High Dynamic Range Receiver Parameters

Over the past several years receiving equipment used for signal reception in the VHF/UHF spectrum has undergone major technological advancements. The growing need for general coverage VHF/UHF receivers capable of being controlled remotely and/or by a computer has resulted in the development of new types of receivers employing digital techniques for control of all receiver functions. These new digitally controlled receivers offer capabilities and performance not found in the older style of manually operated receivers. For example, the new designs employ PLL (phaselocked loop) frequency-synthesized local oscillators of high stability to permit rapid and highly accurate digital tuning. The receivers are also designed to operate over extremely wide frequency ranges (often in excess of five octaves) in the VHF/UHF spectrum without the need for manual bandswitching or changing of tuning heads. Furthermore, a primary objective of these new receiver designs is to achieve the above mentioned capabilities without any compromise in their basic RF performance characteristics, such as high-dynamic-range signal-handling ability. An example of a high-dynamic-range, digitally controlled VHF/UHF receiver is the recently introduced Watkins-Johnson Company model WJ-8617A, shown in Figure 1. This receiver utilizes microprocessor technology for increased versatility and flexibility. It is a general-purpose receiver that offers continuous frequency coverage from 20 to 1100 MHz in 100-Hz steps, with a typical noise figure and third-order intercept point of 10 dB and -5 dBm, respectively.

High Dynamic Range

The ability to detect very weak signals in the microvolt range has always been a fundamental requirement of a high-quality VHF/UHF receiver that is used for signal intelligence. More recently, though, due to increased activity in the VHF/UHF spectrum, plus more exacting requirements by users, greater emphasis is being placed on the ability of a receiver to perform satisfactorily in an RF environment containing a mixture of very weak and very strong signals. This signal-handling property is known as dynamic range. The concept of a high-dynamic-range receiver implies more than an ability to detect, with low distortion, desired signals differing in amplitude by as much as 90 or 100 dB. More importantly, the concept should indicate a high degree of immunity to spurious responses produced by nonlinear interaction of multiple high-level signals often far removed from the tuned frequency of the receiver.

Figure 1. 20-1100 MHz VHF/UHF digitally controlled receiver - WJ-8617A.

The purpose of this article is to acquaint the reader with some of the parameters typically associated with frequency-synthesized VHF/UHF receivers designed for high-dynamicrange performance. The topics that will be discussed include noise figure, sensitivity, two-tone intermodulation distortion, third-order intercept point, spurious-free dynamic range, and internally generated spurious responses.

Noise Figure – Sensitivity

Noise figure and sensitivity are two parameters normally associated with the ability of a receiver to detect very weak signals. The electronic circuitry in a receiver always adds a small amount of noise to an incoming signal in excess of that contributed by thermal effects. This circuit noise is normally the limiting factor in detecting low-level signals in the VHF/UHF spectrum.

The noise figure of a receiver is a very fundamental parameter and is basically a measure of the noise added by the receiver circuitry. An expression for defining the noise figure of an electronic device in terms of signal-tonoise ratios is given in Equation 1.

NF = 10 log
$$\left[\frac{S_i/N_i}{S_o/N_o} \right]$$
 (1)

Where: NF = noise figure in dB

- S_i = signal power at device input
- N_i = noise power at device input
- S_o = signal power at device output
- N_o = noise power at device output

Sensitivity, on the other hand, is not a fundamental quantity. It is a measure of the receiver's ability to detect a signal of a given level, and is dependent on several factors, such as the type and degree of modulation used, the pre-detection (IF) or post-detection (video) bandwidths employed, the signal plus noise-to-noise ratio required at the detector output, as well as the receiver noise figure. A simple, though only approximate, expression showing the basic relationship of these factors to receiver sensitivity is given by Equation 2.

$$S = -174 \text{ dBm} + \text{NF} + 10 \log B + K_{sn} + K_{m}$$
 (2)

Where: S = sensitivity in dBm

- 174 dBm = thermal (KTB) noise power in a one-Hz bandwidth at room temperature

NF = noise figure in dB

B = pre-detection IF bandwidth in Hz (assumed to be twice the video or post-detection bandwidth)

$$K_{sn} = \text{desired} \frac{S+N}{N} \text{ in dB of the}$$

detected signa!

K_m = a variable in dB which is a function of the modulation characteristics

This equation indicates that sensitivity improves (becomes more negative) with decreasing noise figure and/or decreasing IF bandwidth. VHF/UHF receivers frequently have noise figures in the range of 6 dB to 12 dB, whereas the IF bandwidths most commonly used, range from 10 kHz to over 5 MHz. Therefore, the sensitivity level of a typical receiver will be more heavily influenced by the IF bandwidth selected than the actual receiver noise figure.

To demonstrate the use of Equation 2 to compute sensitivity, assume a 50% amplitude modulated signal being detected by a receiver having a 10-dB noise figure and using a 10-kHz IF bandwidth. A 10-dB signal plus noise-to-noise ratio is required for the demodulated output.

Thus:	NF	=	10 dB
	10 log B	=	40 dB for 10-kHz
			IF bandwidth
	K _{sn}	=	10 dB for the
			S+N
			required N
	Km	=	6 dB for 50% AM

Substituting these quantities into Equation 2 gives:

S = -174 dBm + 10 dB + 40 dB + 10 dB + 6 dB= -108 dBm = 0.9 microvolts

Intermodulation Distortion – Intercept Point

All receivers employ RF-IF signal processing circuitry which is inherently non-linear; consequently, another very important factor in VHF/UHF receiver performance is two-tone intermodulation distortion. When two sufficiently strong, but unwanted signals are applied to the antenna input of a receiver they will mix in the RF stages to create spurious signals known as intermodulation products. If the frequency of one of these products is close to the receiver operating frequency, the product will be processed by the RF-IF and detector stages as though it were a real incoming signal of the same frequency. This problem is illustrated in Figure 2. Second-order and thirdorder intermodulation distortion are the most common types encountered, and the frequency relationships involved for these two cases are given by Equations 3 and 4.

> $f_1 \pm f_2 = f_t$ (3) 2nd-order intermodulation distortion

 $\begin{array}{c} 2f_1 \pm f_2 = f_t \qquad (4)\\ \text{3rd-order intermoduation}\\ \text{distortion} \end{array}$

- Where: f₁, f₂ = frequencies of strong undesired signals
 - f_t = frequency of intermodulation product created at the receiver tuned frequency

Second-order, two-tone intermodulation distortion is not an uncommon problem, especially in a receiver having a broadband RF front end, but it can be minimized by use of a doublebalanced mixer in the first converter stage plus use of a push-pull RF preamplifier. Also, with the addition of an RF preselector employing suboctave bandwidth bandpass filters (tunable or fixed), second-order interference can be reduced to an insignificant level. The suboctave preselector filter serves to attenuate strong signals, lving within a range of critical frequencies determined from Equation 3, which are capable of creating secondorder products at the receiver tuned frequency. This reduction in secondorder interference by use of RF preselection is illustrated in Figure 3.

More troublesome and difficult to control is third-order, two-tone intermodulation distortion, since RF preselection provides only a partial solution to the problem. This is due to the following distinctive property of third-order two-tone interference. Two strong undesired signals both falling within the passband of the preselector will produce the third-order products $(2f_1 - f_2)$ or $(2f_2 - f_1)$, one or both of which may also fall in-band. Decreasing the preselector bandwidth will reduce the frequency range over which the receiver is susceptible to this type of interference. Unfortunately, due to considerations such as size, complexity, and insertion loss, a practical lower limit for the relative bandwidth of preselector filters used in general-coverage VHF/ UHF receivers is around 20%. Therefore, in a dense signal environment there is always the possibility that two strong signals will fall within the preselector passband and produce an undesired spurious response at the receiver tuned frequency. This situation is illustrated in Figure 4.

Third-order intermodulation distortion is not limited to the RF front end of

Figure 2. 2nd and 3rd order two-tone intermodulation products for two unwanted input signals at f_1 and f_2 with receiver tuned to f_t .

a receiver. The above description of the in-band characteristics of thirdorder interference is also applicable to the receiver IF stages. When the frequency spacing between strong incoming signals is small compared to the bandwidth of the first IF stage, then intermodulation distortion

in the IF is likely to occur. Consequently, the problem must be minimized through proper circuit and system design, as well as component selection, for the overall RF-IF receiver chain.

Intermodulation performance is commonly tested by applying two signals of equal power to the receiver input and then measuring the equivalent input level of the distortion product created at the receiver tuned frequency. The ratio in dB of the distortion product to the input level of the test signals is known as the intermodulation ratio, and was frequently used in the past to specify intermodulation performance.

In recent years though, the intercept point concept has become a more popular method for characterizing the intermodulation distortion performance of many types of electronic equipment as well as radio receivers. The intercept-point method yields a single number, usually in dBm, which is independent of the input signal levels. The intercept-point concept for twotone, third-order intermodulation is most easily understood by referring to Figure 5.

The curves in this figure show the typical input-output power relationships for the fundamental and thirdorder responses in a mildly non-linear system. The dashed line represents the variation in output power as a function of input power for the two fundamental input signals. Note that for small enough input levels (i.e. below compression) the curve is linear with a slope of unity indicating the output power of the fundamental changes on a dB-for-dB basis with the input power. The dotted line depicts the behavior of the output power of the intermodulation products as a function of the fundamental input power. Again the curve is linear for small enough input signals, but has a slope of three. This slope indicates that the power in the third-order intermodulation products increases 3 dB for each dB increase in the input signal levels.

The fictitious extension of the linear portions of these two curves until they intersect establishes the intercept point. The input power level at which this point of intersection occurs is the third-order, two-tone intermodulation input intercept point of the system.

The intercept point of a system cannot be measured directly and therefore is computed from Equation 5.

$$IP = 1/2 (R_s) + P_{in}$$
 (5)

- Where: IP = 3rd-order input intercept point in dBm R_s = relative suppression in dB of third-order products
 - P_{in} = input power level in dBm at which relative suppression is measured

The above relative suppression term R_s is the amount in dB by which the third-order intermodulation products are suppressed below the fundamental responses when measured at the system output, and is shown graphically in Figure 5 as the vertical difference between the two curves. The typical test setup used for evaluating two-tone intermodulation performance and the method for determining R_s is shown in the simplified illustrations of Figure 6.

Another important relationship, involving intercept point, which can be used to determine the equivalent input level of intermodulation products is given by Equation 5a.

 $IM = 3(P_{in}) - 2(IP)$ (5a)

Where: IM = equivalent input power in dBm of 3rd-order intermodulation products IP = 3rd-order input intercept point in dBm The higher the third-order intercept point of a receiver, the less susceptible it will be to spurious responses caused by strong multiple in-band signals. Unfortunately, the desire for a high intercept-point receiver is often not compatible with the simultaneous requirement for low noise figure. Compromises usually must be made when specifying both the receiver noise figure and its third-order intercept point.

As a general rule of thumb, a receiver designed for high intercept-point performance will employ RF-IF amplifier stages and double-balanced mixers all having high 1-dB compression points. These power amplifier stages generally have higher noise figures and consume more supply power than small-signal amplifiers. High-power mixers require large local oscillator drive levels which, in turn, can result in higher LO radiation levels and larger internally-generated spurious responses, as well as more power consumption. Thus, the requirement for an extremely high intercept-point receiver can create a multitude of design problems and result in very expensive equipment.

The design of a receiving system having an optimum balance between noise figure and intercept-point performance requires careful selection and placement of the RF-IF gain and mixer stages. This systems design problem, for the recent lines of Watkins-Johnson Company digitally controlled VHF/UHF receivers, was solved by using a computer program to estimate the intercept point and noise-figure performance of numerous proposed receiver configurations. Also, these new receiver designs make extensive use of modular RF-IF signalprocessing components, such as broadband integrated amplifiers and doublebalanced mixers. Use of these stateof-the-art components provides the capability to emphasize interceptpoint performance over that of noise figure, and vice-versa, by changing relatively few components.

Spurious-Free Dynamic Range

Another parameter frequently used to characterize receiver performance is spurious-free dvnamic range. The "spurious-free expression dynamic range" is used here to mean that portion of the total dynamic range where there are no 3-rd order spurious responses exceeding the noise floor by 3 dB when two equal-power input signals are applied. The dynamic range of a receiver is the range of input signal levels over which the receiver is usable. Various criteria have been used to define the upper and lower limits for this usable range. One criterion often used to establish the lower limit of the dynamic range is called the minimum detectable signal and is defined as a signal 3 dB greater than the equivalent noise power for a given IF bandwidth. The minimum detectable signal (MDS) is relative to receiver noise figure and IF bandwidth by Equation 6.

$$P_{\perp} = MDS = -171 \text{ dBm} + \text{NF} + 10 \log B$$
 (

Where:	PL	=	lower power limit of
			dynamic range in dBm
	MDS	=	minimum detectable
			signal in dBm
	NF	=	noise figure in dB
	В	=	IF bandwidth in Hz

6)

The upper limit for spurious-free dynamic range (SFDR) is typically set by the level of two equal input signals necessary to create a third-order intermodulation product equivalent to the minimum detectable signal. Through use of Equation 5a, this definition can be expressed by Equation 7.

$$MDS = 3(P_u) - 2(IP)$$
 (7)

- Where: P_u = upper power limit of spurious-free dynamic range in dBm
 - IP = receiver 3rd-order input intercept point in dBm

The upper power limit is now given by Equation 8.

$$P_{u} = \frac{1}{3} (MDS + 2IP)$$

= $\frac{1}{3} (-171 \text{ dBm} + \text{NF} + 10 \log B) + \frac{2}{3} (IP)$ (8)

Using the above expressions for P_L and P_u , the spurious-free dynamic range can now be found from Equation 9.

$$\begin{aligned} \text{SFDR} &= \text{P}_{\text{u}} - \text{P}_{\text{L}} = 1/3 \text{ (MDS+2IP)} - \\ \text{MDS} \\ &= 2/3 \text{ (IP-MDS)} \\ &= 2/3 \text{ (IP-MDS)} \\ &= 2/3 \text{ (IP-NF-10 log B + } \\ &= 171 \text{ dBm)} \end{aligned}$$

Where: SFDR = spurious-free dynamic range in dBm

Thus, it is seen that spurious-free dynamic range is directly proportional to intercept point, but inversely proportional to noise figure and IF bandwidth. In other words, the dynamic range increases with lower noise figures and narrower IF bandwidths as well as for higher intercept points.

As an example of computing the spurious-free dynamic range for a typical high – performance receiver, assume a noise figure of 10 dB, an IF bandwidth of 10 kHz, and an input intercept point of -5 dBm. Substituting these quantities into Equation 9 yields:

SFDR = 2/3 (-5 dBm - 10 dB -40 dB + 171 dBm) = 77 1/3 dB

Internally Generated Spurious Responses

In a frequency-synthesized, generalcoverage VHF/UHF receiver there are numerous mechanisms by which spurious responses can be generated within the receiver, even though no input signals are present at the antenna terminals. Some of these responses are due to mixing of harmonics of the various local oscillators necessary in dual and triple conversion designs. Others are related to synthesizer operation. Extreme care must be exercised in both the electrical and mechanical designs of the receiver to minimize these responses.

Although internally generated spurious responses are not directly related to the strong signal-handling ability of a receiver, they can degrade the utility of a surveillance receiver that otherexhibits high-dynamic-range wise qualities. These responses, as well as being nuisance signals, may also obscure weak signals of interest. In other words, the signal-detection ability or sensitivity of the receiver may be limited by the level of these spurious responses rather than by circuit noise. To prevent this possibility, the equivalent input level of internally generated responses should be comparable to the minimum detectable signal defined earlier. There is little value in requiring the spurious responses to be much lower than this level. Thus, a reasonable lower limit for an internal spurious specification can be related to the receiver noise figure and IF bandwidth by Equation 10.

 $P_{s} = MDS = -171 dBm + NF + 10 log B$

Where: P_s = lower limit for spurious specification in dBm

It is interesting to note that standard definitions for dynamic range, such

as the one previously used for SFDR, typically use a lower limit established by noise considerations. A functional lower limit could have been set by the level of the internally generated spurious responses, provided they exceeded the MDS of the receiver.

Conclusion

VHF/UHF receivers used for signal reception should have high sensitivity, yet be as free as possible from interference caused by unwanted signals. Manufacturers have, for years, routinely addressed the problems of IF selectivity, IF rejection, and image rejection, which are related to forms of linear interference. With increased activity in the VHF/UHF spectrum, both receiver manufacturers and operators are also becoming more concerned with the problems of nonlinear interference. Consequently, new receiver designs have begun to stress high-dynamic-range performance.

This article has reviewed several receiver parameters and their interrelationships that are critical to highdynamic-range performance. The intent of the article has been to provide the reader with an appreciation of the need for high-dynamic-range signal-handling in a VHF/UHF receiver.

Author: Rodney K. McDowell

Mr. McDowell joined the CEI Division of Watkins-Johnson Company in 1976. He is a Member of the Technical Staff in the Developmental Engineering Section of the Receiver Department where he is engaged in the development of high-dynamic-range VHF/UHF receivers. He recently completed design responsibility for the RF-IF sections of the WJ-8610A series of generalpurpose receivers covering the 20-1100 MHz range. He is previously assigned to the Digitally Controlled Receiver Section where he designed the RF section of the WJ-8620A series of VHF/UHF "hand-off" receivers. Mr. McDowell holds a BSEE from Carnegie-Mellon University and a MSEE from Syracuse University.

WATKINS-JOHNSON CO. PALO ALTO, CALIFORNIA

BULK RATE U.S. POSTAGE PAID PERMIT NUMBER 317 SUNNYVALE CALIFORNIA

WATKINS-JOHNSON

Manufacturing and Office Locations

United States

SALES OFFICES

CALIFORNIA

Watkins-Johnson 2525 North First Street San Jose, 95131 Telephone: (408) 262-1411

Watkins-Johnson 440 Mt. Hermon Road Scotts Valley 95066 Telephone: (408) 438-2100

Watkins-Johnson 831 South Douglas Street Suite 131 El Segundo 90245 Telephone: (213) 640-1980

DISTRICT OF COLUMBIA

Watkins-Johnson 700 Quince Orchard Road Gaithersburg, MD 20760 Telephone: (301) 948-7550

GEORGIA

Watkins-Johnson 4250 Perimeter Park, South Suite 123 Atlanta 30341 Telephone: (404) 458-9907 MARYLAND Watkins-Johnson 700 Quince Orchard Road

Gaithersburg 20760 Telephone: (301) 948-7550

Watkins-Johnson 5 Militia Drive Suite 11 Lexington 02173 Telephone: (617) 861-1580

PENNSYLVANIA

Watkins-Johnson 385 Lancaster Avenue Suite 201 Haverford 19041 Telephone: (215) 896-5854

OHIO

Watkins-Johnson 2500 National Road Suite 200 Fairborn 45324 Telephone: (513) 426-8303

TEXAS

Watkins-Johnson 9216 Markville Drive Dallas 75243 Telephone: (214) 234-5396

International

ITALY Watkins-Johnson Italiana S.p.A. Piazza G. Marconi, 25 00144 Roma-EUR Telephone: 59 45 54 Telex: 612278 Cable: WJ ROM I

UNITED KINGDOM

Watkins-Johnson Shirley Avenue Windsor, Berkshire SL4 5JU Telephone: Windsor 69241 Telex: 847578 Cable: WJUKW-WINDSOR

GERMANY, FEDERAL REPUBLIC OF

Watkins-Johnson Manzingerweg 7 8000 Muenchen 60 Telephone: (089) 836011 Telex: 529401 Cable: WJDBM-MUENCHEN

The Watkins-Johnson Tech-notes is a bi-monthly periodical circulated to educational institutions, engineers, managers of companies or government agencies, and technicians. Individuals may receive issues of Tech-notes by sending their subscription request on company letterhead, stating position and nature of business to the Editor, Tech-notes, Palo Alto, California. Permission to reprint articles may also be obtained by writing the Editor.

COPYRIGHT © 1980 WATKINS-JOHNSON COMPANY