient is iden-

tical to Keller's [1962] and shows that for sufficiently large

diffraction angles, the edge diffraction coefficient depends only

on the diffraction angle.

The diffraction loss when the observation point is in the

shadow zone can be found by substituting the edge diffraction

coefficient defined in (4.44) into Equation (4.36) and is given

* by

L , = _IF V o(()4
LD = kd2

where use has been made of the approximation d d1 +d2. This is

the classical result for the diffraction loss due to a single

*' knife-edge.
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4.4.2 Diffraction Coefficient for a Rounded Edge

The problem of diffraction by an obstacle whose cross sec-

tion along the great circle plane has an arbitrary shape is ex-
tremely difficult and has not been completely solved to date.
However, various asymptotic solutions for the diffraction of

electromagnetic radio waves by obstacles whose cross section is

smooth and convex have been given in the literature. The sim-

plest and most convenient result for practical applications is

the GTD (geometrical theory of diffraction) solution of the prob-

lem of scattering of waves by a perfectly conducting smooth con-

vex cylinder (Keller, 19561. In the GTD solution, the total

field in the region exterior to the cylinder is associated with

the usual incident and reflected rays of geometrical optics, (lit

region) or with the surface diffracted rays (which are not the

same as the edge diffracted range) introduced by Keller (shadow

region). The geometric optical rays do not penetrate the convex

obstacle; hence they do not contribute to the total field within

the shadow region cast by the obstacle. Therefore in the shadow

region, the field is entirely associated %ith the surface dif-

fracted rays which are excited by the incident ray that grazes

the convex surface as shown in Figure 4-21. The incident ray at

grazing launches a set of surface rays which propagate along a

geodesic path on the convex surface, thereby carrying energy into

the shadow region. The field associated with these surface rays

decays exponentially due to a continuous shedding or diffraction

of rays from the surface along the forward tangents to the geo-

detic surface rays as shown in Figure 4-21. The GTD solution is

valid in the lit (region I) and deep shadow (region III) zones of

Figure 4-21 (large diffraction angle), but fails in the transi-

tion (region II) zone adjacent to the shadow boundary (small

diffraction angles). The angular extent of this transition

region is of the order of (X/WR Q)1/3 where X is the wavelength

of the incident wave and RQI is the radius of curvature of the
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surface at the point of grazing incidence (Q1 ). The GTD solution

also fails in the region near the surface. This region is called

the surface boundary layer and is denoted by subregions IV, V,

and VI in Figure 4-21. Region IV is in the lit zone and is in

the neighboorhood of 01 which is a caustic (i.e., point where the

GTD solution yields an infinite value for the field) of the re-

flected ray for grazing incidence. Regions V and VI are in the

shadow-zone and close to the surface which is a caustic of the

surface diffracted rays.

The problem of estimating the field within the transition

region (small diffraction angle) and the surface boundary layer

has received much attention especially in connection with the

theory of radio wave propagation around the earth. Fock was the

first to develop a general asymptotic theory for the diffraction

of radio waves by large convex surfaces [Fock, 1946]. The solu-

tion was expressed in terms of a canonical integral. Subsequent-

ly, Fock treated the problem of Fresnel diffraction by a sphere

[Fock, 1951] in which he approximated the canonical integral

asymptotically within the transition region between the lit and

shadow zones; as a result he was able to obtain a simpler solu-

tion in terms of tabulated functions. Fock's (1951] result is

valid for heights of the source and observation points above the

*< sphere which are small compared with the radius of the sphere.

Wait and Conda (1959] were able to relax this condition so that

the source and observation points could now be far from the dif-

fracting surface. Their results are in terms of functions simi-

lar to those in the work of Fock, but they are obtained from an

asymptotic analysis of the canonical problem of the diffraction

of a plane wave by a circular cylinder. The results of Fock

(1951] and Wait and Conda 11959], although in terms of tabulated

functions, are still somewhat complicated for propagation path

loss predictions. Dougherty and Maloney [1964] reduced the theo-

retical solution of Wait and Conda [19591 for horizontal polari-
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zation and highly conducting rounded obstacles to simple arithme-

tic formulas for the magnitude and phase of the diffracted field.

Their formulas were arrived at by fitting fourth order poly-

nomials to the asymptotic solutions of Wait and Conda [1959].

These formulas can also be used for vertical polarization when

the obstacle is poorly conducting, as the diffraction loss is

nearly independent of the polarization in that case.

When the diffraction angle is large (shadow and lit

regions), the results in the work of Fock [1951], and Wait and

Conda [1959] do not reduce uniformly to the usual GTD ray solu-

tion in the regions exterior to the transition region. Recently,

Pathak, et al., (1980] have used UGTD methods to obtain an

asymptotic solution for the diffracted field in the transition

region (small diffraction angle) which reduces uniformly to the

usual GTD solution exterior to the transition region (large dif-

fraction angle). The diffracting obstacle is assumed to be per-

fectly conducting with a convex cylindrical shape while the

incident polarization is either horizontal or vertical. This

solution eliminates the need for separate representations inside

and outside the transition regions. It is expressed in terms of

tabulated universal functions which are similar to those occur-

ring in the work of Fock 11951] and Wait and Conda [19591; hence

it is amenable to numerical computation. James (1980] has also

used a method similar to UGTD to obtain asymptotic solutions for

the general case of a cylinder of arbitrary conductivity. This

solution also reduces to Wait and Conda's solution within the

transition region and to the usual GTD ray solution outside the

transition region.

In this section, we recast the UGTD solutions of Pathak,

et al., [19801 and James (1980] into a form which makes them

simpler to compare with the well known solution of Wait and Conda

(19591, show that it is continuous across the shadow boundary and

that it reduces to Keller's GTD solution [1956] in the regions

exterior to the shadow boundary.
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The total field diffracted by a rounded edge can be written

as

S dl+ -jkd 2

Er = Ei(d).[l-H(e) ] + E.(d.) 2 dl+_+d e (449)

2

where Ei(x) is the free-space field at a distance x (Eq. (4.39)),

D is the rounded edge diffraction coefficient, and dl, d2 and T

are the distances shown in Figure 4-22. Note that when the ob-

servation point is in the shadow zone, T=aO is the distance that

the diffracted ray propagates along the round surface. When the

observation point is in the lit zone, r=0.

The edge diffraction coefficient for a rounded (cylindri-

cal) edge with radius of curvature a and of arbitrary conduc-

tivity can be shown to be given by (James, 1980; Pathak, et al.,

* 19801

- = g(e){ e- [F()-l] *- P(xq)} (4.50)• .o r 0 kp( -
2V2w s in 2

where Fkp(M) is the function defined earlier in Eq. (4.41), 0 is

the diffraction angle (positive in the shadow zone and negative

in the lit zone), and

dd eJkT ,shadow zone(0>0)

g(G) = (4.51)

-2ld2  -jx3/12adld 1osd 2  e ,lit zone (040)

'4 a~d1+d2 Tc s0+2d~d2
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Figure 4-22 Shadow zone (a) and lit zone (b) geometries for
the diffraction by a rounded edge.
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= 2 sin2 kd(d2 4.52)2dlI+d 
2

SM E) shadow zone (0)0)

x 2M4 sin 0(4.53)

-2M cos Oi , lit zone (040)

(ka)1/3 (454)

q = -jMZ (4.55)

S(Cr-j60OX)- / 2  , vertical polarization

Z (4.56)

(cr-j60 X) 1/ 2  , horizontal polarization

e e e-jXt v (t)-qv(t) dt
0 w(t)-qw (t)

(4.57)

ej f/2 ejxt l+jV)/2 v (t)-qe- 2 W/ 3 v(t)
0 w2 ( t )-qe -2/3 w ( t )

The functions wl(t), w2(t), v(t) and their derivatives
4' WI

w I  w 2, and v are Fock type Airy functions defined as [Wait
and Conda, 19591
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C1

wl(t) = 2 f exp(st-s3 /3)ds = u(t)-jv(t)

(4.58)

3
w2 (t)f j 21/3 exp(st-s /3)ds = u(t)+jv(t)

w2(t =-j we

These functions have been tabulated by Fock [1964] and are

related to the Miller type Airy functions, Ai(t) and Bi(t), by

u(t) = - Bi(t)

v(t) = v-* Ai(t)

The first term in the rounded edge diffraction coefficient

in Eq. (4.50) is identical to the knife-edge diffraction coeffi-

cient defined in Eq. (4.40) (except for the image contribution).

The 'other two terms account for the curvature and extent of the

edge along the direction of propagation.

Defining a set of parameters

=2dld 2
v 12sinel X(dI+d2 )  (4.59)

and and = /x(dl+d 2 )

i M (4.60)

the rounded edge diffraction coefficient can also be written as

4
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kd dV
g(0) d2 g( 0)F 0 (v)e - pG(x,q)} (4.61)

where j w/4

G(xq) - + P(x,q) . (4.62)

The diffraction loss when the observation point is in the

"shadow zone is then given by

.. LD = .22 d 2  46v

DL dljdl+r+d2 ) = ,sgnEF 0 (V)e - pG(x,q)1 2  (4.63)

• where use has been made of the approximation d=dl+r+d 2 . This

" expression for the diffraction loss due to a rounded edge is

identical to that obtained by Wait and Conda [1959].

4.4.2.1 Transition Region and Shadow Boundary Solutions

On the shadow boundary (0=0, Gi=n/2), we have that v=O,

x-0, r=0, and F0 (0)=1/2 so that the total field is given by

f Ei (d)[I! - pG(O,q)] , if 0<0

lim E = (4.64)
0+0-El(d) + El(d)[ -pG(0,q)], if 0<0

which shows that the field is continuous across the shadow

*• boundary.

' - The function G(x,q) has been solved numerically for q=0

(perfectly conducting obstacle and vertical polarization) and q=-
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(perfectly conducting obstacle and vertical polarization) and q=-

(perfectly conducting obstacle and horizontal polarization) by

Wait and Conda [19591 for values of -3<x<2. The real and

imaginary parts of G(x,0) and G(x,-) are shown in Figure 4-23.

The diffraction loss due to a perfectly conducting rounded edge

is shown in Figure 4-24 as a function of the Fresnel parameter,
- v, for values of the normalized curvature of the edge O<P<0.5.

These curves show that when the incident field is vertically

polarized, the field in the shadow zone (0>0) increases as the

edge curvature increases (p>0). However, if the incident field

is horizontally polarized the field in the shadow zone decreases

(greater diffraction loss) as the edge curvature increases.

Finite obstacle conductivity results in values of q other

than 0 or =. The range of values of q that might be encountered

in practice depends on the polarization, radius of curvature, and

the electrical constants of the diffracting obstacles. The di-

electric constant and conductivity of the obstacle jointly in-

*fluence the field strength behind the obstacles in accordance

with the following expression for the complex dielectric constant

relative to vacuum:

C = E -j 8 o/fGHz = E -j 60oa< rr

where a is in mho/m, fGHz is the frequency in GHz, and X is the

wavelength in meters. At frequencies above 100 MHz both the di-

electric constant er and conductivity a of different types of

soil and terrain vary with frequency so that account must be

taken of these variations. The dependence of the electrical con-

stants on frequency is shown in Figure 4-25 for various types of

terrain. The ratio of 60oX to Er for frequencies between 1GHz

r
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Figure 4-24 Diffraction Loss Due to a Perfectly Conducting Rounded Cbstaclet
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and 30 GHz for rocky (very dry ground), and sparsely vegetated

(medium dry ground) obstacles is given below in Table 4-1.

Table 4-1

Ratio 60 aX/Er vs. Frequency

Frequency Very Dry Ground Medium Dry Ground

1 GHz 9 x 10 - 4  4.2 x 10-2

3 GHz 5 x 10- 3  1. x I0- 1

10 GHz 2.7 x 10-2 2.5 x 10-1

30 GHz 7.6 x 10-2 7.5 x 10 - 1

The ratios of Table 4-1 indicate that at the frequencies of in-

terest the diffracting obstacles are mostly dielectric rather

than conducting so that the parameter q is approximately given by

q - wa 1/3
q --- i / [r , vertical polarization

q = J wa)1/3
-q rj(T- [e , horizontal polarization .

Hence, for equal obstacle characteristics the magnitude of q for

vertical polarization is smaller than that for horizontal polari-

zation (since cr > 1).

Wait and Conda [1959] have evaluated the rounded edge cor-

rection factor G(x,q) for various values of q between 0 and

* . Their results show that when the magnitude of q is greater
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than 2.25 there is no noticeable difference between the factor

' G(x,q) corresponding to the actual value of q and that for

q=-. This implies that when the radius of curvature of the dif-

". fracting obstacle a is such that

-j > 8.7 (4.65)

we can use the curves of Figure 4-24 for q=- to estimate the dif-

fraction loss for vertically polarized incident fields as well as

for horizontally polarized. The above restriction (4.65) applies

only to vertical polarization. When the incident field is hori-

zontally polarized, the radius of curvature of the obstacle need

only be greater than the wavelength in order for the curves for

q=- to apply.

At the other extreme, when the magnitude of q is less than

0.1, the curves for q=0 apply to both vertical and horizontal

polarization. However when q < 0.1, the radius of curvature is

* much smaller than the wavelength so that the obstacle is for all

practical purposes a knife-edge (p=O). This implies that the

*" field strength behind a knife-edge is not only independent of the

polarization but also of the electrical constants of the edge.

4.4.2.2 Shadow and Lit Region Solutions

The function G(x,q) converges poorly for values of x>2

(shadow region) and x<-3 (lit region).

- In the shadow region, we have that v>>l, >>l and x>2 so

that the following asymptotic solutions apply

4-82

-°



.t.2

e- ff/4 -j V

F 0 (v) e 2

Fk(X) 1
kp

e-j /l 2  5 (4.66
P(xq) - Bnexp (a xe- (4.66)

2 V -7r n=l

where the an are roots of the equation

n

Ai (-a ) + qe- "/3A(-an ) = 0 (4.67)

and

n '2 (4.68)

The edge diffraction coefficient in the shadow zone (x>2)

reduces to

e-j W/12.dl 5/'/-
d 8nexp{a xe -JS' 6 -jkT} (4.69)

n= n

which is identical to that obtained by Keller [1956] for the

cases q=0 and q=-.

In the lit region we have that v>>l, <<i and x<-3 so that

the following asymptotic solutions apply [James, 1980]
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'p.

FkplX) 1

P(x,q) jx2 -x ejx/12 (4.70)jx+2q 4 e

The total field in the lit region reduces to

ad2co -jkd 2

Er = E (d) + E (d )R(q,8 i) adl 2cs i 2

(4.71)

where R(q,e i ) is the Fresnel reflection coefficient

cose.- ZR(q,0i) = jx-2q = si(.
1 jx+2q cosei+Z (4.72)

1

and Z is the normalized surface impedance defined in Equation

(4.56). Note that when the surface is perfectly conducting R=l

for vertical polarization (q=O) and R=-1 for horizontal polari-

zation (q=-) in which case (4.71) reduces to the geometrical

optics field solutions for a perfectly conducting cylindrical

surface [Pathak, et al., 1980].
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4.4.2.3 Polynomial Approximations

The use of Equation (4.63) to calculate the diffraction

loss due to a rounded edge is cumbersome and requires numerical

evaluation of Equation (4.62) for a given edge curvature a, dif-

fraction angle 0, and wavelength A. The calculation of the dif-

fraction loss can be simplified considerably by using suitable

polynomial. approximations. The diffraction loss for observation

points in the shadow zone can be expressed in dB as

. 2

A(v,p) = -20 logIF 0(v)e - PGl(x) I  (4.73)

where Gl(x) = G(x,-) and x = /2 vp. Equation (4.73) can also be

expressed in the form

A(v,p) - A(v,0) + A(0,p) + U(vp) (4.74)

by defining

A(v,o) - -20 logIFo(v)l

A(",p) = -20 log 1l/2 -pG 1 (0 ) j

U(vp) = A(v,p) - A(v,0) - A(0,p)
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* The first term in (4.74) is the well known knife-edge dif-

fraction loss which is well approximated by

A(v,0) ---10 log[.- {f2 (v) + g 2 (v)}], S > 0 (4.75)

where [Abrawowitz and Stegun, 19641

1 + .926v

2 + 1.792v + 3.104v 2

g(V) = 2
2 + 4.142v + 3.492v + 6.67v3

The second term in (4.74) is a correction term for the a '

ditional loss at grazing incidence (-0, =0) due to the curva-
ture of the edge. A polynomial approximation to this factor has

been obtained by Dougherty and Wilkerson [1967] and is of the

form

A(0,p) 6.02 + 7.192p - 2.018 p2 + 3.63 p3 _ 0.754 p4 dB. (4.76)

L This polynomial approximation is somewhat different from that

used in NBS Tech. Note 101 [Rice, et al., 1967]. They use an

approximation based on the earlier results of Dougherty and

Maloney [19641 which contained an error in the derivation of the

diffraction factor GI(x) at grazing incidence (x=0). The cor-

rected version is given in a subsequent paper by Dougherty and

Wilkerson [19671.
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For points within the shadow region (0>0), an additional

term U(vp) must be added to account for propagation losses along

the surface between horizons. A polynomial approximation to this

factor is given by Dougherty and Wilkerson [1967] and is of the

form:

For vp < 2

U(%p) =-6.02- 6.7vp + (43.6 + 23.5 vp) logl 0 (l+vp) dB. (4.77a)

For vp > 2

U(vp) = -14.13 + 22 vp - 20 log vp dB . (4.77b)

This polynomial approximation is also different from that used in

NBS Tech. Note 101 [Rice, et al., 1967] for the same reasons

given above.

4.5 MULTIPLE EDGE DIFFRACTION

The Uniform Geometrical Theory of Diffraction (UGTD) can be

extended to treat the problem of multiple-edge diffraction pro-

vided some care is taken in defining the detour (Fresnel) param-

eter for each edge to ensure continuity of the diffracted field

across shadow boundaries. The form of the total diffracted field

depends on the number of ray paths between transmitter and re-

ceiver. If each edge is in the shadow zone of the previous edge

and the receiver is in the shadow zone of the last edge, then

there is a single ray path between transmitter and receiver as

shown in Figure 4-26a. If that is not the case, then there may

be as many as 2n ray paths, depending on the obstacle and

*terminal heights (see Figures 4-26b and c), where n is the number

of edges. The field due to each of these rays must be accounted

for explicitly.

4-87



T R

(a)

p, d 14 R

R

T

d02d

4-d8

d 2P 3P

r



4.5.1 Field in the Shadow Zone

Let us first consider the geometry of Figure 4-26a. The

received field at R may be expressed in terms of the field

incident on the last edge at P3, E(P 3 ), as

E(R) = 234 I d +d 2+d3 -jkd 4  (4.78)

4

where 234 is the edge diffraction coefficient for the third edge

taking the second edge as the source and the receiver as the

observation point, and E(P3 ) is the field incident on the third

edge. The factor k-kd4  accounts for the cylindrical spreading

between the edge and the receiver and the factor inside the other

radical accounts for the azimuthal spreading between the edge and

the receiver.

The field incident on the third edge, E(P3 ), can similarly

be expressed in terms of the field incident on the second edge,

E(P2), as

E( 3) EP 2  124 dd2 -k 3
d1 d ) e (4.79)

3 kd3 dl+d 2+d 3

where D124 is the edge diffraction coefficient for the second

edge taking the first edge as the source and the receiver as the

observation point, and E(P 2 ) is the field incident on the second

edge. The other factors account for cylindrical spreading be-

tween the second and third edges in the azimuthal and elevation

planes.

By following the same procedure to calculate the field

incident on P2 and recalling that the field incident in the first

2
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edge is inversely proportional to di, it can be shown that the

ratio of the received power at R to the transmitted power (trans-

mission loss) is given by

R x 2 1D0 14 1 1 12 41 2  4 1 d1  (4.80)
GTGR 4d kd2  kd3  kd 4  (d+ d +4-d.

where D0 1 4, D1 2 4  and D234 are the edge diffraction coeffi-

cients for the first, second and third edges, respectively,

taking the previous edge (or the transmitter in the case of the

first edge) as the source and the receiver as the observation

point. The factor proportional to dl- 2 represents the spherical

spreading loss between the transmitter and the first edge, while
-1 -1 -1the factors proportional to d 2 , d3  and d4

-  represent the

cylindrical spreading loss (in the elevation plane) between

edges, and last factor in brackets is the azimuthal cylindrical

spreading loss between the first edge and the receiver.

We will now show that the diffraction loss for the case in

which each edge is in the shadow zone of the previous edge, and

the receiver is in the shadow zone of the last edge (all dif-

fraction angles are positive) is equal to the product (i.e., sum

in dB) of the diffraction losses due to each edge.

The edge diffraction coefficients are of the form of Eq.

(4.44) if the edges are knife-edges and Eq. (4.61) if they are

rounded edges. In either case, the edge diffraction for the nth

edge is given by

kd d n=1,2,3
kmn f( , mn-1 (4.81)

mn4 d m+d np mn mn mn p=n+
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where dmn is the distance from the previous edge (or transmitter

if n=l) to the n edge, dn4 is the distance from the nt edge to

the receiver (see Figure 4-27) and f (n, Vmn, Pmn ) is the dif-

fraction loss due to the nth edge which is a function of the dif-

fraction (or scattering) angle 0n = - 0mn (see Figure 4-27),

the Fresnel parameter vn, and normalized edge curvature param-

eter Pmn" In fact f(O, v, p) is given by the quantity in

brackets in Eq. (4.63), which reduces to the modified Fresnel in-

tegral when the edge is a knife-edge (zero curvature). The

Fresnel parameter and normalized edge curvature parameters are

defined as

nP- #m  - 2ddn4

= 2 nd +d (4.82)
mn n4~

kR (d+d 4 )
= n)i rdd (4.83)m 2dmndn4

where the distances are shown in Figure 4-27 and Rn is the cur-

vature of the nth edge.

Substituting (4.81) into Eq. (4.80) yields the following

expression for the received power:

PR GG ) 2 1f(Olv0 ,,01 f12

PT -GTR ( 4o d 0 4  f ' 2 ' 12 12 3' 23 ' )2 3

(4.84)
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where u - has been made of the approximations

d 4 do d + d23 + d

d04 d 12 2 3+d34 3
d = d1  + d2  +d

d 2 d + d 34.

Equation (4.84) is recognized as the product of the free-

space propagation loss and the diffraction losses. The diffrac-

tion loss due to each obstacle is not reciprocal because the

receiver location is used as the observation point in the calcu-

lation of the losses (i.e., the attenuation function f(0,v, p))

and therefore it depends on which of the terminals is designated

as the receiver. The total diffraction loss (product of the

attenuation functions) is, however, reciprocal. Reciprocity can

be proved rigorously for large diffraction angles as the edge

diffraction coefficients (Eqs. (4.47) or (4.69) depend on the

diffraction angle and edge radius of curvature only and Eq.

(4.77) is reciprocal. For small diffraction angles, reciprocity

can only be proved by evaluating the attenuation functions num-

erically. If the Fresnel (detour) parameters had been chosen so

as to make the diffraction loss due to each obstacle reciprocal,

then the expression for the total received field, Eq. (4.84),

would contain additional spreading factors and the field would

not be continuous across shadow boundaries [Parl and Malaga,

1980].

4.5.2 Field in the Lit Zone

When the receiver is in the lit zone of one or more edges

(except the last one) or the source, i.e., there is a line-of-

sight path between them, then there are multiple ray paths

between the source, each edge and the observation point. The
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number of rays depends on the actual geometry. For example the

geometry of Figure 4-26b shows four rays, one of which has under-

gone single scattering (from ist edge), two of which have under-

gone double scattering (from ist and 2nd edges, and Ist and 3rd

edges), and one which has undergone triple scattering. The

geometry of Figure 4-26c shows five rays: ine is a line-of-sight

ray, one has undergone single scattering from the second edge,

another has undergone double scattering from the second an third

edges, a fourth ray has undergone double scattering from the

first and second edges and the fifth has undergone triple scat-

tering.

The total received field for arbitrary obstacle heights

relative to the transmitter and receiver heights can be expressed

as a sum of the contributions from each individual ray as

ER E 123 + H(23-34)E12+H 412-"23)E13+"(o01-12 )E23

+ H7 (12- 024)H ("13-"34 )E,+H ('23-"34)H(001-"12 )E 2

+ H ('D01- 013 )H(O 02- 023 )E +H *0 1-('l4 H ("02-"24 )H ('o 3-"34 I Ei

(4.85)

* where Ei is the field due to the direct (or LOS) ray, E1 , E2 and

E3 are the field contributions due to rays which have undergone

single scattering from the first, second, and third edges,

respectively, El2 is the field contribution from the ray which
I12

NOTE: The electric field is a vector quantity and there-
fore the sum of Eq. (4.85) should be interpreted as a
vector sum.
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has undergone double scattering from the first and second edges,

E13 is the field contribution from the ray which has undergone

double scattering from the first and third edges, E23 is the

field due to the ray scattered by the second and third edges and

E1 2 3 is the field due to the triple scattered ray. The function

H(x) is the Heaviside step function which is unity when its argu-

ment is greater than zero and zero otherwise. Thus, the number

of rays which contribute to the total received field depends on

the values of the angles Dij' i=0,1,2,3, and j>i defined in

Figure 4-28, which in turn vary according to the geometry. Note

that Eq. (4.85) also applies to the case in which all edges are

in the shadow zone of the previous edges and the observation

point is in the shadow zone of the last edge.

The field due to the direct or LOS ray is given by

/0P T -jkd 04
E.= e (4.86)

x 04

The field due to the single scattered rays is given by

30 T 0n D-__dnjk(dOn+dn4)
E dod e n=1,2,3 (4.87)

On  n4 Qn n4

where the D n4  are the edge diffraction coefficients and the

distances dOn and dn4 are shown in Figure 4-28.

The field due to the double scattered rays is given by

E 3 PT D0m4 Dmn4 / do jk(d0m+d +d n4E - e m

mnmn d 4  Om +dmn +dn4

(4.88)

where m=1,2, n=2,3 and m*n.
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The field due to the triple scattered ray is given by

T 014 )2 4 234
-123 d 0  _d ik- - -01 Yk12 23 Vd34

do 1 -jk(d 01+d 12+d 23+d3

d0 1 +d1 2 +d2 3 +d 34

(4.89)

The edge diffraction coefficients D n4 with m=0,1,2, and

n=1,2,3, n>m are as defined earlier in Eqs. (4.81),(4.82) and

(4.83) but without the restrictions m=n-l and p=m+l. The param-

eter p should be chosen to that the scattering angle Dnp-Dmn cor-

responds to that shown in Figure 4-28 for the appropriate ray and

the edge where the ray is scattered. The choice of edge diffrac-

tion coefficients of Eq. (4.81) results in continuity of the

electric field across shadow boundaries as the height of the

observation point varies while the heights of the source and the

edges remain fixed. The extension of Eqs. (4.85) through (4.89)

to the case of more than 3 edges is straightforward. It merely

*requires that the appropriate number of rays be accounted for a

particular geometry.

4.5.3 Comparison with Other Methods

The diffraction loss due to three knife-edges is plotted in

Figures 4-29, 4-30 and 4-31, respectively, as a function of the

receiver height for various combinations of obstacle heights as

shown in each figure. The transmitter is assumed to be at ground

level, the frequency is 1 GHz and the obstacles are spaced as

shown in each figure. Two curves are shown in each plot. One

represents the diffraction loss calculated using the UGTD ray

technique (dashed line), and the other (solid line) is the dif-

fraction loss calculated using the technique described in Section

4.2, i.e., the repeated application of Huyghens' principle. Good
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agreement is seen to occur for nearly all receiver heights,

especially for the geometries of Figure 4-29 and 4-30. In the

case where all knife-edges have equal heights (Figure 4-31) good

agreement occurs for all receiver heights, except for heights

around 100 meters. At those heights, the third edge is in the

transition region of the second edge and the receiver is in the

transition region of the third edge. The UGTD ray technique for

multiple edge diffraction described in Section 4.5.2 is not

accurate when the geometry results in overlapping transition

regions.

Another example of the inaccuracy of the ray technique in

multiple edge geometries with overlapping transition regions is

shown in Figure 4-32. The diffraction loss calculated by the

UGTD ray technique and the method of Section 4.2 for triple

knife-edge diffraction is plotted in this figure as a function of

the height of the second knife-edge while holding the heights of

the first and third edges at 100 meters, and the transmitter and

receiver fixed at zero. The frequency chosen for this example is

100 MHz to facilitate comparison with Vogler's [1982] results for

this same geometry. Good agreement is seen when the height of

the second obstacle is much less or greater than that of the

other edges. However, when the height of the second edge crosses

the shadow boundary of the first edge (h2=150 meters), the

diffraction loss calculated by the UGTD ray method is discontinu-

ous. The reason for the discontinuity is that when the second

edge is on the shadow boundary of the first edge, the field

incident on the second edge is not a ray field. The total

received field and the diffraction loss for this case can only be

determined by the technique described in Section 4.2 or by

Vogler's solution [1982] which is equivalent to that of Section

4.2 (i.e., solid line in Figure 4-32).

For geometries when the edges are not in transition regions

of preceding edges, the UGTD ray solution is a good approximation
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to the exact solution and is computationally more efficient.

Figures 4-33, 4-34 and 4-35 compare the UGTD ray solution with

the Epstein-Peterson (E-P), Japanese-Atlas (J-A) method and

Deygout (DEYG) method for calculating multiple edge diffraction

losses for the geometries shown in each figure. The path is

assumed to be a triple knife-edge diffraction path and the dif-

fraction loss calculated using each technique is plotted as a

function of the receiver height. For geometries and receiver

heights where there is only one ray path (shadow zone), there is

close agreement between all four solutions. However, in the

region where there are multiple ray paths, the Epstein-Peterson

and Japanese-Atlas solutions overestimate the loss by a large

amount because they do not account for the appropriate number of

rays and more importantly, do not use the correct diffraction

angle for the more significant rays. The Deygout solution is in

closer agreement in the multiple ray region because it does use

the correct diffraction angle for the more significant rays but

it is still not as accurate as the UGTD ray solution because it

does not always account for the proper number of rays.

4.6 EDGE PROFILE EFFECTS

In earlier sections we discussed the theory of multiple

diffraction by semi-infinite edges and its extension to account

for the curvature of the obstacles along the propagation path.

The profile of the obstacles in the plane transverse to the

direction of propagation was assumed to be flat and of infinite

extent. In this section we will discuss the effects of irregu-

larity in the transverse profile of the obstacle. This is an

important consideration because obstacle profile irregularity can

be significant relative to the wavelength at microwave fre-

quencies and may account for discrepancies between predicted and

observed diffraction field patterns. Profile irregularity may be

due to actual terrain variations or to the presence of houses,
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isolated trees, outcroppings, etc., on the crest of otherwise

flat or smooth hills.

The diffraction pattern of an obstacle with a slowly

varying convex profile (transverse to the propagation path) has

been shown to be similar to that for a semi-infinite knife-edge

[Dougherty, 19691 except for a correction factor which accounts

for the departure of the profile from a straight edge. When the

profile is not slowly varying but rather irregular there may be

more than one diffraction path which contributes to the total

field behind the diffraction obstacle [Dougherty, 1970b]. To il-

lustrate this effect consider the diffraction by a knife-edge

with a triangular profile also referred to as a bilinear screen.

An obstacle with such a profile can have more than one point of

stationary phase. The total diffracted field is then the super-

position of the contributions from each point of stationary

phase.

Formally, the location of a point of stationary phase is

given by the point on the diffracting edge at which the phase

function of a wave incident on the edge is a minimum. For a

knife-edge of semi-infinite extent in the plane perpendicular to

the path, this point is where the straight lines directed from

the source at T and the observation point at R towards the edge

form supplementary angles with a unit tangent along the straight

edge. Th&.t i the source T, receiver R and diffraction point 0

are all points on a common plane.

In the case of a bilinear screen, and obstacles with ir-

regular profiles in general, we can visualize the existence of

multiple stationary phase points by using an alternate view of

the point of stationary phase. The source and observation points

T and R are the foci of a family of confocal surfaces. Each

surface is a surface of revolution about the line TR generated by

the locus of points 0 for which the path-length difference TOR-TR
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is constant. For a spherical wave source, these surfaces are

Fresnel ellipsoids for which the phase due to the path difference

t=27r(TOR-TR)/ is given by D=nir=Tu 2/2. The n is the order of the

Fresnel ellipsoid and the TR line is the zero'th (n=0) order

ellipsoid. The points of stationary phase on a screen are points

at which the screen is tangent to a Fresnel ellipsoid as illus-

trated by points A, B, and C on the bilinear screen in Figure

4-36.

The total field diffracted by the bilinear screen for

observation points in the shadow zone is then given by

3 (Gn  d ejkd2E(R) = E(0n n din ek 2 n (4.90)

i n.( - d 1+dn=l n kd in 2n

where Ei(On) is the field incident on the nth point of stationary

phase at On = A, B, or C, Dn (n) is the diffraction coefficient

for the nth point of stationary phase where the diffraction angle

is Gn, andldln and d2n are the distances from the transmitter and

receiver to the point of stationary phase, respectively. The

diffraction coefficient for the nth point of stationary phase is

given by

2
d dJ7Tv /29 D(n = E) dn +d F Tn n[K(yn, )+K(zn ,

n n 'ni Tn d2n)

(4.91)

where vn is the Fresnel parameter defined earlier in Eq. (4.45),

FO(vn) is the knife-edge Fresnel integral defined in (4.28), Tn

* i is a correction factor for the departure of the edge profile from

a straight edge. When the point of stationary phase is on a

*straight-edge portion (e.g., points A and B in Figure 4-36) of

the bilinear screen, this factor is given by (Dougherty, 1970b]
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~1

TI 2 if 0>1800, 0 n0 or 0<1800, en <0
T

2 if 0>1800, 0 <0 or *<1800, 9 01... - 1800 n (o'.--(4-92)

where 0 is the complement of the angle (in degrees) included by

- the edges of the bilinear screen. For a semi-infinite straight

edge, *=180*, while ,>1800 for a triangular knife-edge. If the

point of stationary phase is at the apex (e.g., point C in Figure

4-33), the profile correction factor is given by

Tn = 2 - 0/1800

The factors K(Yn,V n ) and K(Znvn) are correction factors for the

*i finite separation distance between adjacent points of stationary

phase on the edge [Dougherty, 1970, a] . The parameters Yn and zn

are measures of path length difference and are defined as

2 Yn = 2 nR - TOnR)/X (4-93a)

S2 2(Tz R- TOnR)/X (4-93b)

where On is the nth point of stationary phase on the screen edge,

while yn and £zn are points on the screen edge which separate

the nth point of stationary phase from the others. For example

if on is point A on the bilinear screen of Figure 4-33, then -n

is the point on the screen which separates A from C; in this case

it coincides with C. Similarly £zn is the point on the screen

which separates A from any other points of stationary phase onL the side (opposite side to C) of A; since there are none, £zn is

at an infinite distance from A. The correction factor is formal-

ly given by [Dougherty, 1970a]
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K (u, v) F F1 v) e f~/ e- ej Rt /2 dt (4-94)

where

r/42

F()= f e '~/dt / f ~t/dt
V V

The magnitude and phase of the factor K(u,v) are shown in Figure

4-37 as a function of u for various values of v. It is seen that

*for a given value of v, K(O, v) =0 and K(~v .5-. Thus,

when the separation distance between points of stationary phase

*-approaches infinity, the sum K(Ynpvn) + K(znlvn) approaches

- . unity as expected.

The total received power is proportional to the square of

* the magnitude of the total diffracted field, -when the observation

- point is in the shadow zone of the bilinear screen, the total

- received power is given by

X4i)2 nDm d ndl 1
PR PTGTGR T m i e- 'n-n'

n1M nr k/d -d2  (dn d2 n dim+d~m

(4.95)

where On =k(dln+d 2 n) . This expression is of the form

P PTG TGRAnAme(4.96)
n m
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which is the expression for the magnitude squared of the sum of

complex phasors. If the phasors add in phase (i.e., 'n =m

then the total received power will be greater than the contribu-

tion from a single point of stationary phase. On the other hand,

if the phasors add out of phase ('n-'m = i), the total received

power will be much lower. This type of behavior is often refer-

red to as multipath or interference fading and is not to be

confused with the interference pattern associated with multiple

rays when the observation point is in the lit zone of the dif-

fracting obstacle. The multipath associated with a single

obstacle with irregular profile (in the plane perpendicular to

the great circle plane) has different angles of arrival in the

azimuth direction. If the transmitter and receiver locations are

fixed, then there will be a set of frequencies for which the

phase differences Tn - 'm - W. Therefore multipath fading is

also referred to as frequency selective fading.

Multipath fading on diffraction paths is not limited to ob-

stacles with profiles resembling bilinear screens. In fact when

the profile of a diffracting edge is irregular, either due to

terrain variations and/or the presence of trees, houses, etc., on

the crest of a hill (modelled as a knife edge), then the number

of ray paths (points of stationary phase) between transmitter and

receiver may be more than one with high probability. The contri-

butions from the various ray paths may add constructively or

destructively as seen from the diffraction loss measurements at

9.6 GHz and 28.8 GHz made over a smooth hill cluttered with trees

[Haakinson, et al., 1980] and shown in Figure 4-38. These mea-

surements show clearly how the contributions from various ray

paths add constructively or destructively as the receiving an-

tenna height is lowered (increasing v) behind the crest of the

hill. If we were to superimpose the theoretical diffraction loss

for a semi-infinite knife-edge on the curves of Figure 4-38, it

would be seen that the diffraction pattern of a cluttered edge

exhibits on the average characteristics similar to those of a

semi-infinite screen with random variations about the mean.
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If we rewrite (4.96) as

N N N
, i . P~R = PTGTGR[ [ A2 + 2 N [ n~ m cs,(-7

nP P A A cos Tnm (4-97).' ' n~n n=l m=n+l n

it can be seen that the first sum term in this expression is the

mean diffracted field while the random variations about the mean

are due to the double sum term.

In practice obstacle profiles, while resembling bilinear

screens, will not have perfectly straight or smooth edges

(irregular profile) so that predicting the exact location and

number of points of stationary phase will not be possible nor

accurate. This is particularly the case when propagation is over

built-up areas where the diffracting obstacles are buildings

and/or trees [Reudink and Wazowicz, 1973). The presence of

azimuthal multipath results in a spatial interference pattern as

in Figure 4-38. The spatial separation between nulls and peaks

is of the order of a half-wavelength. Within a small area, the

field amplitude is proportional to the sum of the contributions

from each point stationary phase, i.e.,

N jE A e (4-98)
r n

n= 1

Because of the difficulty in isolating the points of stationary

phase, we can assume that En is a random variable. If the con-

tributions of the individual points of stationary phase are of

the same order of magnitude, we can assume that the An are equal

to A and that the relative phases Tn are independent and uni-

formly distributed. Then, if N is sufficiently large, the mag-

nitude of the random variable En , call it r, is Rayleigh dis-

tributed, that is the probability density function of r is given

by
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P (R) =2 e -R2 /(4.99)
-- r a

where a = E(r2 ) is the average (normalized) received power.

The mean-squared value of r is directly proportional to the

number of points of stationary phase which contribute to the

total diffracted field and in fact is given by

NE(A ) NA 2  , (4.100)
n

where A2 is the received power due to an obstacle with a single

point of stationary phase. If the number of diffracting

S obstacles is small and can be identified from topographical maps,

then the average (mean) diffraction loss can be determined by the

methods described in earlier sections. When the number of dif-

fracting obstacles is uncertain and each obstacle is irregular

with multiple diffracting edges, the process of identifying the

. number of multipath components becomes cumbersome (e.g., built-up

areas). Empirical path loss prediction methods based on measure-

ments at various frequencies have been used to handle such

situations [Okumura, et al., 1968; Malaga, 19811.

.- 4.7 TEMPORAL VARIABILITY IN DIFFRACTION LOSS CALCULATIONS

The theories developed in Section 4.2 through 4.6 can be

applied in a straightforward manner provided sufficient path in-

formation is available. A typical path profile derived from top-

ographical maps is shown in Figure 4-39. From this path profile

it is readily seen that the propagation (ray) path is a doubly

0. diffracted path. From the great circle distances between termi-

nals and obstacles and the heights of the terminals and obstacles

above sea level we can easily determine the diffraction angle at

each obstacle. However, the curvature of the crests of the

* obstacles cannot be accurately determined (only crude estimates

• are possible) from path profiles such as that of Figure 4-39. In
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order to determine how susceptible the diffraction path loss

(transmission loss assuming isotropic antennas) calculation is to

the estimates of the edge curvature, we have plotted in Figure

4-40 the path loss (for the path profile of Figure 4-39) for

various estimated values of the curvatures of the edges. The

curvature of each of the edges was calculated from estimates of

the distance dS, propagated by the ray along the surface of the

-crest of each obstacle. Each curve in Figure 4-40 corresponds to

a pair (one for each obstacle) of estimated distances, ds. Note

that when the distance ds = 0, the obstacle behaves like a knife-

edge. The various path loss curves are plotted as a function of

the surface refractivity gradient.

For fixed estimates of the curvature of the edges, the path

loss is seen to increase as the refractivity gradient increases

, - from its standard value of -40 N-units/km to less negative and

even positive values. The reason for the dependence of the dif-

fraction path loss on the refractive index gradient is that the

diffraction angle increases proportionally with the refractivity

"- - gradient. The increase in the diffraction angle can be explained

from the effective earth radius transformation. It is well known

that the effects of refractive index gradients on radio wave

propagation can be determined by replacing the actual problem of

propagation over a spherical earth surrounded by a medium in

which the refractive index decreases monotonically with height

with one in which the refractive index is constant (so that rays

travel in straight lines) but where the radius of the earth is

modified. As the refractivity gradient increases and becomes

. i less negative, the effective earth radius becomes smaller and the

" -" smaller the effective earth radius becomes the greater the dif-

fraction angle is. Extreme variations in the refractivity

gradient from -120 N-units/km to +20 N-units/km will result in

-" actual variations in the diffraction path loss of around ±7dB

S' about the predicted value for a standard atmosphere (-40 N-

0 • units/km). However the predicted path loss for a standard at-
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mosphere may be in error by as much as 15 dB if the diffracting

obstacles are treated as knife-edges and they actually behave as

rounded edges with horizontal extents (i.e., distance a S propa-

gated by the ray along the crest of the obstacle) of a tenth of a

mile, or vice versa.

From this we may conclude that good estimates of the curva-

ture of the diffracting edges (or their effective horizontal ex-

tent) is required in order to obtain a good prediction of the
median path loss (path loss exceeded 50% of the time) while

knowledge about the variability of the refractivity gradient

about its median value is required to predict the temporal

variability of the path loss about the median prediction.

4- 2
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SECTION 5

LINE-OF-SIGHT PROPAGATION

5.1 OVERVIEW

Line-of-sight (LOS) microwave links are among of the most

common methods for wireless high data rate communication. The

environment can cause deep fades and such fades have been exten-

sively studied in the past. Performance degradation can also be

caused by multipath and a large part of this section is devoted

to the development and discussion of some new results relative to

multipath fading.

Geometrical optics, or ray theory, is usually a good ap-

proximation at microwave frequencies. The received signal on a

LOS link is in general composed of a specular component which is

not fading and a diffuse component with Rayleigh fading. The

specular component consists of

1. Direct path

2. Atmospherically refracted multipath rays

3. Ground reflections

The direct path may have phase and amplitude scintillation, as

discussed in Section 5.2. The diffuse component can consist of

1. Scatter from atmospheric turbulence

2. Scatter from a rough ground.

Scatter from a rough ground can be modeled by a Rice distribution

(Beckmann and Spizzichino, 19631.

Broadband fading (or power fading) implies that the signal

is fading completely so frequency diversity is not useful. It
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can be caused by atmospheric gradients causing earth bulge or

diffraction fading. The computer technique used for the

diffraction calculations in this report accounts for a variable

constant-gradient refractive index profile using fixed

coordinates for the diffraction obstacles. Ducting layers can

also cause power fades as can reflecting layers between the

terminals. These effects are all difficult to predict, and are
* usually rare. Rain attenuation is another form of power fading

* (see Section 2). The large year-to-year variability of the rain

rate makes it difficult to predict.

* •Multipath fading is usually frequency selective, meaning

the fading does not occur at all frequencies. A number of empir-

- ical models of fading distribution have been developed. For

Northwest Europe the probability of a worst month power reduction

- by a factor of a is [Hall, 1979]

8 f d3.5(a)=1.4.1o-8 d~~Jy~ 51

Fade duration in the USA has been modeled by

="56.6-
2 /d/lkm

median fade duration =56.6 a Vj GHz seconds. (5.2)

In Section 5.3 we describe the effects of multipath fading. We

show, in particular, that delay spreads are often small but that

angle-of-arrival variations can be significant.

-"

5.2 SINGLE RAY PROPAGATION REGIMES

According to the Geometrical Optics (GO) approximation ray

tracing is good in a smoothly varying medium when the observation
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point is not near a caustic. Caustics are points where the field

is focussed and GO predicts an infinite field strength. In a

region without caustics random inhomogeneities will affect the

ray. The primary effect of a smooth weakly turbulent medium is
the change in the phase of the field. Let s denote distance

along ray, and let n(s) be the refractive index. The total phase

change along the ray is

L
= kf n(s)ds

where k = 27r/X. The variance of the phase is

- then 2 k 2 f dsl ds 2 n(s1 Jn' (s2
0 0

k2Lf ds n (S)

where On(S) is the refractive index correlaLion function.

For the isotropic von Karman-Kolmogorov spectrum Dn (the

Fourier transform of the correlation function

S L C2  1/3

0.033 n ( 2 11/6 (5.3)

(1 + 2L0

0
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we have

CO 4I
(r) 4- ic n(oc) sin icr d

0

or

f cn(r)dr = 41T2 f 1 Cn(n)di
- n

Hence

25/3 0.78 C 2 k2 L L0  (5.4)
n 0

This would, of course, be modified by anisotropic turbulence in

the buoyancy region.

When GO applies (large scale turbulence) the phase variance

is therefore proportional to distance. For smaller turbulence

scales the Rytov approximation can be used to calculate both
phase and amplitude variation. [Tatarskii, 1971] . It can be

shown 'hat if the waveform is written

u u0 e + i 0= X
U =u 0 e u0e

where u0 is the undisturbed field, x represents the log amplitude

-* fluctuation and the phase fluctuations, then the above result

'- is modified to

S!
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IXI 2  + 0

i.2 2

S4it 2 k 2 L f 0n( K)KdK
0

2 2 5/3
0.78 Cnk2L L . (5.5)

Comparing this to the GO results we see that in the Rytov

approximation 2 deviates from the GO result exactly by the log-

amplitude fluctuation. With the Kolmogorov spectrum the log amp-

litude fluctuations are [Tatarskii, 1971]

- k7/6 11/6
X 2 0.31 C2k L (5.6)

This is independent of the outer scale L0 as long as the Fresnel

zone (XL) 1 / 2 is much less than L0 . The phase variance is then

53 5/6
2 = 0.78 C 2k 2L L0  [1 - k 0

The correction term displays directly the Fresnel condition.

Define $ = IX2 1 . This parameter characterizes the strength of

the turbulence and equals the phase variance in the geometrical

optics region. Define also the average Fresnel zone distance

1/2Z F ( L) .5.7)

5-5

iA



* Figure 5-1 shows the regions of turbulence characterized in terms

* of (P and LF" In the log-normal region, limited by 2< 1 and

XF4L0 , the Rytov approximation above applies. In the Rician

regime the small turbulence scatter cause an additive Gaussian

component. We now generalize the weak turbulence results for 2

and K2 to the Rician regime. We have [Tatarski, 1971, S. 47]

2 22 k 2

X = 2 rk L f cdc (z)L[ - -) sin
0 n 2L

5/3

0.39 C2L L0  H I  ( L (5.8)n 1/6 kL0 2

where

H V(x) = (v-l)f dt[l sixt] 1 dt (5.9)
Y 0 xt (1 + tl

This function is difficult to evaluate analytically.

In the Rician region we have

0 2 X 2 0.39 C 2 k 2L L 20 (5.10)
n 0 2

This agrees with (5.8) since H (x) - 1 for large x. Figure

5-2 shows the function Hll/6(x).

In the lognormal region we can derive (5.6) from (5.8).

For small x, HV can be evaluated analytically be defining

L xH V.
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Then

L V(x) f (l-cosxt) dt
0 (l + t)'

-i- - Re x 12 -i ix
W 1 Re xe 2 e r(l-v,ix)V-i1

• - a (-i n  2n
=-r(1-v)sinx + 'vx v + (l-v) nf2 r(2- v+2n)"

Hence, for small x, we get

•r (-,,) , 5/6 5/6
HII/6(x) 5-/-66 sin=- x 0.786 x (5.11)

Inserting this into (5.8) yields (5.6). It is seen from Figure

5-2 that this result is good for x<0.1.

We are now in a position to characterize the turbulence ef-

fects on a line-of-sight ray. Typically the outer scale is 100m

horizontally and 10m vertically. Using L0 = 50m we are in the

log-normal region whei

00 f > L c/L2wL0) -- 2.10 L.

For a 30 km link this requires f > 600 MHz. For a 100 km link

this requires f > 2 GHz. Clearly line-of-sight links can operate

right on the boundary between the log-normal region and the

Rician region. Since the turbulence is weak either a log-normal
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or a Rician distribution represents a good approximation. Figure

p.. 5-3 shows the predicted amplitude scintillation in the geometri-

cal optics region. The turbulence may play an important role in

modifying the field near a caustic, but we shall not address that

question here.

We conclude this section by proposing the following simple

model for the distribution of the field:

SE =me j#0+ Y Ae=jAeo

where m is constant, *0 is Gaussian with variance a0 2
, and Y is

complex Gaussian with variance a2 .

For a field of this form we have, assuming weak turbulence,

a good approximation to the statistics in the Rician density

2A A 2 + 2 2

P(A) = -- exp( - 2  20(A2 (5.12)

where

m exp(-X 2 )

2  2

The phase scintillation, which is primarily governed by the large

scale turbulence, is approximated by taking

2 2 2 2 2
a0  Ix I- - Re X

- a is small in the Rician regime. This model should be good

00
also when F L L01
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5.3 MULTIPATH FADING FROM AN ELEVATED DUCT

5.3.1 Introduction

Refractive multipath fading is one of the major sources of

degradation of microwave Line-of-Sight (LOS) links. For the

design of such links it is important to be able to predict all

parameters affecting the performance of the equalizer and diver-

sity combiner subsystems of the radio. For broadband digital

radios in particular, the delays, angles of departure and ar-

rival, and amplitudes of the rays are of interest. The model by

Rummler [1979] represents the best validated model that includes

the selective fading caused by multipath. Recently, more

accurate ray tracing analyses have been developed [Pickering and

DeRosa, 1979; Sasaki and Akiyama, 1979; Webster, 1982] extending

the semiempirical techniques used for flat fading [Barnett, 1972;

Vigants, 1971, 1975]. These analyses, together with recent

experiments [8-10], [Sandberg, 1980; Webster and Veno, 1980;

Webster, 19821 have proved the need for accurate modeling of all

of the parameters of interest.

Based on analytical ray tracing, this section develops new

results determining conditions for the occurrence of multipath,

*. variations in the angle-of-arrival, and the delay spread. The

results are based on a simplified atmospheric model: two strati-

fied layers, of which the lower layer is usually a standard atmo-

sphere (gradient -40 Nu/km) and the upper inversion layer create

a ducting medium (gradient steeper than -157 Nu/km). The multi-

path parameters are first developed assuming an infinitely thick

duct model. The effect of finite inversion thickness is con-

sidered separately. Throughout this section the height of the

layer boundary is considered a variable since such layers are

usually seen moving up or down during the day. The ray equations

are derived and solved parametrically for the layer height. A

sequence of numerical examples illustrate the ray characteristics
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and dependence on gradients and layer ducts. It is shown that

the number of rays is always odd, and that there exists a layer

height with the number of rays of the form 3+4p where the integer

p(>O) is the number of complete periods and is called the order

of the ray. At any given layer height there will be 0, 2, or 4

rays of order p for p > 0, 1 or 3 rays of order p = 0. Analytic

conditions for the existence of rays of order p are derived,

leading to a general multipath condition valid for thick inver-

sions (2-layer model of the atmosphere). It is found that the

last arriving ray is the strongest. However, in practice, two or

more late arriving rays may partially cancel each other and

appear as a single ray if the receiver bandwidth is insufficient

to resolve the rays.

Expressions for angle-of-arrival variation and for delay

spread are derived. The latter are similar to those of Sasaki

and Akiyama [19791, showing a cubic distance dependence for small

distances and a linear dependence at large distances.

Section 5.3.2 describes the two layer model. The ray solu-

tion is described in Section 5.3.3, including techniques for

approximate field calculations near a caustic. A number of

examples are given in Section 5.3.4 to demonstrate how the dif-

ferent ray solutions are connected. A simple parametric solution

of the quartic equation found in Section 5.3.3 is derived in
Section 5.3.5. Section 5.3.6 develops some multipath condi-

tions. Section 5.3.7 discusses the angle-of-arrival, the impor-

tance of which has often been underestimated (Webster and Veno,

1980; Webster, 1982, 19831. Section 5.3.8 presents analytical

expressions for the delay spread.

5.3.2 Two Layer Refractivity Model

The number of rays is usually a function of the thickness

. of the elevated ducting layer. By first considering an infi-

5-13

o ° . . ..... .... 4 ... .-.. . . ..



nitely thick inversion we can determine the maximum number of

rays and then infer the ray structure for finite thickness of the

inversion layer. Consider therefore the two-layer model in

Figure 5-4 where both layers have a nearly constant refractivity

gradient. The gradient in the lower medium is greater than -157
Nu/km while the inversion layer has a gradient less than -157

Nu/km. An earth radius transformation will be used to, in

* effect, make rays travel in straight lines. The rays are

governed by Snell's law,

R0 n(R0 ) cos O(R0 ) : Rn(R) cos e(R) (5.13)

where 0(R) is the ray elevation angle at radius R from the center

of the earth, and R0 is an arbitrary reference radius.

"""- We wish to express the ray in terms of the polar coordi-

nates (R, 0),'where 0 is the angle of travel in the great circle

plane, as shown in Figure 5-5. The equation determining 0 is

RdO = cot G(R) dR . (5.14)

Let us postulate a refractive index, n(R), of the form

n(R) : no(Ro/R) (5.15)

Then substitution into (5.14) and (5.15) shows that an exact

earth radius transformation preserving the angle 0 and yielding

straight line propagation is
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0 Oe (1-.Y)

R = R( )/(1-y) . (5.16)

This transformation preserves distance at R=R 0 and 0 at all

heights. The atmosphere is generally characterized by the re-

fractivity N = (n-l) e 106 and the refractivity gradient AN, the

change in N over a 1 km layer [CCIR, 1978]. In terms of AN we

have

R R
0 0__ _ _

Re(R0] = =- (5.17)
Re(0): l-Y 1 + R0 AN 10- (

where R0 is measured in meters. It is seen that the gradient of

the profile (5.15) is nearly constant. Constant gradient

profiles are commonly used to analyze refractive multipath

[Pickering and DeRosa, 1979]. Our motivation for using the

profile in (5.15) is that it allows us to obtain equati-ons for

the rays which are exact within the geometrical optics approxima-

tion. To solve these equations, it is necessary to resort to

approximations, however. Another advantage of the model is that

the propagation velocity in the transformed coordinates is

constant, and equal to the velocity at the reference radius R=R 0 .

The proof of this fact is left to the reader.

The layer model to be used in the following is relative to

the earth radius RB at the layer interface,

nB(!!)R 1  for R <RB

n(R) RB 2  (5.18)

nB(R 2 for R > RB
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S and 2are related to the gradients AN1 and AN2 as in (5.17)

- and the corresponding effective earth radii from (5) are denoted

Rel and Re2 or more simply R1 and R2. The subscript e denoting

the effective earth radius will be dropped in what follows.

5.3.3 Ray Equations

The geometry of a refracted ray in a flat-earth coordinate

system is shown in Figure 5-6. This figure defines graphically

the key ray parameters. The link is specified by the distance D

and the heights hT and hR of transmitter and receiver relative to

the layer interface. The ray can enter the inversion medium

several times. In Appendix A the equations for the rays are

determined for all possible configurations of the transmitter and

receiver terminal locations relative to the layer interface. It

is found that the following exact equations are uniformly valid:

D = m OBIR 1 - R2 ) - RT OT -RR OR' m>0 (5.19)

R + h
cos B - T cos T  (5.20)

B RT

R + h- R R c s(5.21)

where

D = Link distance defined along the layer inter-
face. This parameter is assumed fixed in the
following, even when varying the height of the
terminals.
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R= Effective earth radius just below the interface
(R1 > 0)

R2  Effective earth radius just above the interface
(R 2 

< 0)

RT Effective earth radius in the transmitter
medium, i.e.,

. 1  for hT < 0R

T R2  for hT > 0

RR = Effective earth radius in the receiver medium,

hT = Effective transmitter height

hR = Effective receiver height

m = the number of times the ray crosses the inter-
face.

For each value of m, equations (5.19)-(5.21) must be solved for

the unknown ray angles OB I OT, and OR .

In the troposphere, the exact equations (5.20) and (5.21)

can be well approximated by assuming small angles. This means

that the effective heights are approximately equal to the actual

- heights, and that (5.20) and (5.21) become

02 0 2 T (5.22)
B T 2 R

2 .hR
S2 -2 R (5.23)

Note that we always have 0 > 0 and 0 > 0 By el i-
B T B R

nating 0T and OR from (5.19), (5.22), and (5.23) the following

quartic equation in 0B is obtained:
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Yr B  D - R,22 UT + URB 2 + 2BT T + 2 R 'R

= 4uT2 UR(OB - 2E T)(0 2 
- 2'R) (5. 24)

where

RT, R
T,R R1 - R2

and

hT,R
ET,R R

T,R

For each value of m, there are at most four real solutions for

the rays.

The equations parameterized by m, the number of boundary

crossings, are convenient because of their uniform validity.

However, the solutions for fixed m do not connect smoothly for

smooth variations of the link parameters D, hT, and hR, as will

be illustrated in Section 5.3.4. Smoothly connecting solutions

instead are those which contain the same number, p, of complete

periods of the ray. That is, the solutions to (5.24) which

satisfy

2p B (Rl - R2 ) < D < 2(p+l) OB(RI - R2), p>0  (5.25)

p
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-.. " form a continuous curve as link parameters are varied. This in-

dicates that p is a better parameterization of the solutions than

(' m. We will call p the order of the ray. There can be 1 or 3

rays of order zero, but 0, 2, or 4 rays of any order p>O.

The delay T of a ray specified by (5.19)-(5.21) is found to

be given exactly by

Tc = m(R 1 - R2 ) sin eB - RT cos 0B tan T

(5.26)

-R s 0B tan OR,

where c is the velocity at the ir -face. The power focussinc

gain, Gt, is defined as the ratio r che geometrical optics in-

- tensity of the ray relative to a line-of-sight ray in a homo-

geneous medium. This can also be found exactly:

pG_=D cos T / hR

f PLOS cos R eT

D cos eT/[m(1- T)( -lR)(R 1 -R 2 ) (sin eT sin OR/sin 0B )

- ( -T) RR sin OT - (1-C R) RT sin OR)

(5.27)

This geometrical optics solution breaks down near a caustic

(Gf + i). A uniform asymptotic solution valid both near a

caustic and away from caustics [Ludwig, 19661 is used. Near a

caustic, two real rays combine coherently. On the shadow side of

the caustic these rays become complex. The uniform asymptotic

solution can be applied in the following manner:
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1. Solve (5.19)-(5.21) and crer al reaI :r complex ras

according to increasing delay "'rea part . There 

always be an odd n .ner r 3

2. Assign the phase shift 0 to the first two rays, -2

to the next two rays, -T to rays 5 and 6, etc. In

general, a phase shift of --/2 is applied each time a

ray has been reflected from a caustic.

3. Calculate the field E_ for the first ray using the

absolute value of the amplitudeoun,  f rom the geome -

rical optics equation (5.27).

4. Calculate the field for rays 2 and 3 using the geomet-

rical optics field vectors- and E, (with the phase

shifts from step 2) and delays T2 and 13 in the

following expression

E 23 = /2 i eiO{e0 Ai(-t) + i e I Ai' (-t) 1 (5.29)

where Ai(z) is the Airy function, Ai'(z) is its deriv-

ative, and denoting frequency by f,

(9 = nf(r 2 + T3)

2 3/2 'f t3 -

1/4
t [ E iEI

1-/4

0t
_ :_-3  + 2-

V2
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* - 5. Repeat steps 4 for rays 4 and 5, 6 and 7, etc., and

find the total field

-tot -.1 + -23 + -45 +

The resulting field solution is valid both near to and far from a

caustic for sufficiently high frequencies. A more economical

representation may sometimes be achieved by using low order modes

from the mode expansion to replace the high order rays [Felsen

"" and Ishihara, 1979]. This approach will not be explored here.

We have found that instead of using the correct uniform

asymptotic solution, we can approximate the statistics of the

total field by adding the amplitudes of the real rays calculated

from IGfI in (5.27) with the phase shifts 0, 0, it, 7r, 0,

0, .... While this will not yield the correct field at a given

location, the field statistics, in the cases we have examined,

have been indistinguishable from the statistics'of the field from

* : the more exact solution (5.28).

5.3.4 Examples

Insight into the properties of refractive multipath is best

achieved by looking at a few examples. The multipath depends on

the relative height of receiver and transmitter,

A = hR - hT

and on the layer height relative to the transmitter (-hT), in ad-
dition to the refractivity gradients.

Let us first fix the gradients at -40 Nu/km and -300 Nu/km,

and assume A = 40 m for a 100 km link. Figure 5-7 shows relative
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delay (defined as T-D/c), angles of arrival and power relative to

LOS of the rays as a function of layer height. For the layer in-

terface less than 20 m below the transmitter up to 80 m above the

transmitter, there are three rays. It can easily be shown that

there will always be an odd number of rays. When two rays join

and disappear the delay curves meet in a cusp, while the angle

curves meet in a parabola segment. This shows that, as we move

away from a caustic, such rays faster become resolvable on the

basis of angle than on the basis of delay. The example in

Figure 5-7 displays a delay spread of 4 nsec and an angle spread

of 0.750 .  The angle spread shows it is important to model the

angle variation for LOS links with narrowbeam antennas. A

comparison of Figures 5-7(a) and 5-7(c) shows that the latest

arriving ray is the strongest. In practice, the upper ray will

exhibit defocusing close to the upper boundary of the finite

layer [Webster, 1983]. This effect is not included in Figure 5-

7(c).

Figure 5-8 illustrates angle-of-arrival and delay for a

50 km link with the receiver only 1 meter higher than the

transmitter. For a -200 Nu/km duct there can be up to 11 rays.

The three rays in the large outer diagram define the zero order

rays, as defined in (5.25). For a -300 Nu/km duct four more rays

(of order 3) are possible. It is characteristic that rays occur

in groups of four, and that higher order rays arrive later than

lower order rays. The high order rays penetrate less into the

duct, skipping in and out many times. These rays are only sup-

ported when the layer interface is close to both the terminals.
When the gradient is -600 Nu/km (or less) it becomes necessary to

consider the finite thickness of the duct. The solid lines are
for a duct with a total refractivity change of 50 Nu. Both

angle-of-arrival and delay are seen to be strongly dependent on

the gradient. Some analytical expressions for these parameters

will be presented in Sections 5.3.6 through 5.3.8.
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* ANGLE OF ARRIVAL [DEG] DEA nsec]

-200 NA=i Z

> -.1 -0.20

1-10 0-10

LJ

>--,

-300 N/kmz-c

U -

-10 0 10 11 1

LAYER HEIGHT ABOVE TRANSMITTER t[W] LAYER HEIGHT ABOVE TRANSMITTER [m]

LLI .0

* -600 K/km~

UA -2.0

Uj

00 r-4, 00 150

LAYER HEIGHT ABOVE TRANSMITTERCin) LAYER HEIGHT ABOVE TRANSMITTER[rn]

*Figure 5-3 Angle-of-arrival and relative delay as a function of
* layer height above transmitter for different ducting

gradient. This link is 50 km, the lower re fractivi*tv
* gradient is -40 Nu/Km and the receiver is lm above fhe

transmitter. The dashed rays are not supported for ducts
with a total refractivity decrease less than 50 Nu.
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The inversion layer is often tilted to follow the terrain

or the slope of a frontal air mass. Figure 5-9 illustrates the
effect of layer slope by considering different relative terminal

heights. The figures show angle-of-arrival, delay and the height

of the highest point on the ray. This latter parameter is used

to determine the effect of the finite duct thickness. When the

receiver is much higher than the transmitter relative to the

layer interface, no multipath is possible. When both terminals

are closer to the layer interface, the number of rays can be 3,

7, 11, ..., etc. For equal height terminals infinitely many rays

can exist, as shown in the last row of figures in Figure 5-9.

Clearly, there is always an odd number of rays. This holds also

for finite thickness ducts, but some of the rays can then have a

negligible amplitude.

The power received relative to the predicted line-of-sight

(free-space) levels will be called the focussing gain. The

focussing gain calculated from the geometrical optics approxima-

tion was shown in Figure 5-7(c). It is seen that the infinite

gain at caustics occurs where two rays join. The exact theory

predicts a finite field strength everywhere. The geometrical

optics solution also yields a finite field strength if the two

rays near a caustic add with a phase shift of 1800. When this is

done at low frequencies, a relatively smoothly varying focussing

gain results. Figure 5-10 shows the relative received power as a

function of layer height for a terminal height difference of 20 m

and for two extreme frequencies, 0 and 100 GHz. The curve for

0Hz is quite smooth, the appearance of caustics almost not

noticeable. The rapid oscillations at the high frequency is due

to the interaction between the many rays. The focussing gain is

mostly positive, with an occasional deep fade. At no point does

the field become infinite. Figure 5-11 shows the focussing gain

at 4GHz, where the oscillations are less rapid, but the same

characteristics are observed.
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The approximation used in Figures 5-10 and 5-11 adding rays

at a caustic out of phase, does not correspond exactly to the

prediction of the full wave theory. Away from a caustic the two

approaches yield the same amplitudes but different phases. The

ray interference pattern is essentially the same, only the

predicted deep fades may be shifted in frequency. Near a

caustic, where geometrical optics break down, both methods yield

finite results, not drastically different. We therefore conclude

that a good picture of the fading mechanisms during refractive

multipath conditions can be achieved based on the simpler ray

theory.

The fade depth is strongly dependent on the layer height.

Figure 5-12 shows the fading vs. frequency for a layer boundary

height at 0.2 m intervals near 30 m on a 100 km link with hR-hT =

20m.

5.3.5 Solving The Ray Equations (REAL CASE)

The quartic equations (5.24) can be solved numerically or

analytically. The analytical solution is particularly simple

when

(i) hT= 0

(ii) hR= 0

(iii) hT hR

In these cases only quadratics need to be solved. In the general

case, instead of solving for the rays of a given layer height, we

can solve for the layer height as a function of the boundary

angle OB.  This leads to simpler analytical expressions for the

real rays and is useful since 0. is directly related to the

inversion thickness required to support the corresponding ray.
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Define

and h

RR

h h + A__ h + . 2T R -R R +R -R ( 9
1 2 1 2

The equations (5.22) and (5.23) become

T2 = 2 2h 2R1 1 5.30
T B R R R - R 2

2R
02=2 ~2h 2
R B R R R R (5.31)

By eliminating two variables OT and OR from these equations,

namely, Equation (5.19) (expressed as RTOT + RROR = W( OB)),

(5.30), and (5.31) one obtains a quadratic equation in h,

i2

A 0 + Alh + A 2h
2 = 0, (5.32)

where P

A0 : [W2  B2 (RT2 + RR 2J + 2B(RlRT + R2R

2 R 2 2R 1  2 2R 2-4R T (0B BR(R - r-- B)

A -4(R T + R 2R W 2  B(RT RR,2 ]

-8 B(RT - RR- R R R

A2 -- (RT- %R 2
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- and where

B LI( - R2 ),

w =w(eB) = inRl R2 ) eB -D.

We look for solutions for the rays of order p. When the term,--

* nals are on opposite sides of the layer interface, this means

*that mn = 2p+l, R1. = Rand RR =R 2 (we assume the receiver i.s

the highest terminal). Defining

PB) W wB) (R1  R R2
2 ()B 2

-B

the solution to (5.32) is

(R1 + RJPeB * 2W(eB 1/1R2  (B

2(R 1  R R2 )

(5.33)

provided that h corresponds to terminals on opposite sides,

R 2( h(R 1  R 2)A<(
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The interval of validity is determined by the requirement that

P(%) 0o, so

D (2p + D 2 8 A (p+) i/2
R 1 R2 R 1 -- R2 R 1 R2

" Bl 1 B2 4p(p+l)

(5.34)

(minus for %l' plus for 0B2).

For p=O, we have in particular OB2 = , and

D + 5. 5
-B1 = 2(R 1 - R2 + (535)

B  = OBl is achieved when the terminals are in different

- layers. Note that for both terminals below the interface and

hR=O we have OB = -0R = D/(2R I ) + A/D which is larger than OBI in

* (23) as required. The rays of order p only exist for Bl(P)<B <

• OB2 (P). This is consistent with the fact that p denotes the

. number of completed ray periods on the link (Equation (5.25)).

The conditions (5.34) for a solution of order p hold also

. when both terminals are on the same side of the layer. In that

. case, the rays of order p consist of rays that cross the boundary

m = 2p or m = 2p+2 times. Substituting RR = RT in (5.32) yields

h- [(w 2 (0) -2RT 2 02 + 2 B RRl +R 2J2

(5.36)

--4RT 2 [RT 0 2 - 2R1 Bj]RT, 
0B 2 2R 2 B]/8 RTW2 (E)
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*This yields two solutions valid for

. 0BI (P) 4 0 0 (P)

by substituting m = 2p and 2p + 2

and

RT R, provided h < R2 /(R I -R

(both terminals in layer 1)

or

S= R 2 provided h > R1 /(R I - R2 )

(both terminals in layer 2)

It is possible to obtain analytical expressions for the value of

.B where there is a transition between the solution (5.33) and

the solution (5.35). However, these expressions are of less

*Q general interest and may easily be derived by the reader by

solving analytically for the special cases hT = 0 and hR = 0.

' . The case of equal height terminals (hT = hR) is of special

.-? interest since it corresponds to the largest delay spread. The

-*Q solution, from (5.35) consists of four segments:

5
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-B = D/[(R 1  - R2 )2p ]  , (5. 37a)

B D/[L(R 1 - R2 )(2p + 2)] , (5 37b)

and

" i[R_
Sh 2 -TW )2 B2) , m = 2p and 2p+2 . (5.37c)

In the first two segments ((5.37a), (5.37b)) the height h is con-

strained only by OT2 and 0R2 > 0 in (5.22) and (5.23).

5.3.6 Conditions For Multipath

It is clear from Figure 5-9 that multipath occurs only when

" the height difference of the terminals is small enough. The

°- ' exact conditions for the occurence of higher order rays (p1l) at

some layer height can be obtained directly from (5.34).

Requiring OBI and 8B2 to be real yields the condition

hR hT A< 8 p(p + 1)R 2(5.38)

The condition for rays of order 0 requires special attention.

Since 6h/ 68B is infinite when

1 D hR - hT
. B B0 - R R +  D

1
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(here h 0) multipath occurs if and only if 6h/ 6 0B = 0 for some

> GBO. By differentiating (5.33) we find that the condition

for multipath at some layer height is

D 2  rll1 1
hR - (R1  R2  (5.39)

This is the theoretical condition assuming infinite layer thick-

ness. With a finite layer thickness (5.39) is only a necessary

condition. A condition for strong ducts is found in

Section 5.3.8, Equation (5.43). Figure 5-13 illustrates the

height difference condition in (5.39).

5.3.7 Angle Of Arrival (AOA)

The AOA of the LOS ray is

D hR hT
- R 2R D

R

The maximum angle variation with two thick layers is

AN - AN
= D 1 1 D 1 2 (N2I R 2 2 R -157 (.40)

In practice, the AOA is limited by the ground in the lower

medium, and by the duct thickness in the upper medium. The maxi-

mum angle-of-arrival is determined from the inversion intensity

& *M [Dougherty and Hart, 1979),
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R  0 B  2 L; . 10- 6 . (5.41)

For AM < 300 the maximum angle is 1.40. For a more realistic
value of AM = 50 we get a maximum angle of 0.570. Hence, a beam-

width of at least 10 is required on LOS links to insure that the

direct ray remains in the mainlobe even in the absence of multi-

path [Webster, 1982]. As seen in Figures 5-7 through 5-9 this

angle variation also represents the maximum angle spread in the

presence of multipath.

5.3.8 Delay Spread With Equal Height Terminals

The largest delay spread occurs when the layer is tilted so

that the terminals are at equal height relative to the interface

(see Figure 5-9). In this section the delay spread of zero order

rays is bounded by considering equal height' terminals and the

worst case layer height. We assume first that the ducting layer

is sufficiently thick so all rays are supported. Only the delay

of zero order rays will be considered since the delay of higher

order rays is negligible in comparison (see Figures 5-8 and 5-9).
* It is convenient to define the dimensionless parameters

2 hT D RRTR
RT -X 2R _X R 1 _R 2
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In terms of these parameters the delay (see Appendix A) can be

written

3(D- Tc) 2
'R I  = x - 2 ZYOT 

For the refracted rays (m=2) 0T = (OB-X)/Y. We find the angle 0B

at the caustic using dh/dOB 0 in (5.37c),

2

B, caustic = X/(I -

and the normalized layer height,

Zcaustic x 2/(1 -2)

We are now able to calculate the delay spread at the caustic,

e.g., at hT - -80m in Figure 5-7(a). The delay of the two rays

meeting at the caustic is given by

3(D - tIc) 3 212  X 3(1 2Y )/(l Y 2)2

At the layer height where this happens the delay of the fixed

ray, the LOS ray, is given by

3(D T 2c) 32 2 4
SR 2  x (1 + 2Y )/(y y

5-44
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The difference AT = - 2 yields the delay spread

R -R 3
S1 -2 X(

AT- 3c y2(l - y2T (5.42)

Thus when -R 2 < R, the delay spread is largest when the terminals

- are in the inversion layer (RT = R2). When this solution is

valid (i.e., the inversion thickness is not a factor) the delay

spread is seen to increase with the third power of distance.

However, the ducted LOS ray contributing to the large delays in

(5.42) may be negligible for practical inversion thicknesses. It

is more realistic to use (5.42) with the terminals in the lower

medium (RT = R I).

When the inversion is strong and of finite thickness multi-

path occurs only when the terminals are below the layer since the

highest multipath ray escapes through the duct (extrapolate the

results in Figure 5-8 to higher lapse rates). The ray that just

grazes the upper boundary of the duct hits the lower boundary

with the critical angle 0BT = V-2T/R 2  where T is the inversion
thickness. (5.42) is valid when X < OBT(I-Y2). Now suppose that

> GBT(l-Y 2). The minimum boundary angle for rays of order zero

. is X (see Section 5.3.6). Hence, in order for the other

refracted ray to exist we must have 8BT > X, or

-D2 R2
T > (5.43)

8(R1 -R
8C1 _ 2)2

For steep gradients (-R2 small), this means that, to see more

than one ray of order zero, the inversion intensity (total change

in refractivity) must be greater than

5-45
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T 1

minimum duct intensity: 106 D2  (N-units)
8 R1

(17 Nu for D = 100 km). The terminal height corresponding to OBT

is found from (5.37c), so the delay T3 of the refracted ray

grazing the upper boundary of the inversion layer is determined

from

3(D - cT 3) 2 
- 2( - x 2 - X2]

[::( R 1  2 - 8BT OBT (BT Y 2 .

1W 2

The LOS ray is-characterized by eT = eR = -D/(2 RT), yielding the

delay T 4 , at the height found above, given by

3 - cT4  2 2 2 + 2 X ),2 2  (BT -x2

TW7RF x((Y _ eBT BT' £ T Y( 1  - 2 )

The delay difference T = 3- T4 is

2

(R1 -R 2 ) 
0BT 2

2 [3X 2 BT(l - Y] (5.44)
3c Y

2(eBT(l-Y < <BT)

in contrast to (5.42) this increases linearly with distance

(X). Eq. (5.44) reduces to (30) when 0 BT Xi1-y 2 ]. (5.42)

and (5.44) with Y = RI/(R1 - R2) constitute the expression for
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the delay spread when an LOS ray in the inversion layer can be

neglected (only thick, low intensity ducts can support such a

ray). These equations do not consider the usually negligible

delays of higher order rays. Note from (5.43) and (5.44) that

for X = OBT there is a maximum delay spread of zero order rays.

When 8BT r X all but one zero order ray escape from the top of

the duct. Setting 0BT = X we get for a given inversion

thickness:

3
*(R.1 - RJ2 B 2

AT 3c 2 (1 + 2 Y 3 (5. 45)

The results represent the largest delay spread in the sense that

the worst case layer height and layer tilt have been selected.

The results are similar to those in [Sasaki and Akiyama, 1974].

At large distances, when eBT < X, they break down since only one

zero order ray is significant and in that case multipath is

caused only by higher order rays.

Figure 5-14 illustrates how the delay spread has a cubic

distance dependence at small distances and a linear dependence at

larger distances.

5.4 ANGLE DIVERSITY FOR LOS MULTIPATH PROTECTION

5.4.1 Introduction

Fading on an LOS link is caused by destructive inter-

ference between multiple LOS rays. The multipath condition is

associated with the occurrence of elevated ducts near the radio

antennas. In the past such fading has been countered by a number

of Lechniques:

1. Requiring a large fade margin,

2. Frequency diversity,

3. Space diversity.
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Due to the very deep fades that can occur the first approach is

extremely wasteful of transmitter power. The diversity tech-
niques have been found effective but have been implemented with-

out regard to the actual structure of the multipath.

The purpose of this section is to demonstrate that the

structure of the multipath, as it can be deduced from the propa-

gation theory developed in Section 5.3 suggests an improved mul-

tipath combining technique. It is shown in Section 5.3 that LOS

multipath exhibits relatively large variations in angle-of-

arrival while the multipath delay spread is quite small. This

fact shows that frequency diversity, which is based on the delay

spread, is less effective than either space- or angle-diversity.

It is also demonstrated that the character of the multipath leads

to a preference for angle diversity.

The concept of designing the diversity system based on the

multipath characteristics is of even greater interest for wide-

band LOS systems. The wide arrival angles and small delay

spreads indicate that adaptive combining based on angle-of-

arrival is superior to adaptive delay equalization. Of course,

the combination of these two techniques will yield the best per-

formance, but in most cases equalization is unnecessary.

Figure 5-15 shows the principle of angle diversity. First

the extreme angles of arrival are estimated. A multibeam antenna

is then designed so that the full range of angles are covered.

The individual beams can then discriminate between rays separated

by the angular resolution. Table 5-1 shows the angle-of-arrival

spread for typical links. It is seen that beamwidth of the order

of 0.250 for short links, and 0.50 for long links are required.

The technique therefore seems best when solid towers are avail-

able preventing significant mast sway.

In the following the details of the analytical results an-4

candidate diversity configuration are presented. Section 5.4.2
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TABLE 5-1

ANGLE SPREAD OF RECEIVED RAYS (DEGZEES)
LOWER LAYER REFRACTIVITY GRADIENT

-40 Nu/km

UPPER LAYER LINK DISTANCE

REFRACTIVITY GRADIENT
(Nu/Km) 30 rm 50 KM 80 KM

-200 .14 DEG .23 .36

-400 .31 .51 .82

r -600 .48 .80 1.28

.5

""" 5-51



describes the fundamentals of diversity combining, summarizing

the results of a detailed development in Appendix B. Sections

5.4.3, 5.4.4, and 5.4.5 discuss the merits of frequency diver-

sity, space diversity, and angle diversity. In Section 5.4.5,

the performance of a baseline system using adaptive combining and

a single antenna with a two-port angle diversity feed approach is

discussed. It is seen that the technique using angle diversity

feeds has a number of advantages over the one of monopulse or

phased array techniques.

The key problems to consider in the diversity system design

are:

1. Is the transmitter and receiver beam coverage wide
enough to assure sufficient signal during extreme re-
fractive conditions.

2. Is the receiver angular resolution small enough to
distinguish the individual rays.

The advantages of the new look at LOS diversity systems in this

report are:

1. Use of higher gain antennas saves transmitter power.

2. Longer paths or higher frequencies possible.

3. Lower probability of intercept due to less transmitted
power.

0 4. Less jamming susceptibility due to narrower beams and
* -adaptive combining which can suppress jamming auto-

matically.

5. Less fade margin requirements due to more effective
multipath combining.
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5.4.2 Diversity Combining

During multipath conditions several rays will be received

by each of the diversity antenna ports. The best diversity de-

sign is such that deep fades cannot occur simulataneously on all

diversity ports. On most frequency and space diversity systems,

arbitrarily deep fades are possible even after diversity combin-

ing. We analyze in this section an angle diversity combining

system based on the following question:

What propagation condition yields the weakest signal
at the output of an optimum diversity combiner, and
how weak is the worst signal condition compared to an
optimum single ray situation?

Clearly, with only a single antenna port (no diversity) an

infinitely deep fade is possible. This is also true for some

multiple diversity systems, although the deep fades may only

occur with a negligible probability. However, for the purposes

of this discussion, we will be looking for 100% availability. To

limit the scope of this preliminary analysis only a subclass of

propagation conditions are considered.

* Two constant gradient layers, -40 N-units/km in the

lower layer, -300 N-units/km in the upper layer.

* Fixed terminal locations with 100 km distance.

* Ray amplitudes calculated from geometrical optics, but
with phases assumed unknown.

* Narrow bandwidth.

These conditions are typical and will suffice to illustrate

the basic diversity features.
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5.4.3 Frequency Diversity Considerations

The use of frequency diversity is undesirable due to spec-

trum allocation problems. At wide frequency separations the di-

versities are independent and there is therefore no limit to fade

depth possible even with optimum combining. At close frequency

separations, the diversities will fade together. This diversity

technique therefore does not satisfy the 100% availability condi-

tion set out above and will not be considered further.

5.4.4 Space Diversity Considerations

The usual space diversity techniques work well because they

rely on the angle-of-arrival of the rays which we have seen is

the best way to discriminate the arriving rays. It will be use-

ful to briefly discuss the key operation. Figure 5-16 shows two

antennas and two rays arriving at angles e1 and 02. We make the

simplifying assumption that the angles are the same at both an-

tennas, something which is only true when the spacing is small.

However, it is adequate to illustrate the key point. The rela-

tive phase shift of ray no. n at antenna no. 2 is

k L sine n n =1,2

where L is the antenna separation and k = 2w/A. When there is a

deep fade at antenna 1 (the rays are 1800 out of phase) then the

rays at antenna 2 have the relative phase shift

kL(sin8 1 - sine 2 )

.4

If this is a multiple c ?. a deep fade will exist at antenna 2

as well. To avoid this, L must be smaller than
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where A8 is the maximum angle variation.

At 8GHz and with AB=2* this yields L<lm. Since LOS antenna

spacings are typically much larger than this, it appears that

complete fades can occur at both antennas simulataneously. The

most effective way of achieving the closer spacing required is to

use angle diversity instead of space diversity.

5.4.5 A Baseline Angle Diversity Multipath Protection System

Figure 5-17 shows an angle diversity system with a dual

- horn feed on a paraboloid antenna. The system must be capable of

both vertical and horizontal polarization. The upper and lower

- beams are combined so that the sum beam is twice as broad in

* elevation as each of the individual beams. While this means a

3dB loss in antenna gain it guarantees that the signal will be

transmitted through the main beam even under extreme propagation

conditions. The reference to the adaptive combiner may be

,-. decision directed, transmitted at a low duty cycle, or incoherent

power maximization. The latter approach only applies to narrow-

band links.

In order to analyze this system consider a 100 km link such

as the one leading to the multipath diagrams in Figure 5-7 and

use an optimum combiner with worst case ray phases as described

in Appendix B. We assume the ideal antenna patterns

Transmitter

sin(j e)
T = irA
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Upper Receiving Beam

X 2

gRu ( ) =irA'kA2

*2 Lower Receiving Beam

g(e +X2

Note that gT (O) is twice as broad as gRu (  and g(). The

antenna boresight is aimed horizontally; no attempt is made to

optimize the pointing angles of either transmit or receive

antenna.

In the following calculations, the frequency is assumed to

be 11 GHz. For each height of the ducting layer the angles-of-

arrival and ray amplitude are calculated by ray tracing. The

optimum diversity combiner and worst case ray phase length is
then calculated as outlined in Appendix B. The results are

shown in Figures 5-18 and 5-19. Figure 5-18 shows the effective

path antenna gain as a function of layer height. The path

antenna gain includes nominal antenna gains at both ends and

worst case fade at the output of the adaptive combiner. The per-

formance improves with increasing antenna size up to about 2m due

. to the improved antenna gains. For the 4m antenna, a 12 dB fade

- occurs near one of the caustics. In this case, some of the rays

- . are in the sidelobes. Note that the signal at the combiner out-

. put, does not fade much even with the worst phases associated

with each ray. For smaller antennas, deeper fades are possible

-*-*. due to the lower angular resolution. Figure 5-19 shows the fade

5-58



us
co

d Pz

. a 0"

-a4 4

S&-

2 9 VN3N -d'V

5-59



0

I
K

0)

0
K Cl L)

2

2

0

g
K w .j.J

a)
0

E 0)
V

Cz..

U2

-' 0
a'm~. K o

a)
1-~

0.
K

________________ Eq

a' 6 a' 00
I I

I

5-60



depth as a function of antenna diameter. There is a relatively

broad maximum near 1-2 meters where at most a 5dB degradation is

possible.

The 2-meter antenna clearly gives the best results. The

receive beamwidth is 10 while the transmit beamwidth is 20.

According to the calculations in this section this is adequate to

cover even the most extreme ray angles.

*[ Due to the angle variations possible, the best antenna size

"* is independent of link distance.

In broadband systems, intersymbol interference is automati-

cally eliminated. By synchronizing the local reference with one

of the rays the other rays will be suppressed. This also im-

proves combining by automatically using the delay information

available to discriminate between the rays. Therefore only a

single tap is required in the combiner (i.e., no equalization),
but a delay-locked loop should be used to synchronize the ref-

erence. This may mean time-sharing the adaptation between two or

three different delays and using the best for forming the com-

biner output. Care must be taken to avoid sudden loss of sync

when the ray that is synchronized disappears. This can be

achieved by using a long time constant in the delay tracking loop

with only a small performance degradation when rays disappear

near a caustic.

5.4.6 Conclusions

Angle diversity can eliminate fading almost completely.

For space diversity to work best the antennas should be separated

sufficienly to minimize the chance of multipath fading at both

antennas simultaneously. Table 5-2 shows the probability that

both antennas have multipath. A key advantage of angle diversity

is therefore that a compact antenna configuration can be used

(smaller towers). Another advantage is that deep fades often are
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TABLE 5-2

Probability that Both Receivers see Multipath
Given that One Does

Sm Separation 10 m Separation

UPPER LAYER LINK DISTANCE (km) LINK DISTANCE (km)
REFRACTIVITY GRADIENT

(Nu/km) 30 50 80 30 50 80

-200 .04 .45 .86 0 .17 .72

-400 .34 .82 .95 r07 .64 .89

-600 .60 .91 .97 .33 .82 .94
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not possible on angle diversity system while they can occur on
space diversity systems where the spacing is not large enough.

Figure 5-20 shows the effect - space diversity has a smaller

probability of fades in the range of 0-18 dB than does angle

diversity. However, for fades greater than 18 dB angle diversity

is vastly superior -they simply do not occur.
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APPENDIX A

DERIVATION OF LOS RAY PARAMETERS

In this appendix we find the equations for the rays that

can exist between two LOS terminals in the presence of an

elevated ducting layer. The derivation is based on the exact

effective earth radius transformation developed in Section

5.3.2. A single set of equations is found to govern the

propagation for all values of layer and terminal heights.

A.1 RAYS CROSSING THE BOUNDARY TWICE

The ray in Figure 5-6 may consist of several periods i.e.,

it may enter and leave the ducting layer more than once Each

time the boundary is crossed, the same angle, OB ,  is found be-

. tween the ray and the boundary. Let us first consider the prop-

erties of the ray in the lower medium. This is shown in Figure

A-1. X is the length of the ray below the boundary, while

S1 is the distance along the boundary. From the effective cen-

S.ter of the earth the angular distance is

e= S/Rel

Elementary geometric considerations show that

[ -i . B  = e e / 2

so that

S = 2Rel 0B , (A. 1)

where eB, as defined in Figure 5-6, is always positive, as is

Rell so the distance SZ is guaranteed to be positive. We also

have the ray length

A-1

S
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Figure A-i Ray Crossing Lower Medium

Figure A-2 Ray Crossing Upper Medium
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X = 2 Rel sin B . (A. 2

Hence the delay along this segment of the ray is

R
X /C el

£ = X/c = 2 c sin e B  (A.3)

where c is the velocity of light at the interface.

Consider next the segment above the layer interface. Fig-

ure A-2 shows the geometry after the effective earth radius

transformation. Since ducting is assumed the radius involved

is -Re2 As above, we find

S u = -2 Re2 0B  (A.4)

and

Xu = -2 Re2 sin 0B ,  (A.5)

T= Xu/c. (A.6)

A.2 RAYS FROM THE TRANSMITTER

Equations (A.1)-(A.6) describe the complete arcs of the ray

above and below the layer boundary in Figure 5-6. We now derive

the equations describing the ray between the transmitter and the

layer boundary. Figure A-3(a) shows the geometry when the trans-

mitter is below the boundary. The height, hTe, is measured

positive above the boundary, and hence is negative in this case.

Figure A-3(a) shows that

Re +h T

cos 0 cos(oT R el Te- PT cos 0T (A. 7a)
el

A-3
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(a) Transmitter Below Boundary

S.S,

(b) Transmitter Above Boundary

Figure A-3 Ray Geometry Near the Transmitter
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where we define

+ hT)/Rl (A. 8a)

Given eB the magnitude of the elevation angle 0T at the

transmitter can be found. The distance to the boundary is then

sin ( e-eT
XT R B )(A. 9a)Tel Cos 0T

sin(OB 0B T)
= R 1 h+h ) (A. l0a)el Te COSB

* When the transmitter is above the boundary we use Figure A-3Cb)

to calculate the distances and angles involved. We get

-R e2 h T

XT =sin(e + 0 ) co Te0 (A. l0b)

=sin "T + eB) -Co 2 (A. 9b)

and hence

CosO0B =PTCos ~ 0 T (A. 7b)

A-5
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where

Re2 + hTe
PT R (A. 8b)Re2

Note that the only formal difference between case (a) and (b) is

the sign of eB.

We can combine the two results by defining

6 R for transmitter in layer 1
el

R e
RT for transmitter in layer 2

so that

PT (R eT + hTe )/ReT " (A. 8c)

Also define

* C SB (>0) for transmitter in layer 1

0BT

-0 B (<0) for transmitter in layer 2

A-6
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so we get

Cos 0 B Cos 0 B TCos 0 T(A. 7c)

XT RT sin(OBT - T/CS (A.9c)

=(R T + h TJ sin(O BT - OTJ/CoS E)B (A.l0c)

* and, for the projected distance along the boundary,

S T =R T (EBT " T) R RT 0 B~ R TOT .(A.11)

A.3 RAYS AT THE RECEIVER

At the receiver, we clearly will get analogous equations.

* The results derived from Figure A-4 are

Cos 0 PCo 0 (A. 12)

where

.4 R eR + h Re (.3
R R (Ae3

is evaluated in the medium where the receiver is located.
4
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(a) Receiver Below Boundary

se

(b) Receiver Above Boundary

Figure A-4 Ray Geometry Near the Receiver
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Al so,

X (R + h Si(BR - OR) (A.14)
R = ReR +hRe) cos EB

BR- R

= RR s R (A. 15)

R

We also have

S R =ReR(EBR - eR) . (A.16)

"BR is defined as

0 BR 0 B sign(ReR)

A.4 COMBINING THE RESULTS TO YIELD THE GENERAL EQUATIONS

For the overall link the distance must be the sum of the

0@ distances found in (A.1), (A.4), (A.11), and (A.16). Let us

consider each of the four cases separately, and let k denote the

number of complete periods between the first and the last bound-

ary crossings.

A-9
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A. Both terminals in lower layer

D = ST + Su + k(S +S) + SR

ReIB-T - 2 Re 2 "B + 2k(Rel-Re 2 )GB Rel(OB-R

(2k+2) (Rel-Re 2 )eB - RelOT - RelOR

k 0

B. Transmitter in upper layer, receiver in lower layer

D -R 2 (@B ] + 2k(R -R)B + Rl(eB-Re2 G+OT l-Re2)O Rl -R)

= (2k+l)R-R 2JOB - Re2OT - Re 0 R

k 0

C. Transmitter in lower layer, receiver in upper layer

D Rel(0B-OT) + 2k(R e-R e2)0 B - Re2(GB+OR)

(2k+l)(Rel-Re 2)DB - RelO - Re 2 
0 R

k k0

A
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D. Both terminals in upper layer

D = -Re2(0B+0T + 2Rel0 B + 2k(R el-Re2)0 B  Re2 EB+0B

(2k+2)(Rel-Re2)eB - Re20T - Re20R

k )0

Inspection of these four cases shows that the equation can

be written compactly as

D = m0B(Rel-Re2) - ReTOT - ReROR (A.17)

where, again, ReT is the effective earth radius in the layer of

the transmitter and ReR is the effective earth radius in the

layer of the receiver. m is a positive integer which can be in-

terpreted as the number of times the ray crosses the boundary be-

tween the two layers. We will show later that this interpreta-

tion extends to include the line-of-sight ray by allowing m=0

when the terminals are located in the same layer.

In addition to (A.17) we have, from (A.7) and (A.12)

cos EB = P cos E) (A.18)

B T T

= PR cos 0 (A. 19)
R R

where

PT (R eT + hTe )/ReT (A. 20)

A-I1
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and

PR : ReR + hRe )/ReR (A. 21)

* The expressions in (A.17)-(A.21) are the general equations to be

- solved in order to find the rays connecting the two terminals.

A.5 THE EXPRESSION FOR DELAY

Consider again each of the four cases separately (c denotes

the propagation velocity at the boundary):

A. Both terminals in lower layer

TC : XT + Xu + 2k(X+X u + XR

. sine [ B- 0T )

= Rel Cos BT - 2 Re 2 sin 9B + 2k(Rel-Re2 )sin GBT

sin(0 B-0R)
+ Rel cos 0R

(2k+2) sin GB - Re cos GB tan GT

.- Rel cos 0T tan GR

A-12
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B. Transmitter in upper layer, receiver in lower layer

sino CB+ E)T )

TC = -e 2 R 0T + 2k(Rel -Re 2 ) sin DB

sin (GB- 0R
+ R,"elI cos 0RmR

(2k+l (Re-R sin 0B -R cos 0 tan e T'el e2 B e2 B T

- Rel cos GB tan 0R

C. Transmitter in lower layer, receiver in upper layer

sin (eB-eT )
TC Rel Cos 1 T  + 2k(Rel-Re23 sin' 0B

sin(o B +0 R )
S-e 2 cos 0 R

-R

(2k+l)(Rel-Re2) sin B Rel cos O B tan 0T

0- Re2 cos 0B Lan 0R

A-13



D. Both terminals in upper layer

sin (GB +0 T)
TC -Re2 cos eT + 2k(Rel-Re2 sin 0 B

sin(O B+ 0
R )

- Re 2  cos 0R

(2k+2)'(Re-Re sin eB - R cos 0 tan 0
e e2B e2 B T

- e2 Cos 0B tan 0R

Combining these four separate cases yields the following expres-

sion for delay valid in all regions

Tc = m(Rel-Re2)sin 0 - ReT cos 0B tan 0 - ReR cos 0B tan 0

(A. 22)

For small angles a Taylor series expansion yields the delay rela-

tive to the path along the boundary,

A-14
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TC-D -M(R 1  R 2  o 3/6. bTc- -- m el - e2 B

-RT 0T( 2/3 - 2 (A. 23)

_ReR eR(R/3- o/2)

Te R Re 6.

-(DO 2 + 40 h + 40 h /6

The relative delay is seen to be proportional to the third power

of distance if the terminal height difference is assumed propor-

tional to distance.

A.6 THE RECEIVED POWER

Let us now consider the evaluation of the intensity at the

receiver due to a particular ray where take-off angle OTe is ob-

tained by solving (A.17)-(A.21). Consider a pencil beam at the

transmitter with azimuth beamwidth S and elevation beamwidth

SO0 We wish to calculate the area intersected in a vertical

plane at the receiver. The azimuth width of that area will be

D60. Consider a ran je of elevation angles at the transmitter,

"T = 0T + 6 0T I T . (A.24)

A-15
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From (A.18) we get the range of angles at the boundary,

sin 0
0Bl = 9B + PT sin 0B T

or a beamwidth of

6B = T sin 0 T0 (A. 25)
BO B-

From (A.17) we get the beamwidth at the receiver,

60R0 m (R ~-RA d R 60T /RR
R0 L elRe2) 0BO eT TO] eR

W(A.26)

Re1 -Re 2  sin 0T ReT
60RO [mPT ReR sin 0B  ReR]

From (A.19) and (A.21) we then find the change in height at the

receiver,

cos 0R 6h = (ReR+h Re sin 0 R6O0 - ReR sin e B60 BO

A-16
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This yields

Cos 0R 6 hRe R el-R e2(ReR+hRe sin eT sin 0 R

T0 'T RR sin GB

ReT (ReR+hRe)

R R eR
R sinG0
eR T

-PT R eR sin 0 T

or,

6he s in T  sin 0 RCos 0 R  60T0 -m P T PR(Re1-Re2s

R sin0 Rsin n eB

- ReT R sin BR - ReR PT T  . (A.27)

The total area intersected by the pencil beam, a plane normal to

the beam, is

A = D So 6 hR cos BR

For a line-of-sight ray in a homogeneous medium, we would have

A LOS (D cosOT 6 )(D 60T0)

A-17
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* Hence, the intensity received relative to an LOS ray is, from

(A. 27)

A LOS I C ~ T

= A D cos R 6h Re

mpP( -R sinsi 0
= ~~ co [ R el e 2 si T R PT eR si

coeTDsin GB D s'n0T

PR eT
D sin e (A. 28)D R

A.7 THE LOS RAY

So far, we have only considered the rays crossing the layer

boundary. When the two terminals are on the same side there is

also a direct line-of-sight ray. We consider these two cases

separately.

-Both terminals in lower layer

We have from the geometry (Fig. A-5(a))

D R el (-0T - GR)

This is simply equation (A.17) with m0O. We also have

e T Cos 0 T PR Cos 0 R ~Cos B

A-l8
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(a) Terminal Below Boundary

ST tOG

(b) Terminal Above Boundary

Figure A-5 LOS Ray Geometry

A-19



r - F I-.I .. . - ~ v-. - •, . . .. . .. ., . . .

This is the same as equations (A.18) and (A.19), except that the

angle OB is not needed. However, it is useful to include it in

the equations since it allows us to get a set of equations des-

cribing all rays independent of where the terminals are located.

The delay is

-sin(eT + e

C CT = X T R "e (Re+.h
c = X = Cos eT  Rel +  eR)

-Re (Rtan ET cos 0R + sin OR)

-Rel tan G T cos O B -Rel tan G R cos O B

which is simply (A.22) with m=0.

Both terminals above boundary

From Figure A-5(b) we get

D = (-R 2 )( ET +

which again is equivalent to (A.17) with m=O. We still have

PT COS T = PR Cos R cos B)

A-20
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so (A.17)-(A.21) are valid in general for m>0. Tne equation for

the delay is

sin(eT + 0
CT = X= (-R 2 - hCos e T e2 eR)

-R 2 PR(tan ET Cos 0R + sin 0

e2-R tan T cos - Re2 tan 0R Cos 0 B

which also reduces to (A.22) for m=O.

Hence, our equations are valid in general. The solutions

for m>O, m even for terminal in same layer, m odd for term-

inal in opposite layers, describe all possible rays satisfying

the laws of geometrical optics.

A.8 THE EQUATION FOR OT FROM THE SMALL ANGLE APPROXIMATION

When the angles are small and the heights hTe, hRe are

much smaller than the earth radius, we can derive a quartic equa-

tion for 0T.  For convenience define the small dimension-less

*O height parameters

C=1 - PT = hTe/ReT (A.29)

and

ER =1-P -h /R (A.30)
R R Re/ReR

* These quantities are always positive.

A-21



Expanding (A. 18) and (A. 19) now results in the approxirna-

t ions:

2 02 + A 1
0B 0T +cT (.3

E)- + 2c~ (A. 32)

Def mne

k 1 (Re l-Re2 )/RO

kT -ReT/RO

=R ReR/RO

* and

* = D/R 0 .

Squaring (A.17) and using (A.32) we get also that

22 k[0D/R 0 + kTGT + kRI 2

0- 2 2 2 2 2
+k 0 + k 0 + 2k 0+200+kk00

T TT R R TT 2 R R 2 T R TR

0 2 + k 20 2+ k202+E2e + 2 0+ 2

T ) TT R 0T)

A-22



Combining with (A.31) and collecting the terms independent

of OR at the left yields the equation:

a 1 T2 +bleT + c2 = 2kR( +kTOT)OR (A.33

where

a, m2 k 2  k2 2

12 T -R

b, = 2kT

c I  = (2m 2 k 2 CT - 2 (R 2 - 1 .

Squaring (A.33) and using (A.32) yields,

2 4 + 2alb 00 3 + (b 2 +2a 22 3 24
1 T 11T 1  Cl) T 2b 1 C1 3T 1

22 22 2 + 2

4 R  + + 2kTe T ) ( T + 2 ET - 2ERI

a 4 3 22 d ,3
2T+ b 2 T + c 2  

0T 2  ®T + e 2  (A.34

0

A-2 3
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S where

2 2
a 2  = 4k RkT

b2 = 8kTk R

2 4k 2 + 8k 2kR2 CR / 2

2 16 T -((e RT

16k 2 2

Se 2  8kR(ET - R/•

Combining (A.33) and (A.34) we get the quartic equation

in x=eT/0,

(A. 35)
2 x4 3 22

(al-a 2 ) + (2albl-b 2 x + (bl+2alcl-C2 X + (2blcl-d 2 Jx

2

+c I2 - e 0
1 2

For small angles specific cases of this equation can be iden-

tified with that of Pickering and DeRosa [1979]. Their equation

is in terms of sine rather than 0, and does not include all ter-

minal locations.
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APPENDIX B

DIVERSITY COMBINER PERFORMANCE

The multipath rays in an LOS link can be calculated from

geometrical optics. Near caustics, the amplitude of the indivi-

dual rays is inaccurate, but it turns out that if the rays are

combined with a proper phase then the total field is finite and

an approximation to the total field found from a more exact an-

alysis. The rollowing approach can then be used to evaluate the

worst case performance:

1. Find all eigenrays and evaluate their amplitudes and

delays using geometrical optics. Assume the phases

are unknown.

2. Find the optimum diversity combining of all antenna

ports coupled to the electromagnetic field. This will

depend on the phase of the incoming rays.

3. Select the phases of all the rays to yield the deepest

fade at the output of the combiner. Strong rays will

tend to cancel thus avoiding problems with infinite

fields near caustics.

Let NR be the number of rays. The amplitude of the n'th

ray is A n , and is calculated using geometrical optics. Let

P n be the unknown phase of the n'th ray, and let GTn and

GT n be the calculated takeoff and arrival angles of the n'th

ray. Let NA be the number of apertures at the receiving site,

and assume that each ray has the same amplitude, angle-of-arrival

and phase at each aperture. This is exact for angle diversity

applications and reasonably accurate for space diversity applica-

0 tions if equivalent beam patterns are defined. Let gm( G) be

the amplitude gain pattern of the m'th receiving antenna port anr

let g 0 (0) be the transmitter antenna pattern. The signal re-

ceived at the m'th antenna port 4s then

B-1
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A nfl0 (SO.9 ( J
n=l m R

The amplitudes A n are real, but can be negative for some

rays. The SNR at the output of an optimum diversity combiner is

proportional to

P NA NR j Pn 2

* .m1 n=l

The deepest fade (worst case) is achieved for the ray phases

which minimize P

fonln=l

P can be written in the form

N N D 0

Pe 1 2B(nl,n9
9 = 1 =1 n2)

B-2
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where

~NA
B (n0T n g00 ) (E ) A n A
B(nl'n 2 ) = m=l gmnRn)m Rnj2 0(T1 (n2 n1 n 2

The average SNR, which is sometimes of interest, is

NR

PAV= B(n,n)
n=l

The minimization over the phases Pn  can be solved analytically

in a few specific cases. The two cases most of interest are

NR=l (no multipath) and NR= 3  (typical multipath condition).

When NR=l p is independent of the phase. We now consider the

case NR= 3  in detail.

The Worst-Case Phases for the case NR=3

Assume three rays, with the phase of the first ray being

zero. Then,

3
p = I B(n,n) + 2BI 2 cos( 2 + 2Bl 3 COS 3 +

n=l

* A necessary condition for the minimum SNR is

-2 -2Bl 2 sin$2 - 2B 2 3 sin( 2 - 3 ) 0

B-3
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and

6 -2B 1 3 sinl 3 +2B 2 3 sin ((D2 - D3 ) 0

We immediately see four possible solutions:

2 3

02 3 Tr

For additional solutions, we must have

sino B 12 sin(D3 B1 3  2

and

BB

B2 3  23
- sinO cosO - sinB 12 3 3 B 1

or

B B2
23 1-s 23 23

0. B1 3 B1 3  2

B-4



Hence,

Cos 32 - 23 2 2 € 3

." + B1 132 12

which leads to

B -B2 B 23 B 23 _1 B 23 BI12 B 23 BI12
3 2B2 2 B B B B

123 B _13 B1 12 BIB 812 23

similarly we get

_ B 1 3  B23 B 23
2 2B23 B 2 B1322 13

and

COS(2-3) = L 2:2 B12 13]

B-5



0
T-7

For this solution to be valid we must have the expressions for

Cos (P Cos P3 and cos(l2 - 3  lie between -1 and 1. If,
fo in 2a3)

for in1tance, IB231 is smaller than IB12 1 and IBI31 this

leads to the condition

B23 B23
12 13

This condition is called the triangle condition. For the case of

a single antenna, it is the condition on the amplitudes of the

three rays that can form the three sides of a triangle resulting

in an infinitely deep null. By substituting the above results

into the expression of p we find

1) Triangle Condi.tion:

1 1 1+ +B13 - + > 2 max I 1' 9,37' 1B

yields the potential minimum

+B3B23 B 12 B13 B 12 B23B11 =22 B 3 3  BI2 B23 B13

B-6



Other potential minima are:

2) p BI + B + B + 2B I+B 3+B23
11 22 23 12 132)

3) p = B + B2 2 + B33 + 2(-BI2+BI3-B23

4) p = B1 1 + B 2 2 + B 3 3 + 2(B 1 2-B 1 3 -B 2 3 )

5) P B + B + B + 2(-B2-BI+B
11 22 3312 32)

The smallest of the solutions, 1)-5) corresponds to the deepest

fade possible with the given 3 ray amplitudes and the specified

diversity configuration.

B-7
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APPENDIX C

DERIVATION OF THE SCATTER EQUATION

Consider the geometry in Figure C-1. The distances to the

transmitter and receiver terminals from a variable scattering

point in the troposphere are RT and RR. The corresponding vec-

- tors are denoted R andR We also will use the unit vectors
*- ."defined by

_T = T _/RT

andi._ 2.a = _/RR

The total electromagnetic field at a point r is denoted E (or

E(r)) and is assumed to be composed of a direct field En and a

scattered field .s. The field satisfies Maxwells equations:

• ( E) ; V H 0

(C-1)

V E jiH ; V c H =jwcE

where V is the usual differential operator. The dielectric

constant E is of the form

"= 0 (i + C

. where in the atmosphere e1 is on the order of 10- 5 . We will as-

sume the dielectric constant e is varying slowly with time, so

that the turbulence can be assumed to be frozen in the calcula-

tion of the field. Tatarskii [19711 show that this assumption is

O justified when the wind velocity v satisfies

C-i
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V/c << C

where c is the velocity of light.

S..Since we can assume the turbulence is frozen, we can use
'" the relationship

V xV E - V2E + V(V E) (C-2)

- . to get

-V 2 E + V(V E) w 2 o E

k k2 (l+c )E .(C-3)

where V2 is the Laplacian operator 72 = (V • V). From

Maxwell's equations we also have

- - 0 = V • (SE) = eV • E + (Vc) • E . (C-4)

o ,Using (C-4) in (C-3) we get

V2 E + k2 (l+e1 )E + V(Vtn(e) • E) 0 . (C-5)

Since e1 is small we have

V ne - 1 E V (C-6)

c-3
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Now, writing the field in E in terms of the direct and the

scattered field-ES we get

V2 E 0 + k + k 2 EIE 0  (VS 1  E 0  + 72E S + k2E =

2I
- C E Vis- Z Es)

The field En is defined as the field that would exist if cI:0, so
2 2we have that V E0 + k2E = 0 . is the first term in the

asymptotic expansion of the field. The second term is found by

neglecting the higher order terms involving both El and ES.

Hence we get

V2Es 2 E -k 2 1 EE0 + V(VE1  f0 ) (C-7)

This result is valid asymptotically for sufficiently small El .

Since Ei is extremely small in the atmosphere, the validity of

(C-7) is unquestioned. The solution to (C-7), with no boundary

conditions except at infinity, is known:

-jkR R

ES l f e [k C (r)E0 (r) + V(_EI E0)(r)]d 3-S 4 V R 1 . .. "_0 C 8

where the integral is over all scatterers in the common volume.

ES in (C-8) is the scattered field at the receiver with an

incident field _E0(r) in the common volume.

C-4
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This integral can be rewritten using the Gauss integral

formula:

"dVV = dS n (C-9)
V S

where S is the surface around the volume V and n is the surface

normal. The volume in (C-8) can be assumed sufficiently large so

that contributions from the surface integral can be ignored. To

rewrite the expression we therefore need to rewrite the last in-

tegrand in (C-8) in terms of a divergence. Define

-R

u = e / RR

The second term in (C-8) is then

T 2  uV(V • Eo )

* Using the Leibnitz rule for the differential operator V we get

T2 - V(uVE 1  EO - u VE 1 •E o

C-5
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The first term only yields a surface integral (C-9), and can be

S ignored. Define therefore

T - - U(VE1 * E0 J)

Using the Leibnitz rule again twice yields

T2': -7 (-lEo Vu ) + (V " Eo) 1u

+ Eo E V(Vu)

The second term vanishes everywhere (Maxwell's equations) and the

first term is again a divergence expression which only contri-

- butes to the surface integral and hence can be ignored. We now

* • have reduced the second term in the integrand of (C-8) to

-jkRR
*.T" = IE0 • e_ _ R

2 1-0 - RR

SR

C-6
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The evaluation of this proceeds in a straightforward manner

using that VRR = - _RR/RR = -eR

-jkRR jk
V e R -V (_jk 1 )e-jkRR R

-- RR L RR RR RJ

- [z4 L ]eRR (vR

___ kRR

-3k 1 e -_V RR
R "R

+ e (_V RR) R R .
RRRR R  -R

Since - V R is the identity matrix the first term above is on
R- 2

the order of R R In the far field only the term on the order

of R 1  need to be retained, so we getR

2 -R -R -jkRR
T = - k E e
2 1 - 0. 3

RR

Using this as the s2cond term of the integrand in (C-8) yields

-jkR R

E 1 f dV k2  E [ 0 eR eR] (C-10)
4s r V 1 R RR -R

This is the basic equation for the scattered electromagnetic

field. Instead of the relative dielectric constant El it is con-

venient in the following to use the relative index of refraction,

nI . They are related by

C-7
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n = i-n / + E1 1

or

n 0.5E (C-li)

The incident field is a spherically spreading wave of

the form

-jkRT

E A =A T ) e (C-12)

The amplitude vector 0, which varies slowly with distance is

perpendicular to the direction of propagation (-_eT), and depends

on transmit power and antenna gain in addition to the i/Rt spher-

ical spreading loss. We have that

30 G
1A1 2  PTGT- 2 19 gr -T ) 2

RT(eT)

where GT is the gain of the transmitting antenna and gT(eT) is

the normalized voltage pattern in the direction of the scattering

point. So far we have only assumed that the terminals are in the

far field. We now assume that the scattering angle is small, so

that _ is nearly perpendicular to the direction vector f to the

receiver. Hence we get

C-8
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-jkR TE 0 - tE 0 • eR)e R ~E_ =A 0 ekR

Inserting this in (C-10), and using (C-il), yields

E 2 A0  -jk(RT+RR)
ES k fdV- e n1  (C-14)

RRR V R

The average field on a receiving aperture A is

E - 1_ f dA ES  (C-15)
-R AR AR

For small apertures (AR << XRR) this becomes

k2 49R~ -jk(R T+R R
R 2n f dV R e - n (C-16)

VCR

C-9



where gR is the normalized voltage of the receiving aperture.

The received power is

.Ra AR JER' / (1207)

I r G R 2 LIR 1
120k

G k2 ()gT e")
R2 PTG f dV' f dV" T T

1 6i V V RT(eT)RT(e )

R (e gR( )gR (e; )

RR(e)RR(e") n n17
L- (C.17)

exp[-jk(RT(e) + RR(e'R) - RT(e ) - RR(e")Y

The asterisk denotes complex conjugation. This relatively

formidable expression is simplified by noting that the refractive

index is uncorrelated for points r' and r" in the common volume

. which -re separated by more than the outer scale r,0. Hence we

can assume that (outside of the complex exponent)

R (e') R R(e")

and

RR (e') R ("
RR -

C-iO
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and that

(e' g (e")

The correlation function of the refractive index is taken to be

- homogeneous. We do not assume isotropy at this period. we

* define the correlation function

P(r' -r") n n(r') n1 (rot) .(C-18)

Inserting this in (C-17) together with the assumptions above

2K yields

P P TG TG Rk 2  f ofd3rs1gT12 1g9R1 2  r re j (19
-- R=2 Jd Jdr 2 2 p-2- nekYC9

16w V V RT RR

where the phase term T is

T RT =T1) + Re)-RT(e. ) -RR~~ (C-20)

Tatarskii [1971] simplifies the result further by using an ap-

proximation of T which is valid when the Fresnel conditions

-. 2L << RTF XRR (C-21)

00
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are satisfied. These conditions will be violated at the high end

of the microwave spectrum. The conditions reflect the fact that

at high frequencies the scale of the turbulence is large compared

"- to the wavelength (or rather, the Fresnel distance (AR) I /2 ) so

that scattering is negligible. At these extremely high frequen-

cies the effect of the atmosphere is primarily refraction

(Geometrical optics region). In the derivation below we show

that the condition (C-21) can be slightly relaxed, a fact that

has significant impact on the possible use of troposcatter

systems at high microwave frequencies and at millimeter wave

frequencies. To derive the simpler expression the integral (C-

19) is transformed so that r' - r" is a direct integration

variable:

= 2

." r" = r0 - r,l 2 .

Let R be the vector to the transmitter from the point . .

The vector from the origin to the transmitter is then

* r = + Ro(ro)

Then

-RT ) = Ol - -r/21

and

T(r") - IRT1 L o + rl/21

C-12
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Similarly we have that

.

RR(r') = 1- r- r/21

and

RR(r") = rRl - r, /2 "

Assume j j is small relative to RTO(.yo) and R ExactlyRRO (.ED)•Excl

what this implies will be determined later. We can then expand

RT and RR in a Taylor series in rI . Maintaining terms up to

order 3 we find that

RT(r')- RT(r) - TO -'o - R- + r1/21

RTO E~l
RTO

+ "T 0-l FR 2  r 2 - K * r,1 2 ]5 To1 1
8 RTO

r5

+ o( r s  ) (C-22)
RTO

where the symbol 0 stands for "order of ", i.e., 0(X) ~ CX for

small X where C is a constant. Using the analogous result for

the receiving end we get the following approximation to the phase

term 7:

C-13
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R,,

r _ _ _ _ + 0

8 Ro TO 1 R .-'0

4 RTO ;-:i [R20 r2 -
8 RRO T 1 2]~R

.- 2

5 5O

8 o RRRO

= - ~R1 [O ' R)+£(-)

rectionterm 0 Asumn thtr 0 wehveta

5 5 5

•...

,r..-

RTO RR0

C-C-23

iS ."T .+- -'"O +o

:'.'i where we have defined the unit vectorst T0 and R , and the cor-
' ... rection term e. Assuming that rI 4 L0 we have that

1..+  0 (C-24)

b
o 

,° The correction term c can be ignored only if kc < v/8, or

3.-3 (C-25)
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*This is the basic condition required for the further simplifica-

tion of the expression for the received power (C-19). As a

numerical example, take RT - RRO = 50 km and L= 50 m (typi-

* .cal), then (C-25) yields

A > .0001 meters,

or

f < 3000 GHz.

This shows that the theory should be valid for higher frequencies

than would be expected from the condition derived by Tatarskii

[1971]. That condition states

. X >> L2/ R,

which for the above numerical values translates to

X >> 0.05 meters

or

f << 6 GHz.

We now proceed to the derivation of the simplified scat-

tering equations. The first term of 7 in (C-23) can be written

' -er *e (C-26)

when

S  - eTo +e . (C-27)-RO

is is typically pointing straight up so that only the vertical

scale influence *.

C-15
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We have that

eS ISSI 2 sin (0/2) (C-28)

where e is the scattering angle at the given point in the common

volume. Inserting this in (C-19) yields

PT GT GR k2 3 1T( )121R-rO)1
K- R 2 f d r0  2 2*161 V0  RTO(r) RR(r)

d r P(i)e 1  (C-29)

If the common volume is large compared to the scale of the tur-

bulence in all directions we can assume that V0  V, and that

f d 3 r p(r,)e +jkr 1-t
V

-. 1

3 ~ +jkr *eI
-fd rl p(rl)e 1 -

3
= (2ir) 0(k e S)

C-16
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where 0 is the wave number spectrum of the refractive index. For

simplicity we now assume isotropy so the result is independent of

• the direction of 2S" The case of anisotropic turbulence will be

. considered in the main part of the text. Using (C-28) and (C-30)

in (C-29) results in

2 2
P"G 2 gT gRPR T TR k f dV 2 2 ( (2k sin(e/2)) . (C-31)

V RT RR

Based on this expression we can interprete each infinitesimal

part of dV of the volume as an individual scatterer. The cross

section ac, as usually defined in the radar context, is found by

comparison of (C-31) with

GT ac  A2GR
PR T. 4RT . 4-- RR • * (C-32)

T T R4

so that (setting gT = gR = 1 for the purpose of defining ac)

a= 81 2k4 0 (2k sin -2)dV . (C-33)

Equation (C-31) is the desired scattering equation. We briefly

summarize the conditions for the validity of (C-31):

1. The atmosphere can be considered frozen:

v/c << nI

C-17
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2. The terminals are in the far field:

k RT, k RR > 1

3. The scattering volume is much larger than a

correlation cell:

V >> L 3

4. The scattering volume is in the far field of

the antennas:

AT/RT, AR/RR << A

5. The Fresnel zone condition:

2LO/X < 2 0 2j
<40, Co8
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