Binary encryption on UNIX

scut

tesoy

Overview

= Any questions?

e raise hand, will answer questions asap

® Duration: about one hour

e 20 minutes: binary encryption
® 20 munutes: ELF format
® 10 minutes: demonstration

e 10 minutes: questions :-)

m Documentation: http://www.team-teso.net/articles/18c3-encryption/

Binary encryption, wtf?

m object of interest: executeable files
m offers: protection against reverse engineering
m drawbacks: overhead, portability, pseudo-security

m history: DOS, Windows and shareware

m balance: real security vs. obscurity

Binary encryption on UNIX, why?

Commercial point of view

= need: protection of binary-only software (vs. OSS)
m need: commercial penetration testing
Attacker/Researcher point of view

® need: anti-forensics for cracker tools

m need: stop of "leaks" of exploitation tools

‘Goals of binary encryption

m allow execution only for authorized persons
m obscure purpose of the binary

m immune to static analysis (IDA, objdump, ..)

= obscure process image (SIGSTOP, /proc/, core)

Forensics - status quo

Almost all forensic tools on UNIX are

m intended for debugging (gdb, strace, strings, objdump, ..)
m fail to deal with hostile code (libbfd/ptrace based programs)
® obscure and not well documented

m old and buggy (TCT, ptrace-interface, ..)

See http://www.incidents.org/papers/ssh_exploit.pdf to see the failure of such
tools.

ELF file format

m standard UNIX executeable format (TIS ELF v1.2)
m used for both linking objects and executeables

m standard-based, well designed

m used in: Linux, FreeBSD, IRIX, Solaris

ELF dualism

Linking View Execution View

ELF Header ELF Header

Program Header Table Program Header Table
optional

Section 1

Segment 1

Sectionn

Segment 2

Section Header Table Section Header Table
optional

0OsD1980

Example ELF file

® "readelf -1 /bin/ls"

m two PT_LOAD segments (code, data)

m one PT_INTERP segment ("/lib/ld-linux.s0.2")

= entry point from ELF header

ELF program header

typedef struct

{
E1f32_MWord
E1f32_0ff
E1f32_Addr
E1f32_fddr
E1f32_MWord
E1f32_Hord
E1f32_MWord
E1f32_Hord

} E1f32_Phdr:

p_type:
p_offset;
p_vaddr:
p_paddr:
p_filesz:
p_memsz;
p_flags:
p_align:

/%
FE
i#
/%
%
Fa
/%
L

Segment
Segment
Segment
Segment
Segment
Segment
Segment
Segment

type =/

file offset #/
virtual address =/
physical address #/
size in file =/
size in memory #/
flags =/

alignment #/

e p ype: PL° LOAD PE INTERP, FI' NOTE, FT DYNAMIC, ...

m p_vaddr: real absolute memory start address

m p_flags: PF_R, PF_ W, PF_X

® details: /usr/include/elf.h

ELF - the linking view

m file type ET_DYN
m libraries are relocateable object files
® relocation information in file

m additional symbol information stored

m dynamic section required

ELF loading

m execve() call executes an ELF
m teamwork: kernel and userspace
Distribution of work:

= kernelspace: mapping executeable and program interpreter

m userspace: mapping libraries, resolving dependancies

ELF loading (Linux)

[user: execve()

kemel: load PT_LOAD segments

] kernel
map PT_INTERP program nterpreter

Y

program interpreter: map libraries

resolve symbols
& userspace

, ;

real program entry point (_start)
-

Kernel ELF loading

m look through all segments
m map PT LLOAD segments into memory

m map program interpreter from PT_INTERP segment

= control to userspace: start program interpreter

Userspace ELF loading

Program interpreter (PT_INTERP)

® receives control from kernel
m parameters in EIf32 auxv vectors

m loads all libraries, resolves all symbols

m pass control to real entry point (ELE header)

‘additional code: typical ELF virii

m ELF PT [LOAD segments are page-aligned
m segment padding is needed
m add code into padding

m redirect entry point

More sophisticated ways do exist, see silvio's papers.

‘additional code: userspace ELF loader

m used first by UPX packer
® minimal ELF stub
® stub works as kernel-alike ELLF loader

m pros: little overhead, reliable

m cons: slowdown, weak protection

‘The future

® forensic work will become more difficult

m todays forensics will drop out

m reverse engineers will convert to UNIX

m combination: binary encryption, worms, virii

m development: tougher analysis tools

m development: stronger protections

‘The end

Documentation

= http://www.team-teso.net/articles/18c3-encryption/
Contact

B scut{@team-teso.net

Thank you for your interest :-)

