


The area of microwave signal analysis 
has evolved to the point where systems 

capable of detailed characterizations of 

signals are in relatively common use. 

Signal parameters that are routinely 

measured include frequency, ampli- 

tude, phase, direction of propagation, 

and modulation type and rate. For 

pulsed signals, properties such as pulse 

width and PRI are frequently deter- 

mined. In addition, the time variance of 
signal parameters is measured because 
it contains information about scan pat- 

terns, frequency agility, Doppler shift 
and stagger. 

Careful analysis of these properties 
using digital techniques has produced 
powerful results, but no measurement 

system can exploit the full vector nature 
of electromagnetic waves while remain- 
ing insensitive to polarization. Unfortu- 
nately, information regarding the 
polarization state of an electro- 

magnetic wave has traditionally been 
ignored, discarded, or simply unavail- 
able in conventional signal analysis 
systems, although the utilitarian 
nature of such information has been 
discussed at great length. 

Applications exist in several fields for 

precision polarization measurement. 
The most obvious use for such equip- 
ment is in the design and testing of 
antennas; yet, polarimetry has the 

potential to enhance system perfor- 
mance in many ways. 

As the demand increases for improved, 
passive-surveillance capabilities, 

systems will expand to provide pre 
viously unavailable measurement data. 

Since polarization diversity and agility 

characteristics can be used to distin- 
guish emitters, ELINT collection 
systems taking advantage of polariza- 

tion information could add another 
dimension to the array of parameters 

used for signal classification. Passive 

ESM systems could then utilize received 
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polarization data for purposes of 

emitter identification, or use pulse-by- 

pulse polarization information as a 

deinterleaving parameter. 

Poelman! described a method which 

allows improvement in target detection 

performance of active radars in clutter 
and interference environments through 

adaptive antenna polarizations, when 

return polarization information is 
available. Another polarimetry tech- 

nique”? looks promising for improve- 
ments in target identification using 

radar processing that examines the 

depolarization of back-scattered radia- 

tion to obtain geometrical-type infor- 
mation relating to target symmetry 
and orientation in space. 

ECM systems can extend their effective 
range by adapting the polarization of 

transmitted jamming signals to match 
that of the received signal. To optimize 
such a technique, detailed information 
about the received polarization is 
necessary. 

Earth-space communication links are 

susceptible to cross-polarized signal 
interference resulting from depolariza- 
tion during propagation, and from 

small changes in orientation of satellite 
antennas with respect to ground 

stations. It has been demonstrated that 
cancellation of residuals through adap- 

tive antenna polarization is desirable?, 
but is dependent on the availability of 
polarization information about the 
received signal. 

The use of polarization processing 

techniques is considered the next 
logical step in the enhancement of 

many microwave systems. However, 

taking the step depends on the avail- 

ability of equipment that is capable of 

precision polarization measurements. 

Many applications require coverage of 

a broad range of frequencies, rapid 

processing, and the ability to present 



measurement results to both human 

operators and other digital systems. 

Frequently, the form in which measure- 
ment results are presented must be 
modified to suit a particular applica- 

tion. The need for a powerful, flexible, 
monopulse polarimeter prompted the 

development of the Watkins-Johnson 
Company polarization measurement 
system. 

In the following pages, the basic equa- 

tions for the vector representation of 
electromagnetic waves shall be dis- 
cussed. The concepts of polarization 
and the Poincaré Sphere shall be pre- 
sented in order to understand the tech- 
nique used to measure received polar- 
ization. The implementation of the 
measurement technique used in the 
Watkins-Johnson Company polariza- 
tion measurement system and the 
limitations on the accuracy of such 

systems will be examined in Part 2. 

Coordinate System And 
Vector Representation 

Consider the rectangular Cartesian 
coordinate system consisting of three 

mutually orthogonal axes whose 

variables are denoted x, y, and z. Unit 

vectors ay, ay, and a, are oriented as 
shown in Figure 1. For purposes of 

analysis we will assume that we are 
dealing with a plane wave traveling in 

the z direction. Phase fronts of the 
wave will be normal to a,. 

A plane electromagnetic wave travel- 
ing in the z direction is composed of 
electric and magnetic time-varying 

fields that le in the xy plane.4 The 

fields are perpendicular to each other, 
and at a specific time can be repre- 
sented by orthogonal vectors, as shown 
in Figure 2. 

The E and H components of the plane 
wave vary with time at the same 
frequency and in the same phase, and 
the magnitudes are related by a con- 
stant. The discussion will, therefore, 
deal only with the electric field. 

The superposition principle states that 
the total electric-field vector of a wave is 
the sum of all electric-field vectors com- 
posing the wave.° This means the total 
field vector for a wave can be decom- 

Figure 1. The rectangular coordinate system. 



m| = 

Figure 2. Electric and magnetic fields in a plane wave. 

posed into, or constructed from, two 

orthogonal vector components, as 

shown in Figure 3. 
— 

Component vectors E, and _Ky are 
related to the total field vector E by the 
equation, 

E(t) = E, + Ey =Ey(t)a, + Ey(t)ay 
(1) 

If E(t) is a function of a single fre- 
quency, the magnitudes of the ortho- 

gonal components can be expressed as, 

E,(t) = E,, cox (at) (2) 

and 

Ky (t) = Ey cos (wt + 6) (3) 

where, -180 degrees < 6 < 180 degrees. 

Polarization 

The polarization of a wave is related to 
the orientation of the electric-field vector 

with respect to the coordinate system 
in use. 

If an electric-field vector always lies in 

a given plane, parallel to the direction 

of propagation, the wave is said to be 

linearly polarized. Since E, and Hy fit 
this description, the orthogonal compo- 

Figure 3. Decomposition of electric-field vector into orthogonal components. 



nents we have defined can be thought 

of as linearly polarized fields which 

differ in time phase by the angle 6. 

In general, any electric field can be 

resolved into orthogonal linear compo- 

nents of appropriate magnitudes and 

phase. Combinating E, and Ey to 
form the total field vector, and plotting 

the locus described by the tip of the 
resultant vector over time, will generate 

an ellipse® (see Figure 4). 

The electric field represented in 

Figure 4 is said to be elliptically 
polarized, due to the way the field 

changes with time. The locus is called 
the polarization ellipse. If the tip of the 
electric field vector had traced out a 
circle, the polarization would be called 
circular. If the vector remains at a 
constant angle with respect to the 
coordinate system, the field is consi- 
dered linearly polarized. In actuality, 
all polarizations can be considered 

elliptical, since the circular and linear 
polarizations are simply degenerate 
(special) cases of the polarization 
ellipse. 

Discussions of polarization commonly 
refer to horizontal, vertical, slant-linear, 
and circular polarizations.’ These terms 

refer to the fact that the coordinate 

system has been defined in relation to a 
particular (usually earth-bound) frame 

of reference. However, polarized waves 

are rarely of a purely linear or circular 

polarization, due to reflections, depolar- 
ization during propagation, or imper- 
fections in the radiating antenna. 

Most waves are actually elliptically 

polarized. However, it is instructive to 
consider the degenerte cases in order to 

gain an understanding of the relation- 

ships between orthogonal components. 
The relative amplitudes and phases of 
EK, and Ky, for these cases are given in 

Table 1, which assumes that the coor- 

dinate system has been aligned such 
that the x axis is parallel to the horizon. 

Horizontal |E,;=0 |N/A 
Vertial |E,| =0 N/A 

IE,| =|E,| 

|E,1 =|E,| 
Don’t care 

+45 Deg Slant 

-45 Deg Slant 

Arbitrary Linear 

0 degrees 

180 degrees 

Polarization 

Right-Hand Circular 

Left-Hand Circular 

Table 1. Amplitude and phase relation- 
ships between orthogonal linear compo- 
nents of degenerate polarizations. 

Figure 4. Polarization ellipse generated from the locus of points at the tip of E over time. 



If the components are in phase, but 

have unequal amplitudes, the total field 

is linearly polarized in a direction that 

makes an angle (r) with the x axis that 

is given by the equation, 

angle (7) = arctan [Eyl 

|E,| (4) 

If 6 equals +90°, the ellipse is oriented 

with its major and minor axes aligned 
with the x and y coordinate axes. 

Under these conditions, if E, > Ky, the 
major axis is 2E, and the minor axis is 

2Ky. If E, = Ey, the ellipse degenerates 
into a circle. If the phase is negative the 

sense of rotation is clockwise in the 
z = 0 plane, looking in the direction of 
propagation, and is called right- 
handed. If the phase is positive the 

sense of rotation is counterclockwise.® 

Axial Ratio, Tilt Angle, 
Ellipticity Angle 

The ratio of the major axis to the minor 

axis 1s called the axial ratio (r), which is 
a frequently used parameter for 
characterizing polarization. The second 

MAJOR AXIS 

parameter used in conjunction with the 

axial ratio to characterize a polariza- 

tion is the sense of rotation. The final 

parameter needed to fully define the 

polarization of a plane wave is the 

orientation of the major axis with 

respect to the coordinate system. This 

parameter is called the tilt angle (7). 

Figure 5 shows the major and minor 

axes of an elliptically polarized field. 

The tilt angle is also indicated. For 
consistency, the value of the tilt angle is 

limited to the range, 

-90 << 7r< +90 (5) 

Figure 5 defines an alternate parameter 

to the axial ratio. The ellipticity angle 

(€) is simply, 

e = arctan (1/r) (6) 

Orthogonal Polarizations 

Two polarizations are said to be ortho- 
gonal if, and only if, their axial ratios 

are equal and their tilt angles differ by 

90 degrees.? Any polarization can be 
thought of as the superposition of two 
arbitrary, elliptical polarizations. 

MINOR AXIS 

Figure 5. Relationship between major and minor axes, tilt angle, and ellipticity angle. 



Equations have been derived to 

describe polarized fields in terms of the 
following orthogonal pairs: 

Left-hand/Right-hand Circular 

Horizontal/Vertical 

Left/Right Slant Linear (+45 slant) 

General Case of Orthogonal 
Elhptical Polarizations 

The following discussion will focus on 
the horizontal and vertical pair. 

Power Density and 
Effective Values 

If two fields are orthogonal, the sum of 
the powers contained in the two fields 
is equal to the total power in the field.!° 
Given orthogonal linear polarizations 
in the x and y directions, the total 
power density in the wave (S,,) can be 
expressed as, 

Shy = ee Uy (7) 

© where, 

(8) 

C (9) 

and 

E Z 

Sy=— 
C (10) 

Kx, Ey, and E,, are the effective values 
of the x, y, and total fields. The imped- 

ance of space is ¢. For linear polar- 

izations, the effective value of the field 
is 0.707 times the peak value. For 

circular polarizations, the effective and 
peak-field values are equal. 

Poincare Sphere 

Poincare used the relationship in 
equation (7) to construct the unit sphere 
shown in Figure 6. The Poincaré 
Sphere!! is a very useful graphical aid 
in visualizing polarization relation- 

ships. Poincare showed that the polar- 
ization of a wave can be represented by 
a unique point on the surface of the 
sphere. The Poincare Sphere can be 
used to express the results of a polar- 
ization measurement, rather than 

Figure 6. The Poincare Sphere. 



specifying the shape and orientation of 
the polarization ellipse. 

Orthogonal polarizations are located at 

opposite poles of the sphere. The sphere 
in Figure 6 is oriented such that the 

circular polarizations are located at the 

north and south poles. The family of 
linear polarizations is located on the 

equator. The mutually orthogonal axes 
of the sphere represent the (L, R), (H, V), 

and (+ slant) polarizations. 

Defining a point on the surface of the 

sphere can be donein relation to any of 
three spherical coordinate systems, 
although one will be more appropriate 
for a specific measurement technique 
than others. The polar angle with 

respect to each axis is determined by 
the corresponding polarization ratio. 

The polarization ratios!” are defined as, 

ER 
p=tan y = — 

E L 
(circular polarization ratio), (11) 

E 

(linear polarization ratio), —(12) 

and 

tan B ae p = a 

D E. 

(diagonal polarization ratio), (13) 

where Ep and Ey, are the effective 
values of the right-hand and left-hand 
circular components of the electric field, 

Ey and Ey are the effective values of 
the vertical and horizontal compo- 
nents, and E_ and E, are the effective 
values of the -45 and +45 slant-linear 

components, respectively. The polar- 
ization ratio is an indication of the 

relative contributions of two ortho- 

gonal components of a polarized wave. 

The longitude of a point on the sphere 

about a particular axis is the phase 

angle by which the component in the 
numerator of the polarization ratio 
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leads the component in the denomi- 

nator. The polarization ratio, together 

with the corresponding phase angle, 

uniquely specify a polarization. 

The Polarization Box 

The mutual consistency of the three 

spherical coordinate systems is con- 
firmed by the polarization box,!? which 

is shown in Figure 7. The polarization 

box is inscribed inside the Poincaré 

Sphere. It is a graphical aid to under- 

standing the relationships between the 
three basic sets of polarization 

components. 

The point, W, on the surface of the 
Poincaré Sphere is located at the corner 

of the polarization box, opposite the 
corner located at the origin. The three 

axes form the edges of the box that 
intersect at the origin. Specifying the 
dimensions of the polarization box 

is equivalent to specifying the 
polarization. 

Polarization Measurement 
Techniques 

The polarization box may be described 
in several ways. The method of descrip- 

tion usually depends on the actual 
technique used to measure the polar- 
ization. The first manner in which the 

box can be defined is by specifying its 

three dimensions (.e., length, width, 
and height). These dimensions are 

found directly by measuring the 

normalized (E), effective values of the 
six degenerately polarized components. 

In other words, the lengths of the three 
sides are given by, 

Ez, - ER, (14) 

Ey - Eq, (15) 

and 

hk? -E* (16) 



E{-EA 

+45 

H 

E = NORMALIZED 
COMPONENT 

a: +45 

Figure 7. The polarization box. 

To measure the contributions of all six 

cardinal polarizations would require 
an antenna array with all six receive 
polarizations available. 

Another way to define the polarization 
box involves specifying the three 
longitudinal angles about the axes, 
which are found directly by measuring 
the phase angles between the same 
three orthogonal pairs used above. This 
technique requires the use of the same 
antenna array with multiple receive 
polarizations. 

Finally, the three polar angles found 
from the polarization ratios (equations 
11, 12, 13) can be specified to define the 

polarization box, but the direct 
measurement of the polarization ratios 
also requires the redundant antenna 
array described above. Fortunately, it 

is possible to synthesize the responses 
of all six cardinal polarizations using 

only two orthogonal antennas by 
passing the received signals through 

the appropriate phase-shifting net- 
works. Alternatively, it is possible to 
calculate the responses of an ortho- 
gonal pair of feeds from the amplitude 
and phase information extracted from 
a different orthogonal pair. The 
inherent relationship between the basic 
sets of polarization components is 
represented by the polarization box 
itself. 

To find the lengths of the remaining 
sides of the polarization box given only 
the length of one side (which can be 
measured directly using only two ortho- 
gonal antennas) and the longitudinal 

angle about that side at which the 
point, W, exists (which is equal to the 
phase angle between the responses of 

the two orthogonal antennas used to 
measure the length of the side), requires 

simple geometry. In fact, any of the 
parameters of the polarization box can 
be calculated from this information. This 
allows simplification of the antenna 
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array for purposes of polarization 

analysis, but increases the require- 

ments of the data processing portion of 

the polarization measurement system. 

The relationship of the polarization 

box to the tilt angle, sense of rotation, 

and axial ratio is straightforward. The 

tilt angle! (7) is proportional, to the 
phase (6’) between the left and right 

circular components of the field, as 
given by the equation, 

roy 

ee 

Is (17) 

This phase angle can be measured 
directly or can be calculated using the 
geometry of the polarization box. The 

sense of rotation can be found from the 
circular polarization ratio, which was 

defined in equation (11). If the circular 
polarization ratio is greater than unity, 
the sense of rotation is clockwise, 
looking in the direction of propagation 

(right-hand sense). If pis less than one, 
the sense is left-hand. If the orthogonal 
elements used in the antenna array are 
not circular, the circular polarization 

ratio can be calculated from the rela- 
tionships described above. 

The axial ratio is also related to the 
circular polarization ratio by the 

equation, 

p-1 (18) 

Accuracy of Polarization 
Measurements 

Jensen!> derived a general expression 
for estimating the errors in polarization 

measurements on the basis of the rela- 
tive power of an_ error signal. If the 

complex vector EK denotes the electric 
field of a received wave, and AE the 
limit of error involved with the 
measurement of E, then E + AE 

represents the actual measurement 
result. 

If the polarization of E is represented 
by a point D on the surface of the 

Poincare Sphere, and the polarization 
of EK + AE by the point T, then the 

angular distance between D and T 
reflects the measurement error. Assum- 
ing that the power of the error signal 
AE relative to the power of E is known 
to be less than unity and given by, 

_|AE|? 

THe (19) 
p 

it can be shown that the upper bound 

Figure 8. Uncertainty of polarization measurements. 

10 



value of V, the angular error, is 
given by, 

Vinax = 2 arcsin (\/P) (20) 

If D represents the polarization of the 

wave, then the measured polarization 
will be represented by a point T on the 

sphere located within the circular area, 
9, which is characterized by a 
maximum angular deviation from D 
equal to Vinax, aS Shown in Figure 8. 

The size of the circular area, ©, on the 
surface of the Poincare Sphere can be 
specified for a particular measurement 
if the received power level, and the 
errors In measured parameters, are 
known. The angular error in a polar- 
ization measurement can then be trans- 
lated into uncertainties in the reported 
tilt angle, ellipticity and sense, using 
the geometric relationships of the polar- 
ization box. 

The Watkins-Johnson Company polar- 

ization measurement system discussed 
in Part 2 allows monopulse measure- 

ments of the polarization of received 
signals in the 2 to 18 GHz region. The 

system utilizes a spread spectrum 
multiplexing technique that preserves 

the amplitude and phase relationships 
of signals from two orthogonal 
antennas. The ability to simul- 
taneously measure the relative ampl- 

tudes and phase of orthogonal signals 
without the detrimental effects of 
multiple receivers greatly improves the 

accuracy of polarization measure- 
ments, while providing the flexibility of 

broad frequency coverage. In addition, 
the processing capability incorporated 
in the system will allow the calculation 
of polarization parameters as required 
for presentation to operators or report- 
ing to other systems. 
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