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The primary purpose of this article is to 

describe how to construct a reliable 

correction table for radio direction- 
finding applications. The information 

presented will also enable one to test a 
direction finding (DF) unit to the 

manufacturer’s specifications, as well 
as test an active DF site for degraded 

performance due to aging or extreme 

environmental conditions. 

The correction tables described here are 
used to increase the overall accuracy of 
the DF system. This aspect becomes 
important when a DF cut is being 

made on a transmitter that is 30 or 40 
miles from the DF site, or during tri- 

angulation operations. 

A large part of this discussion is 

dedicated to statistics and data reduc- 
tion techniques. These are the tools 

needed to perform accurate direction 
finding and to calculate the amount of 

accuracy. For a more detailed descrip- 
tion of the techniques described, a 
standard college-level statistics text 

and a text of mathematical methods 
that includes a section on curve fitting 

are recommended. 

The first section is on data collection. 

Procedures for construction of a test 

area and for collecting data are pre 

sented. The key idea is to keep track of 
all the information. 

The second section describes how to 
test the data that has been collected. 

The data can be compared with past 
performance to determine if the DF is 
in need of recalibration. A new DF 

system can be tested to see if it is as 
good as an older system was or if it 

meets manufacturer’s specifications. In 
the previous case, most of the tests will 

be performed against specific fre- 
quencies. In the second case, where the 

DF system is being tested for overall 

accuracy, many sets of frequencies are 

combined. The first step in doing any 

data testing is to calculate the standard 

deviation (SD). The Chi-squared test 
(x’) can then be used to test the SD from 

the data to the SD of the historical 

performance or a specification. 

After the data has been collected and 

tested, the third section shows how to 
break the data of each frequency down 

to the desired azimuth increment. This 

section is useful if graphical represen- 
tation is desired as a form of correction 
table. Several algorithms are presented 
for computer implementation of these 

procedures. 

The concluding remarks of this article 

can be used as a check list for con- 
structing correction tables or for testing 

DF systems. 

Data Collection for System 
Calibration 

The location used to test a DF system 
depends largely on the frequency range 
and the type of information desired. If 
the DF system will be at a fixed location 
(usually called a fixed-site DF) and if 
the data will be used to generate a 
correction table, then the actual fixed- 
site location is the best test location. If 

the unit is man-portable or van- 
mounted, and if the basic system errors 
are being measured to create a correc- 

tion table, then an anechoic chamber is 
more desirable. 

If an anechoic chamber is not available, 

a large open area is the next most suit- 
able site. The area should be at least 15 
wavelengths (of the lowest frequency to 

be tested) long and 10 wavelengths 
wide, to reduce the signal strength of 

any reflected wave. All reflecting sur- 

faces around the DF antenna should be 

duplicated on the opposite side of the 

area about the line joining the transmit- 

ting antenna to the DF antenna. See 

Figure 1 as an example. If it is imprac- 

tical to duplicate the reflection, then it 



BUILDING OR 
OBSTRUCTION 

r—4 DUPLICATED BUILDING 
ete OR OBSTRUCTION 

TX = TRANSMITTER 
DF = DIRECTION FINDER 

Figure 1. Small field with obstructions 
duplicated. 

may be preferable to change the dimen- 
sions to those indicated in Figure 2. 

The DF antenna and the transmitting 
antenna need to be at least five wave 
lengths apart to insure that the DF 
antenna is in the “far field.” If the DF 

antenna is closer, the curvature of the 
wavefront can induce extra errors. To 

help reduce the errors caused by re 
radiations of surfaces near the trans- 

mitting antenna, the overall length of 
the test area should be increased, if 
possible. 

It is easy to diagnose reflections or 
reradiations during a DF test. If there 
are frequencies where all the readings 
are characterized by a positive or 
negative average error, yet the errors, 
when plotted, form a smooth curve, 
there is most likely a reflection or a 

reradiation present. To test this 

hypothesis, run the same test a second 
time with the DF antenna in a new 
location (move the DF antenna a full 
wavelength in any direction). If the 
average error changes by more than a 
degree or two, then the error was caused 

by reflections or by reradiations. 

The previous paragraph assumes the 

DF unit is one of the many phase 
measurement based systems (this 
would include doppler and pseudo- 
doppler techniques). If an amplitude 
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Figure 2. Large field with obstructions in 

safety region. 

measurement DF unit is used, the reflec- 
tion can often be received as a second 
bearing. If a directional antenna is 

being swept 360° and a CRT is used to 
display the signal strength, the reflec- 

tion can easily be identified as the 

signal not coming from the transmit- 
ting antenna. With loop antennas, 
because the signal is coming from two 
directions, there will never be a com- 

plete null. There may be two null points, 

the lowest of which should be the 

transmitter. The other null will be the 
reflection. 

Animportant goal during the DF testis 
to keep all conditions as constant as 
possible and to record all pertinent 
data. If the tests last more than one 
day, and each night the gear must be 
stored, be sure the area is marked so the 
antennas can be replaced exactly where 
they were. Make a sketch of the area 
and any obstructions, to scale if pos- 
sible, that includes any trees, buildings, 
sign posts, trucks, etc. When the area is 
being set up at a later date, check the 
sketch to see if anything has changed 
and make a note of it. When the datais 
being reviewed, the sketch may help 
identify reflections. 

When tabulating data, it is important 

to be consistent in the method used to 

determine the difference between the 
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Figure 3 is an example of a useful data 

sheet. It allows for all important data to 

be recorded, including a couple of lines 

to the “DF reading” to determine the 

for comments. 

true LOB. 

DATE S/N 

S/N 

(DF reading). 

DB 

(true LOB) - 

Using this method, the values read 

CORRECTION 

ANTENNA 
SIGNAL STRENGTH 

from the correction table can be added 

SYSTEM 

true LOB and DF reading. The pro- 

cedure to use is: 

Figure 3. Sample data collection log. 
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Data Testing 

Once the data is collected, it should be 

tested to determine if it is acceptable 
data. Acceptable data is data that 

matches any existing data, from the 

system, within a given tolerance or 
quality level. The general measures of 

accuracy are the RMS and the Stan- 
dard Deviation calculations. Both of 
these calculations will be described 

below. The measure of tolerance is 
performed with a Chi-squared calcula- 
tion. This will also be discussed below. 

For brevity, the material presented 

below will be functionally oriented. For 
a more rigorous discussion of this 
material, refer to the reference listed on 
the last page. 

The Standard Deviation 

Once the data has been collected and 
tabulated, it must be determined if the 
data is within the manufacturer’s 

specifications or if the data is usable for 

correction tables. 

The most common test of overall DF 

accuracy is represented by the RMS 
correction criterion. RMS correction is 

an abbreviation for Root Mean Square. 

The value of RMS isthe measure of the 

average deviation of the corrections. 
The equation used to calculate RMS is: 

n 

MS 
1=1 

n 

RMS = 

where x; = (true LOB) - (DF reading) 
and n is the total number of data 

points. 

The RMS calculation is a good measure 

of DF accuracy, butit does not take into 

account any verified reflections that 

may be present. As discussed earlier, it 

is almost impossible to remove all reflec- 
tions, and the effects of any such reflec- 
tion is to shift all the data points by 
some average value. The average offset 

(x) can be calculated by averaging all 

the correction values for a particular 

frequency. To compensate for the offset 
caused by the reflection, subtract the 
average offset from x; before squaring 

and adding it to all the other values. 

This would make the RMS equation 

look like: 

RMS (compensated) = 

n 

This equation is very similar to the 
equation for standard deviation (SD) in 
statistics, and can be viewed as the 

RMS value about the average. (Some 
statistics texts refer to this equation as 
the RMS deviation.) In statistics, this 
would be called a “biased” SD. To 
obtain a more reliable measure of 

accuracy and to be able to use other 
statistical tests, one more modification 

should be made in the equation, 

This is the “unbiased” form of the 

equation. (Whenever Watkins-Johnson 

specifies an RMS value for its 

VHF/UHF DEF units, it can be treated 
as the standard deviation.) 

The following is a demonstration of the 

process of calculating the RMS and SD 
values for a particular frequency. In 

Table 1, the first column is the measured 

LOB (from the zero reference on the DF 

antenna) to the transmitting antenna. 
The second column represents the bear- 
ing the DF processor gave for each true 

LOB. Notice that at a true LOB of 360 

degrees, the DF reading was 0; the 
Watkins-Johnson VHF/UHF DF units 
will respond up to 359 degrees, a bear- 
ing of 360 is displayed as 0. The third 

column is the correction column. When 

the correction column is added to the 



DF reading column the resulting value will be the true LOB. As shown earlier, the 

correction is calculated by subtracting the DF reading from the true LOB. In any 
of the following examples, only the true LOB and correction columns will be 

presented. 

Using the correction column as the data values, the RMS value is calculated as: 

rms = > /O2tcir +c? st ORO BC ee 

The average offset is: 

(0) + (-1) + (-1) + ... + (3) +B) + @) _ 
36 

The SD value can then be calculated as: 

Sp - (0 + 0.06)2 + (-1 + 0.06)? + (-1 + 0.06)? + ... + (3 + 0.06)2 + (2 + 0.06) - 160° 

36 - 1 

Notice that the SD is larger than the RMS value. This will always be true when the 

average offset is approximately zero (as is true in this case). 

The following is an example of the behavior of the RMS and SD values in the 
presence of a reflection. First, refer to Table 2, column A for the data values without 
a reflection. 

pus = \ / 2+ P+ e+. OF +P +B _ 9 op 

Taking the average of the data gives: 

Average Offset = x = ae =—05Ue. 

The number of data values is n = 36. Notice the data value at 360° is not included. 

To include it would be the equivalent of counting 0° twice. 

-0.06° a 

Using x in the SD equation we have: 

SD 29 / CaO ae 

which is a little larger than the RMS value, but the values are very close. 

To see the effects of a reflective surface in the test area, a reflector was added to the 
original equipment setup. The resulting data is shown in Table 2 column B, anda 

plot of the data is shown in Figure 4. It is important to remember that this is the 
same physical set up as used in column A except with the reflecting surface. 

From Figure 4 it can be seen that the average offset of the corrections is some 

negative number. Taking the average of the actual data values from Table 2 we 
have: 

(C3) ASLO) Cl) ee Geo) ao) 
-12.75° 36 715 x= 

The RMS value will be: 

ems => / Coe e Glo + C12? ae SE EEE give 

which is totally different than the RMS from column A. 
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Table 1. Sample data set. Table 2. Sample data sets. 

Taking into account the average offset and calculating the SD: 

-8 + 2+(-10 + 2+ ...+(-9+ 2+(-8 + “ Sg aie ance OLE LOY Festa SOL (sth 26 L209 ies 50) 
Oy) 

which is approximately equal to the SD of column A. 

The SD of corrections 360° around the antenna at a given frequency is a good 
measure of the accuracy at that particular frequency. This value of SD can then be 
used as the “error range” in triangulation, as described in the Watkins-Johnson 
Tech-notes on Improving System and Environmental DF Accuracy. We can also 
use this information to create the initial correction table. This data will then 
become the “historical data” to which future data can be compared. Itis alwaysa 
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Figure 4. A plot of a sample data set with an average correction of -12.75 degrees. 

good idea to update the correction table 
periodically, combining the new data 

with the original data. 

When testing a manufacturer’s specifi- 

cation, the SD should be calculated 
from a very large number of data 

points. A good rule of thumb is to pick 5 

or more frequencies of interest, deter- 
mine the correction at ten-degree incre- 

ments, and use all these values to 

determine the system SD. 

Now the question arises: is an SD of 

3.24° an acceptable indication of the 

previous SD of 2.95°? There are 

statistical tests to determine the accept- 

ability of the 3.24°. 

8 

The Chi-squared Test 

There are several statistical tests to 
compare SD of a data set either against 
a specification, or a SD of another data 

set. One of these tests is the Chi-square 
(x’) test. The Chi-square test can be 

viewed as a tolerance test of the SD 
based on the confidence level. 

When a decision is made to accept or 

reject a data set, two possible types of 

errors can occur. The first is to reject a 

data set that is satisfactory; the second 

is to accept a data set that is unsatis- 

factory. Statisticians call these errors 

Type 1 and Type 2 errors, respectively. 

If the probability of one type of error is 



specified, there are ways of determining 
the probability of the other type of 

error. The relationship between Type 1 
and Type 2 error is such that if the 
probability of accepting a satisfactory 

data set is increased, the probability of 
accepting an unsatisfactory data set is 
also increased. 

An acceptable compromise (and 

general rule of thumb), which allows the 

acceptance of most of the satisfactory 
data sets and the rejection of most of 
the unsatisfactory data sets, is to set 
the probability of accepting a satis- 

factory data set to 95%. This is the 

value that statisticians call the “confi- 

dence value.” A confidence level of 95% 
says that only 5% of the satisfactory 

data will fail the Chi-square test. 

The Type 2 error can be calculated 
using the desired confidence level and 
the number of data values taken. The 

larger the number of data values, the 
lower the probability of accepting an 
unsatisfactory data set. Because the 

calculation for determining the prob- 
ability of a Type 2 error is somewhat 

tedious, it will not be included here. 

Many text books on statistical decision 
making (such as the first two texts 
included in the references) will give 

“Operational Characteristic’ curves (or 

OC curves, as they are sometimes 
called), where the probability of the 

Type 2 error can beread directly from a 
graph. As an example of the sensitivity 
of the Type 2 error to the number of 

data values, given a 95% confidence 

level, a5° SD will be accepted as 3°, 10% 

of the time when 18 data values are 

taken, 2% of the time when 36 data 
values are taken, and approximately 
0% of the time when 72 data values are 

taken. The rule of thumb for testing a 

DF system was made to reduce the 
possibility of accepting a DF unit that 

is not performing to the specification 

(The rule of thumb uses 5 separate 
frequencies and 10° azimuth intervals). 

The two important pieces of informa- 

tion needed to perform the x’ test is the 
number of data points taken and the 
calculated standard deviation. The 

equation to calculate the X’ is: 

ee (n-1) s? 
o2 

where, 

n is the number of data points, 
s is the calculated standard 

deviation of the data, and 
ois the desired standard deviation. 

For an accurate test, n should be larger 
than 30. A practical value is n =36. This 
represents a correction reading every 
ten degrees. 

Once a value for x” has been calculated, 
the acceptance value must be deter- 
mined. This value is based on the 
number of independent readings, and 
is represented by y (the greek letter 
“nu’), which is equal to the number of 
data values minus one (n-1). Using the 

95% confidence level mentioned above, 
the critical value can then be foundin a 
Chi-squared table under the 0.95 (95 
percent) of the area covered (or 0.05 of 
the tail of the distribution). 

Table 3 has several critical values for a 

confidence factor of 95 percent. The 
critical value is the value of xX, the 
worst-case value that is acceptable. The 
following example uses the SD value 
found in the previous example and 

determines if it is an acceptable data 

set. 

The SD value calculated was SD = 3.24 
degrees, with 36 data points used to 
calculate it (from 0 degrees to 350 

degrees). The value we want to test to is 

2.95 degrees SD; so, n = 36, s = 3.24, 
o = 2.95, and 

(36-1)(3.24)? 
x? se nS A ? 

(2.95)? wes 

Since y =n-1 = 35 (one reading every 10 
degrees), from Table 3, X = 49.76. Since 
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42.22 is less than 49.76 (x* < X@), the 
value of 3.24° is acceptable as a 2.95° 

SD specification. (This is because all the 

data points could not be considered.) 

This last example tested the SD of a 

data set to a historical specification (a 
value determined from past experience). 
The same process is used to test a 

manufacturer’s specification, with the 

exception of the number of data points. 
To test a manufacturer’s specification, 

it is customary to choose five or more 
frequencies and determine a correction 

value every ten degrees. This represents 
180 data values; it is not uncommon to 

use as many as 10,000 data values. 
Table 3 has the Xé values for 503, 2,519, 
and 11,519 data values. Because the 
graph of X> becomes approximately 
linear in this area, the linear inter- 

polation to a particular number of data 
values will be adequate to verify the 
system’s performance. 

RMS and SD are useful in proving the 

acceptability of the data, but what 
happens if there are two data sets being 

compared to one another? Two data 

sets that have less than a3-degree RMS 

error and both pass the x’ test may still 
be critically different in nature. This 

phenomenon can be seen when direc- 

tion finding is performed at different 

frequencies. To get an accurate data 

acceptance, the data needs to be com- 

10 

pared for correlation. There are mathe 

matical tools for determining the 

amount of correlation, but for most DF 

work, it is easier and faster to look at a 

plot of the correction values. To check 
the correlation of two data sets, first 

plot the data, then compare the plots 
for the basic shape, position and 

number of any lobes (i.e., Figure 4 is a 
four-lobe correction plot). 

The Correction Table 

The environment is dynamic, always 
changing, which can cause small vari- 
ations in the received LOB. Because of 
these changes, for both mobile and 
fixed-site DF’s, it is advisable to repeat 
the DF measurements several times 

and average the corrections of the 
acceptable DF data sets together to 
form a more accurate correction table. 
Table 4 shows this for data taken on 3 

separate dates. All three data sets pass 
the 3-degree Xx” test and the curves are 
similar; the differences could have been 

caused by the weather or differences in 
operator technique. By taking the 
average of the 3 data sets, the miscel- 
laneous errors will begin to cancel out 
and the real environmental error can 
be determined. Caution: Itis not always 
as easy as this to determine if the data 
sets are good, but the technique is valid. 

Once a number of data sets have passed 
the x’ test, and the data plots of com- 

mon frequency have passed a correla- 

tion test and have been averaged, a 
correction table can be produced. A 
correction table is a collection of data 

sets presented in a convenient format 
for referencing the frequency and the 

DF bearing. Some correction tables 

include graphs or RMS values to give 

an idea of the kind of accuracy that can 

be expected at given frequencies. 

A correction table for a fixed-site DF 
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Table 4. Averaging similar data sets for a more accurate correction table. 

system should display the true correc- 
tions measured at a given angle and 

frequency. A mobile DF correction table 
would be more useful if the corrections 
are tabulated around the average. As 
described earlier, an average offset is 

generally caused by a reflection; that 
reflection will probably not be constant 
as the DF is moved from one environ- 

ment to another. 

Figure 5 is a sample of a small correc- 

tion table from 40 MHz to 80 MHz. This 
correction table was made for a mobile 
application. Notice the blank column 
for the average and the double spacing 
between lines. Besides readability, this 
provides room for the DF operator to 
manually update the tableifhe is going 
to be in one location for an extended 
period of time. 

11 
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Figure 5. Sample correction table. 

Data Reduction 

Once all the data is collected, the data can be formatted as in Figure 5. There are 
times when a higher degree of resolution in azimuth position is desirable or a 
smooth plot of the data would give a better insight to the location of the 
transmitted signal. In these cases, there are methods to manipulate the data to 
give the desired resolution. 

For example, if the correction table is set up with 10-degree increments as in Figure 
5, a DF reading of 93 degrees may be corrected by interpolation. Interpolation is 
also used to determine the correction value between two frequencies at a given 

azimuth. 

Although there are many ways to interpolate data, the most common is linear 
interpolation. This type of interpolation takes into account the slope between only 
two data points. Linear interpolation is also the starting point for the other forms 

of interpolation discussed in this paper. 

For example, given an RF frequency of 70.5 MHz and a DF reading of 93 degrees, 
what is the probable true LOB (using Figure 5 as the correction table)? 

The first step in doing a linear interpolation is to find the slope formed by 
connecting a straight line to the two correction values. 

ne Correction at 100° - Correction at 90° _ (-3) - (0) 

100° - 90° ee 0 

s=-.3 

The equation to use next is: 

C;, = (s) (k-n) + k 

where, 

C;, is the correction value for the DF reading (Cos in our case) 
s_ is the slope (s = -.3 as calculated above) 

12 



k is the DF reading (93° in our case) 
n is the correction table LOB that is on the zero side of k and is one of the 

two LOBs that are on either side of k (90° in this case) 

so, Cy, = Co3 = (-.3) (93-90) + 93 = 92.1°. 

Ifthe DF unit has a 1-degree resolution, then the true LOB is rounded to 92 degrees. 

The resolution obtained from the linear interpolation equation should be no 

greater than that of the original DF bearing. 

Linear interpolation is monotonic. It serves well for connecting one data value to 
another, but it does not take trend into account. To take the data trend into 

account, the slopes of the two lines connecting three data values have to be 

considered. This process is called curve fitting. 

There are many different algorithms that can be used for curve fitting. Most of 

them use some sort of weighted averaging technique. The different techniques can 

be viewed as different types of numerical filters with differing numbers of poles. 
One good technique is the binary weighted average, or 1-2-1 filter. If we extend the 
notation used for the linear interpolation equation such that C,, is the nth data 
value, the equation for this type of filter is, 

1) (Gre Pa (C- ae Cae 

O/, = The new value of Cy = Cw OR TO Ent 

This equation can be expanded as needed to cover enough data points to get a 
smooth curve. A seven-pole filter does very well when trying to curve fit seven 
interpolated points between two, ten-degree increment, data values. The equation 

for this is, 

ae (1) (Cy_g) + (2) (Ca_g) + (4) (C1) + (8) (Cy) + (4) (Cray) + (2) (Cosa) + (D (Crs) 
= ee 0S oovmc=as—] 

22 

Notice that all the coefficients are symmetrical about the C,, term and they 

progress as powers of two, that there are seven terms (hence seven poles), and that 

the denominator is the summation of all the coefficients. 

The shortcoming of any form of averaging is that once the filtering process is 

performed on a data value, the data loses its true value. To regain the exact data 
value, a correction algorithm is needed. 

A simple correction algorithm is to take the difference between two original data 
values and two curve-fitted data values, and use the slope to correct the 
intermediate values. To find the slope s, 

(E,,) - (Ep) 
s = ————- 

m-n 

where E,, = C i, - Cm and E, =C,, - Ch, and where m and n are the LOBs at which 
the original data was taken, and m <n (..e., from Figure 5; m = 90°, n = 100°). 

The correction equation can now be written as: 

C4, = New value of C4, = E, - (s) (k-n) = C4, 

where C%, is the corrected value of C4, and k is the position between m and n. 



The reason the linear interpolation, numerical filter, and correction techniques are 

called algorithms is that the equation must be repeated for all C,, (or C4). 

Figure 6 shows a block diagram of how this can be accomplished. It is identical for 

all three processes. 

Now that the mathematical tools have been developed, they may be combined into 

a working unit. Figure 7 shows the proper sequence for using the procedures, and 
Figure 8, 9 and 10 show the results of this process. Figure 8 is a point-to-point data 

value plot. The data was taken in 10-degree increments. Figure 9 is the same data 
after linear interpolation has been performed. Figure 10 is a plot of the same data 

after going through the curve fitting and correction algorithms. When looking at 
these plots, notice that they are a convenient means of presenting the correction 
for frequency and azimuth. This is the requirement of a correction table. Therefore, 

these plots can themselves be used as a form of correction table. Likewise, the 

corresponding tables of values used to generate the graphs can also be used as 
correction tables. 

NOTE 
IF x<360 

THEN 
x MOD 360 = x 

ENTER 
DATA VALUES 

PERFORM 
LINEAR 

INTERPOLATION 
ALGORITHM 

IF x=360 
THEN 
x MOD 360 = 
x-360 

PERFORM 
PROCEDURE 

PERFORM 
NUMERICAL 

FILTER 
ALGORITHM 

PERFORM 
CORRECTION 
ALGORITHM 

PRINT/ 
PLOT 
DATA 

Figure 6. Flow chart for interpolation, Figure 7. Flow chart for data reduction 
curve-fitting, and correction algorithms. Procedure #1. 
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Figure 8. Point-to-point plot. 
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Figure 9. Data plot with linear interpolation. 

i 

S me NY 

220° 
220° 150°) S160") 1.70") 180° 1190 200°. 210° 1405 

210° 

SAX 
Sota LR S10” 

0° 

220° 450°: 160°... 170° 180° 190° 200° 210° 140° 
210° ° 



320° 
40° Ben sail, Setar $e KOOL si 

SSXS TED > 
300° PRONE [/ OS 300 

mA) f ae 
20" a 

280° 

ass = 
20° 

a 

= ie 
Be oe SS fe Ly 

120° KS XK) WN OF 2 
MOTH WOO oe 
230 CATT TEI OSX 100 
SOT EL ey SOO 220° 

220° 150°. 460%" 470" 18029 190"s 1 2007 240" 140° 
210° - 200% «190° 180° 170° $60" eai0: 

Figure 10. Data plot with curve-fitting. 
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Figure 11. Data plot with curve-fitting performed 20 times. 
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Figure 12. Data plot with curve-fitting 20 times and no data value correction. 
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The data values in Figure 10 represent 

a closer approximation to the correc- 

tions needed for the DF, but are they 

accurate enough? The data could be 
run back through the curve fitting 

algorithm to determine if there is much 

change caused by the second process- 
ing. By rerunning the data through the 

curve-fitting algorithm, 7 points are 

again being combined to give an 
approximation; these 7 points were 
already a combination of 7 points, 
which means that now a total of 13 
points are used to make the approxi- 

mation. This should give a smooth 

curve and a more accurate data value. 
If this data is run through the smooth- 
ing algorithm a total of 59 times, then 
all 360 data points will have contri- 

buted to each data value. 

The optimum number of times to run 
the data through the curve smoothing 

algorithm depends on the cohesiveness 
of the data. If the data follows a small 
symmetrical sine wave, the smoothing 
will be done rapidly. If the data is 
disorderly, jumping around without 
much pattern, then it may take many 
passes to smooth the data. It may even 
be desirable to not correct the data to 
the original data values. As a general 
rule of thumb, for a coherent data set 
and moderate accuracy, the smoothing 
function should be run between 2 and 5 

times. 

Figure 11 is a plot of the same base data 

as Figures 8, 9, and 10. In Figure 11 the 

data has been passed through the 
smoothing algorithm and correcting 

algorithm 20 times. 

In Figure 10, notice the peaking of the 
error lobe at 20 degrees. In Figure 11, 

the same lobe is not as peaked, it is a 
gentler curve as would be expected of a 
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continuous function. Also, compare the 

data value at 15 degrees. The value has 

changed from .3 to 1. This is a change 

of .7 degrees, an equivalent error of over 

617 feet at a range of 10 miles. The 
number of times the data needed to go 

through the smoothing function to get 
a fair degree of roundness is an indica- 

tion that the data was somewhat erratic 

to start with. The curve-fitted values of 
Figure 11 are probably as accurate as 
can be expected for the DF correction 

values. 

If the correction algorithm is not used, 
then some other form of compensation 
should be used, such as multiplying the 

smoothed data by a constant that is 
based on the number of times the data 
has been smoothed. If no compensation 
is used, all the lobes will slowly dis- 
appear. Figure 12 shows the amount of 
“desensitizing” of the data for doing 

the curve fitting 20 times. The com- 
parison of this plot with Figure 1lisa 
good demonstration of the need for 

compensation of some sort. 

Another problem similar to forgetting 
to do the correction algorithm at all, is 
not correcting the data often enough. 

Figure 13 shows this condition on the 
same data set. The data for this plot 
was smoothed 20 times, and then cor- 
rected to the original data only once. 

Notice the choppiness of the plot. The 
pattern no longer appears smooth and 
predictable as it should be. A general 

rule for data correcting or compensat- 
ing is to compensate each time a data 

set is smoothed. 

Figure 14 shows a flow diagram of a 

full data reduction program. This 
algorithm allows for operator inter- 

vention and extra smoothing required 

for the erratic data set. 
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Figure 14. Flow chart for data reduction Procedure #2. 
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Conclusion 

The process of creating a correction 

table (or testing a DF system) is sum- 

marized below: 
1. Determine the location to run the 

test. 

2. Set up the test area, including 

sketches and comments about the 

area. 
3. Measure the LOB and determine the 

correction (using true LOB - DF 

Reading). 
4. Plot the data and calculate the SD 

(use visual correlation as final 

acceptance). 

5. Perform the xX’ test if the SD is larger 

than the specification (or the histor- 
ical value) to determine if the data 
set is acceptable (when testing over- 
all accuracy, use the data of 5 or 

more frequencies). 

With the five steps listed above, the 

data required to test a DF site or to 

construct a correction table will be € 
obtained. The following steps are 
necessary only when constructing a 

correction table: 
1. Average together any data set of 

identical frequency to reduce ran- 
dom errors. 

2. Determine the amount of accuracy 
needed. 
a. If linear interpolation is good 

enough, then just create a table 

with the original data, and go to 
step 3. 

b. If more resolution is required, 
perform the curve smoothing and 

correction algorithms until 

desired smoothness is achieved 

(between 2 and 5 times for 
cohesive data). © 

3. Create the correction table. 

Insufficient detail paid to any of the 
first three steps could have a detri- 

mental effect on the whole process. 

Care and accuracy should be exercised 

in all steps. 
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Glossary of Terms 

ib 

10. 

Correction Table — A conve 

nient and systematic display of 
correction values. 

Curve fitting — The process of 
manipulating the linear inter- 
polated data to form a smooth 
curve. 

Data values — The value taken 
during DF tests to be used as 
correction values; the true LOB 
minus the DF reading. 

Interpolation — The process of 
calculating approximate values 
between two known values. 

LOB (Line of Bearing) — The 
bearing displayed or calculated 
from the display of a direction 
finder. 

Numerical filtering — See curve 
fitting. 

RMS (Root Mean Square) — A 
value indicating the average 

amount of deviation in the data 

values. 

SD (Standard Deviation) — A 
statistical measure of the deviation 
of data values around the average 
of the data. 

. Wavelength — The distance from 
one point on a wave to the same 
point on the preceding wave. To 
calculate the wavelength, the dis- 
tance in feet is derived by dividing 
984 by the frequency in megahertz. 

x’ — “Chi squared,” a statistical 

test of acceptance based on the 

value of the standard deviation. 
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