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Demand is increasing for high-resolu- 

tion phase shifters for use in small 

tactical phased arrays, low spurious- 

signal frequency translators, and 

some FMCW radars. This paper de- 

scribes an analog MMIC phase-shift 

circuit that can be swept continuously 

through 105 degrees while amplitude 
is held constant. Thus, phase and 

amplitude resolution are dependent 

only on analog control voltage resolu- 
tion. The phase-shifter is suitable for 

operation over a minimum 10-percent 
bandwidth anywhere from 8 to 
12 GHz. Die size is 2.0 by 1.7 mm. 

Operation of the phase shifter can be 
summarized as follows: The input sig- 
nal is divided into two branches in 
which phase is separated by a nomi- 

nal 120 degrees using lumped element 

high- and low-pass filtering as lead 
and lag networks. MESFET-based 
pi-attenuators control the two signal- 

vector amplitudes, which are then re- 
combined with an in-phase combiner. 
The MESFET attenuators, each com- 
bined with a simple off-chip control 

circuit, provide a very temperature- 
stable linear attenuation (in dB) ver- 

sus control voltage. This leads to a 
phase shifter that has low sensitivity 

to temperature-induced variations and 
requires only two control voltages. 

Design 

The objective was to design an X-Band 

MMIC phase shifter which would be 
bidirectional, provide phase resolution 

of better than 5 degrees (equivalent to 
6-bit accuracy), and have potential for 

phase resolution of 2 to 3 degrees. 

It was anticipated that this phase 
shifter would be cascaded with fixed 

180 and 90 degree differential phase 

bits and that each of these could have 

maximum errors of +5 degrees over 8 

to 12 GHz. In addition, MESFET at- 

tenuator phase was expected to be af- 
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fected to some degree by both ampli- 
tude setting and temperature. Finally, 
some extra tolerance was desired for 

design uncertainty and process varia- 

tions. Thus, to insure that a full 360 

degrees of continuous phase control 
could be obtained, the high-pass and 

low-pass filters that form the lead/lag 

network of the analog phase shifter 
were designed to provide 120 degrees of 

differential phase between branches. 

A block diagram of the basic micro- 
wave circuit selected is presented in 

Figure 1. Figure 2 is a microphoto- 

graph of the resulting MMIC phase 
shifter. 

Combiner/Divider Network 

A lumped element “L” network (1 
design is used for the power divider 

and combiner. The advantages this 

network has over a lumped-element 
Wilkinson network are 1) slightly 

wider isolation bandwidth, 2) a 28- 

percent lower value for the series 
inductors, which reduces loss and size, 
and 3) only two capacitors are re- 
quired, instead of three. The complete 
divider occupies only 0.29 mm2. 
Coupled spirals designed after Swan- 
son (2] form the inductors. Mutual 

coupling for non-adjacent, as well as 
adjacent, lines is taken into account. 
The result is a simple lumped-element 
model in which parasitic shunt 
capacitances of the spiral inductor 

model can be absorbed in the low-pass 
divider network design. Capacitors are 
formed with a silicon-nitride process. 

Filter Network 

The low-pass and high-pass filters 
that follow the power divider/com- 

biner are lumped-element designs 
using the same type of inductors and 

capacitors. The low-pass filter is a pi- 

network and the high-pass filter is a 
T-network. 
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Figure 1. MMIC analog differential phase shifter. 

Attenuators 

The key to achieving high resolution Dobkin [3] fulfills this requirement by 

phase control is a well-controlled tem- producing an attenuation (in dB) ver- 

perature-stable attenuator design. The sus control-voltage curve that is linear 

linearizing technique by Fisher and and inherently temperature compen- 
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sated. In a MESFET pi-attenuator, 
attenuation (in dB) is approximately 
proportional to series MESFET resist- 

ance (assuming attenuator input/out- 
put impedance is maintained at 50 
ohms by proper adjustment of the 

shunt MESFET resistors). However, 

the relationship of channel resistance 
to gate voltage is nonlinear (ap- 
proaches an exponential). 

The linearizing circuit places a MES- 

FET that is identical to the series 

MESFET of the rf attenuator in a 
feedback control loop. The control 
MESFET is combined with a con- 

stant-current source to produce a volt- 

age drop proportional to the low-field 

channel resistance. This voltage is 
compared to the control voltage by a 

differential amplifier which then ad- 
justs the rf attenuator MESFET gate 

voltage such that channel resistance is 

linearly changed. The most important 

result of the relationship between con- 
trol voltage and channel resistance, 

established by the feedback control, is 
a variable attenuation that is indepen- 

dent of temperature. The rf attenuator 
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shunt MESFET resistances are opti- 
mized to maintain a 50-ohm input/out- 
put match by an additional feedback 
control loop referenced to a 50-ohm 
resistor. The overall result of the two- 
control-loop scheme is attenuation 

stable within 0.4 dB over —55°C to 
+1252: 

Phase-Shifter Control 

In most electronic systems (phased- 

array radars, frequency translators, 
etc.) the phase-control-element ampli- 

tude is required to remain constant. 
Thus, in the phase-shifter design being 
discussed, the relative attenuation 

associated with the low-pass and 

high-pass filter branches must be 
controlled in accordance with the func- 

tions given in equations 1 and 2. 
These relations are derived from the 
vector diagram shown in Figure 1. 

Ae | 20 log (cos (6 — 30°) ) 

[1] 

Ay =| 20 log (sin &) 21 



Zero relative phase (® = 0) is defined 

as the condition where the high-pass 
filter branch attenuation is maxi- 

mized. Figure 3 is a plot of these rela- 
tionships. 
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The control voltage has the same 
characteristics as these functions be- 
cause of the linear relationship be- 
tween attenuation and control voltage. 
This control function is not difficult to 
obtain using a PROM (Programmable 
Read Only Memory) and DAC (digital 
to analog controller). This may be an 
overly complex approach for some 
systems, however, considering the 
requirement for the analog linearizing 
circuits for each attenuator as well as 
the PROM and DAC’s. As an alterna- 
tive, the exponential relationship be- 
tween the series MESFET attenuation 
and gate control voltage could be used 
so that the cosine functions shown in 
Figure 3 could be linearized (with 
break points required at 30 degrees on 
the low pass side and at 90 degrees on 
the high pass side.) However, a tem- 

perature-stabilization scheme would 

be required to substitute for the feed- 

back attenuator control system pre- 

sented in the “Attenuator” section. 

The data presented in the “Results” 

section were obtained using the feed- 
back-linearized attenuator design for 

this reason. 

The requirement that the circuit be 
bidirectional dictated that only pas- 

sive circuit elements could be used. 
The consequence of this requirement 
was that high insertion loss had to be 

accepted. The factors that contribute 
to the loss and their estimated effects 
are: 

Power Division Circuit 3.5 dB 

Filters 0.5 dB 

Variable Attenuator, Min. 2.0dB 

Power Combiner 4.8 dB 

The process of passive power recombi- 
nation results in 4.25 dB of loss, be- 
cause of dissipation in the isolated 
port load (100-ohm resistor) of the 
power combiner, since the combining 
signals are 120 degrees out of phase. 
The 4.25 dB can be explained by 
noting that two vectors recombined 90 
degrees out of phase incur a 3 dB loss 
and an additional 1.25 dB insertion 
loss by increasing the differential 
fixed phase from 90 to 120 degrees 
because the two vectors begin to 
oppose, as illustrated in Figure 1. 

The high-pass and low-pass cutoff 
frequencies also approach the center 
frequency as the phase difference is 
increased, thus constricting the band- 
width and increasing insertion loss 
another 0.5 dB or more. 

Results 

Power dividers were included sepa- 
rately on the GaAs wafer for evalua- 
tion. The broadband performance of 

the “L” lumped-element divider mea- 
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sured with on-wafer RF probing is 
shown in Figures 4a and 4b, along 

with the computer-predicted perform- 

ance. 
A power divider combined with the 

high- and low-pass filter networks was 
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also included on wafer. Measured in- 
sertion loss and return loss for the 
high-pass filter side (common port was 

input), along with computer model pre- 

dictions, are shown in Figures 5a and 

5b. Similar data for the low-pass filter 
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side is given in Figures 6a and 6b. 
Correlation with the computer model 

was acceptable, thus validating the 
model, including the coupled spiral. 
The insertion loss resonance at 
4.5 GHz did not materially affect the 

performance in the design band, so the 
cause of the resonance was not inves- 
tigated. The measured differential 
phase between the high- and low-pass 
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filter branches was 120 +3 degrees 
from 8 to 12 GHz, as shown in Figure 
7. Differential loss between the filter 
branches was less than 0.5 dB. 

Zero relative phase can be defined as 

the condition where the high-pass fil- 
ter branch attenuation is maximized. 
If the high-pass filter branch attenua- 

tion is decreased to a minimum, phase 
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is advanced approximately 60 degrees. 
Phase advances up to a total of 120 
degrees as the low-pass filter branch 
attenuation is increased to a maxi- 
mum. 

Amplitude variations of up to 4 dB 

were measured with this simple con- 
trol scheme. Of this variation, 1.25 dB 
can be attributed to addition of the 
two fixed-phase vectors spaced 120 
degrees (as previously discussed). 
Other factors that may increase varia- 
tion are signal interference within the 
power dividers/combiners (because of 
less than ideal isolation) and effects 
of input and output mismatches. Un- 
fortunately, RF wafer probing of 
divider isolation was not possible. Test 
fixture measurement of input and out- 
put return loss (which includes the 
effects of bond wires), was between 
10 and 14 dB at 10 GHz, for all phases. 

A constant amplitude can be obtained 
within 10-percent bandwidth segments 
for all phases, at selected frequencies 

between 8 and 12 GHz, by controlling 

tC DIFFERENTIAL 
PHASE 

the attenuators essentially as de- 
scribed by equations 1 and 2. The con- 
trol voltages plotted in Figure 8 were 



obtained by keeping the amplitude con- 

stant at 10 GHz as phase was changed 

over 120 degrees. These curves follow 

the theoretical functions shown in 

Figure 3 quite closely. The left side of 

Figure 9 shows amplitude variation 

obtained over the 8- to 12-GHz band 

as phase is changed in 5-degree incre- 

ments (shown on the right side of 
Figure 9). 

Amplitude and phase as a function of 

frequency at —40°C, 25°C, and +70°C 
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are plotted in Figure 10 for constant 
control voltage. The plots shown were 

taken at a relative phase setting of 

60 degrees. They represent the worst 

case observed over the 120-degree 

phase range. Amplitude variation is 

less than +0.5 dB and phase variation 

less than +5 degrees. Amplitude and 

phase variation can be further im- 
proved by finer programming of the 

control voltage. 
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Conclusion 

Results from the development of an 
X-Band analog bidirectional phase 
shifter have been presented. A very » 
good theoretical model for a coupled 
spiral inductor enabled the implemen- 
tation of a VHF lumped-element “L” 
type power divider to a X-Band GaAs 
MMIC. High resolution phase and 
amplitude control as well as excellent 

temperature stability were obtained 
by using a unique temperature-com- 
pensated MESFET pi-attenuator for 
control in a vector modulator scheme. 
The final result was a temperature- 
stable phase shifter with which ampli- 
tude could be maintained constant as 
phase was shifted by up to 120 degrees 
in increments as small as one degree, 
and which was stable over —40°C to 

+70°C. 
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