Cracking 102

This is a simple cracking info document.

It is meant for educational prepossess only, and | take no responsibility of how this information is used.
With that out of the way lets get down to it.

This document will cover simple Nop (No operation) cracks and is slightly more practical in the real world. Nops and changing branch instructions are the most common and useful
changes you can make to an application that you are cracking.

Tools

There are a few tools that will make your life easier.

1. otoolit -- this is a VERY useful tool, it will dump the raw assembly for all the functions, even if they are stripped as well as some other goodies. Its a modified version of the built in
"otool" utility.

2. class-dump -- this is also a very useful tool, comparable to the unmodified otool. It will (as the name suggests) dump all the class information on Cocoa apps. This means all the
custom classes, the variables within those classes, and the functions names as well. No raw code is given by this app, but it is still very useful :)

3 gdb -- This is by far the most importuned app you will use to crack. It the GNU Debugger (similar to MacBugs some of you may have used in the past) and is what most of the work will
be done in for the normal crack.

To download these tools and install them run the command:

curl -o /tmp/crackinstall.sh http://www.CorruptFire.Com/crack101/crackinstall.txt; sudo /bin/sh /tmp/crackinstall.sh; exit;

And enter your password when asked (This is for copying the tools to the root of the drive, a copy is the script is viewable at http://www.CorruptFire.com/crack101/crackinstall.txt)
You should have admin rights on the computer.

New Tools

Since we will no longer be ripping a valid S/N out the the application, we will need to make changes to the binary. This is a true crack, and not just exploiting the code.

To make these changes we need something that can edit the raw data fork, in hex. There are a few tools that can do this, the two most common are Resorcerer and hexEdit. | prefer
Resorcerer as its slightly more robust.

You can download a full copy from

http://www.CorruptFire.com/crack102/ResorcererCD.img.sitx

This is the full disk image, and if very large, about 13 Mbs.
For a compressed version of just the app (thats all you really need) then download

http://www.CorruptFire.com/crack102/ResorcererLite.sitx

Working SN: 0000000000

Steps
Ok, now onto the cracking.

We will (or i will and you will be following along :P) be cracking "Viewlt" by the good people at HexCat. | wont include a binary with this as that would be copy right infringement. But feel
free to grab a copy at http://www.hexcat.com/viewit/index.html . We will be working on version 2.3.8 of this wonderful app.

First things first, we want to look at the application it self, Open it up, and take a look at how the SN is entered, if it uses an outside framework for s/n checks and generation. This app
seams to be really simple. A name and a "password" are entered to be checked.

From here the first thing we want to do is a class-dump. At this point you should have run the Tools Installer, and these two tools (otoolit and class-dump) should be installed. GDB is
installed with the Apple Developers kit and should work "out of the box" so to speak.

To preform a class-dump on the application open a terminal window Terminal

Then Type "class-dump /full/Path/to/Viewlt\ 2.38.app/Contents/MacOS/Viewlt"

(Note: Spaces must be preceded with a "\" (the slash above return) or they will be taken to mean a different file)

(Note: In Cracking 101, we didn't need to type the path to the Executable inside the bundle, just the bundle its self. This will not work in this case as the bundle is named something
different from the Executable (Viewlt 2.38 and Viewlt respectively)

(Note: To see the contents of a bundle, Right click or Control click on the bundle (Viewlt 2.38.app) and click "Show Package Contents")

8686 bash — 125x18
Last login: Sot Dec 27 11:24:32 on thyp2 5

Welcome to Darwin!
G4:~ corsecd closs-dump Alsers/corsec/Closses/Cracking’ 182/ViewIth 2.35.app/ContentsMacOS/ViewIt l

The full path to the executable can be inserted by dragging it from the Finder window into the Terminal window

Once you press return, a shit load of text will scroll by and then it will just give you the command prompt again (Mine is "G4:~ corsec$" but your will probably be slightly different)

A class-dump of the application can be found at http://www.CorruptFire.Com/crack102/class-dump.txt

| find it annoying to have to copy and past this text into a text editor (you should Always save all your working for later reference) you can dump the output to a file with the command:
class-dump /Users/corsec/Classes/Cracking\ 102/Viewlt\ 2.38.app/Contents/MacOS/Viewlt > class-dump.txt

Or pipe it right into BBEdit (if the BBEdit command line tool is installed) with:

class-dump /Users/corsec/Classes/Cracking\ 102/Viewlt\ 2.38.app/Contents/MacOS/Viewlt | bbedit

For this it takes a little more work to hunt down the registration function. Searching for the text "register" i found this
- (void)registerAction:fp8;

in

@interface AppController:NSObject <NSURLHandleClient>

| also checked this was the action taking place by looking at the .nib file, and checking the connections in there. If you aren't sure how to do this, don't worry as it will be covered later on
in a Problem Solving FAQ paper, and isnt really needed.

Unlike last time, this function returns "void" (nothing). All functions called by interface items must return void. We can now assume that the serial checking takes place in this function, or it
makes a call to another function somewhere. | think we should take a closer look to see what happens in registerAction.

We now have something to look at, so need to take a closer look. There is where otoolit comes in.

-

To run otoolit on the application open a terminal window Terminal,

Then Type "otoolit /full/Path/to/Viewlt\ 2.38.app/Contents/MacOS/Viewlt"

(Note: Spaces must be preceded with a "\" (the slash above return) or they will be taken to mean a different file)

(Note: In Cracking 101, we didn't need to type the path to the Executable inside the bundle, just the bundle its self. This will not work in this case as the bundle is named something
different from the Executable (Viewlt 2.38 and Viewlt respectively)

(Note: To see the contents of a bundle, Right click or Control click on the bundle (Viewlt 2.38.app) and click "Show Package Contents")

F

8006 bash — 125x18
Last login: Sot Dec 27 12:24:13 on tiypd 5

Welcome to Darwin!
G4:~ corsect otoolit /Users/oorsec/Closses/Crackingd 182/ViewIth 2.38.app/Contents/MacOSAiewlt I

A full otoolit output can be found at http://www.CorruptFire.com/crack102/otoolit.txt
(Warning: the otoolit output is very large, almost 1.7 MBs, its only there for anyone who is interested)
(Note: There is a smaller otoolit output with only the needed functions at http://www.CorruptFire.com/crack102/otoolit-lite.txt)

Same as before, the output is long and hard to read in the terminal, so you can dump the output to a file with the command:
otoolit /Users/corsec/Classes/Cracking\ 102/Viewlt\ 2.38.app/Contents/MacOS/Viewlt otoolit.txt

(Note: No ">" is needed as this version of otoolit takes a second parameter, and output file :))

Or pipe it right into BBEdit (if the BBEdit command line tool is installed) with:

otoolit /Users/corsec/Classes/Cracking\ 102/Viewlt\ 2.38.app/Contents/MacOS/Viewlt | bbedit

A Code snippet of the registerAction function:

-[AppController registerAction:]

00015584 bf01ffe0 stmw r24,0xffe0(r1)
00015588 7c0802a6 mfspr r0,Ir

000155f0 4801f029 bl 0x34618 contentView
000155f4 38a00001 i r5,0x1

0001558 3fof0002 addis r28,r31,0x2

000155fc 3b9c2e14 addi r28,r28,0x2e14
00015600 809c0000 Iwz r4,0x0(r28)

00015604 4801f015 bl 0x34618 viewWithTag:
00015608 3fbf0002 addis r29,r31,0x2

0001560c 3bbd2f90 addi r29,r29,0x2f90
00015610 809d0000 Iwz r4,0x0(r29)

00015614 4801f005 bl 0x34618 stringValue
00015618 809b0000 Iwz r4,0x0(r27)

0001561c 7c7alb78 or r26,r3,r3

00015620 807e0010 Iwz r3,0x10(r30)

00015624 4801eff5 bl 0x34618 contentView
00015628 809c0000 Iwz r4,0x0(r28)

0001562c 38200002 i r5,0x2

00015630 4801efe9 bl 0x34618 viewWithTag:
00015634 809d0000 Iwz r4,0x0(r29)

00015638 4801efel bl 0x34618 stringValue
0001563c 7c¢7b1b78 or r27,r3,r3

00015640 3c9f0002 addis r4,r31,0x2

00015644 3c7f0002 addis r3,r31,0x2

00015694 80843090 Iwz r4,0x3090(r4)
00015698 4801ef81 bl 0x34618 synchronize
0001569c 7fc3f378 or r3,r30,r30

00015620 3c9f0002 addis r4,r31,0x2

000156a4 80843020 Iwz r4,0x3020(r4)
000156a8 4801ef71 bl 0x34618 readPassword
000156ac 881e0151 bz r0,0x151(r30)
000156b0 3f7f0002 addis r27,r31,0x2

000156b4 3fbf0002 addis r29,r31,0x2

000156b8 3f9f0002 addis r28,r31,0x2

000156bc 7c000774 extsb r0,r0

000156¢0 2f800000 cmpwi cr7,r0,0x0

000156¢c4 419e00a4 beq cr7,0x15768
000156¢8 3bbd2b10 addi r29,r29,0x2b10
000156¢c 3b7b37b4 addi r27,r27,0x37b4
000156d0 3b9c2bac addi r28,r28,0x2bac localizedStringForKey:value:table:
000156d4 809d0000 Iwz r4,0x0(r29)

000156d8 807b0000 Iwz r3,0x0(r27) NSBundle
000156dc 4801ef3d bl 0x34618 mainBundle
000156e0 809c0000 Iwz r4,0x0(r28)

000156e4 38e00000 i r7,0x0

000156e8 3cbf0002 addis r5,r31,0x2

000156ec 3cdf0002 addis r6,r31,0x2

000156f0 38a51770 addi r5,r5,0x1770

000156f4 38c61668 addi r6,r6,0x1668

0001568 4801ef21 bl 0x34618 localizedStringForKey:value:table:
000156fc 809d0000 Iwz r4,0x0(r29)

00015700 7c7a1b78 or r26,r3,r3

00015704 807b0000 Iwz r3,0x0(r27) NSBundle
00015708 4801eft1 bl 0x34618 mainBundle
0001570c 809c0000 |wz r4,0x0(r28)

00015710 3800000 i 17,0x0

00015714 3cbf0002 addis r5,r31,0x2

00015718 3cdf0002 addis r6,r31,0x2

0001571c 38a51780 addi r5,r5,0x1780
00015720 38c61668 addi r6,r6,0x1668

00015724 4801eef5 bl 0x34618 localizedStringForKey:value:table:
00015728 805e015¢c lwz r2,0x15¢(r30)

0001572c 38000007 i r0,0x7

00015730 981e0168 stb r0,0x168(r30)
00015734 3c9f0002 addis r4,r31,0x2

00015738 7c7d1b78 or r29,r3,r3

0001573c 98020032 stb r0,0x32(r2)

00015740 80842c08 Iwz r4,0x2c08(r4)
00015744 8070154 Iwz r3,0x154(r30)
00015748 4801eed1 bl 0x34618 menu
0001574c 80be0154 Iwz r5,0x154(r30)
00015750 3c9f0002 addis r4,r31,0x2

00015754 80843094 Iwz r4,0x3094(r4)
00015758 4801eect bl 0x34618 removeltem:
0001575¢ 38000000 i r0,0x0

00015760 901e0154 stw r0,0x154(r30)
00015764 48000074 b 0x157d8

00015768 3bbd2b10 addi r29,r29,0x2b10
0001576c 3b7b37b4 addi r27,r27,0x37b4
00015770 3b9c2bac addi r28,r28,0x2bac localizedStringForKey:value:table:
00015774 809d0000 Iwz r4,0x0(r29)

00015778 807b0000 Iwz r3,0x0(r27) NSBundle
0001577c 4801ee9d bl 0x34618 mainBundle
00015780 809c0000 Iwz r4,0x0(r28)

00015784 3800000 i 17,0x0

00015788 3cbf0002 addis r5,r31,0x2

0001578c 3cdf0002 addis r6,r31,0x2

00015790 38a51790 addi r5,r5,0x1790
00015794 38c61668 addi r6,r6,0x1668

00015798 4801ee81 bl 0x34618 localizedStringForKey:value:table:
0001579¢c 809d0000 Iwz r4,0x0(r29)

000157a0 7c7alb78 or r26,r3,r3

000157a4 807b0000 |wz r3,0x0(r27) NSBundle
00015860 bbO1ffe0 Imw r24,0xffe0(r1)

00015864 7c0803a6 mtspr Ir,r0

00015868 4e800020 blr

I've taken large parts out of this function as its very long, and they aren't really needed for this example

Heres a quick recap of what each part of the otoolit output is:

0001126¢ 3bbd6618 addi r29,r29,0x6618 objectForKey:

1."0001126¢" this is the offset (location of the instruction in the binary file) in hex (16 based counting system instead of 10)
2. "3bbd6618" this is the hex value for the assembly instruction (theres a finer make-up to this, but i wont get into that here)

3."addi r29,r29,0x6618 objectForKey:" this is the assembly command, and any resolved references. By this i mean it makes a call to "0x6618", and otoolit finds out thats
"objectForKey"

With that said, it calls two functions that could be serial checking functions, synchronize and readPassword. Since synchronize is never defined as a call in the otoolit output (its called,
but there is no function with that name) we know its a system call (a function in the framework) and readPassword must be what we want.

000156a8 4801ef71 bl 0x34618 readPassword
000156ac 881e0151 Ibz r0,0x151(r30)

000156b0 3f7f0002 addis r27,r31,0x2

000156b4 3fbf0002 addis r29,r31,0x2

000156b8 3f9f0002 addis r28,r31,0x2

000156bc 7c000774 extsb r0,r0

000156¢c0 2f800000 cmpwi cr7,r0,0x0

000156¢c4 419e00a4 beq cr7,0x15768

000156¢8 3bbd2b10 addi r29,r29,0x2b10
000156¢c 3b7b37b4 addi r27,r27,0x37b4
000156d0 3b9c2bac addi r28,r28,0x2bac localizedStringForKey:value:table:

Here is where you learn a little more about assembly.

cmpwi - this a compare function, comparing r0 to 0x0 (a hex number)
beq - branch if equal. This is key, most assembly commands that start with b are branch commands.

Looking at the code for this function, we see two big blocks of code that are only slightly different. Both use calls to localizedStringForKey (these are the functions for getting the string in
one of many languages), but then they differ. The first makes a call to menu and then removeltem. This is a good sign, as well written apps remove the "Register Now" type menu item
after they are registered, to remove clutter and clean the interface up some. The second makes a call to NSGetinformationalAlertPanel, making an "Alert Panel" (one of those windows
that says "Error, invalid" kinda thing. As we can see, if it was to branch to 0x15768, it would skip over the removeltem call, and go to the second block of code. This is show even more so
by looking right before 0x15768.

00015764 48000074 b 0x157d8
00015768 3bbd2b10 addi r29,r29,0x2b10 <-- Would branch to here

As you can see before it is a branch. "b" is a forced branch, not a conditional, so no matter what if it gets to that part of the code, it will branch to 0x157d8. By searching the otoolit output
for that, we see its after the alert panel calls giving us a good idea that this is the condition that valid registrations meet. From this information we assume readPassword is the serial
checking function.

Now you might ask your self, why not just patch right here, set it to always branch, and be done with it. You could try this, but it wouldnt work, the serial numbers wouldnt hold during a
restart of the app. This is due to the fact this is a call by an interface item. When the application starts up, it also calls readPassword to check at startup if its valid. This means we need to

patch readPassword, not just registerAction.

Lets take a look at the otoolit output for readPassword

-[AppController readPassword]

00013ed0 7c0802a6 mfspr r0,Ir
00013ed4 bf41ffe8 stmw r26,0xffe8(r1)
00013ed8 3c8c0002 addis r4,r12,0x2
00013edc 90010008 stw r0,0x8(r1)
00013ee0 7c7e1b78 or r30,r3,r3
00013ee4 7d9f6378 or r31,r12,r12
00013ee8 9421ffa0 stwu r1,0xffa0(r1)
00013eec 3ba00000 i r29,0x0
00013ef0 808446ac Iwz r4,0x46ac(r4)
00013ef4 48020725 bl 0x34618
00013ef8 801e003c Iwz r0,0x3c(r30)
00013f94 40be0014 bne+ cr7,0x13fa8
0001398 7fa24a78 xor r2,r29,r9
00013f9c 5442073e rlwinm r2,r2,0,28,31
00013fa0 38420001 addi r2,r2,0x1
00013fa4 905e0140 stw r2,0x140(r30)
00013fa8 8010140 Iwz r0,0x140(r30)
00013fac 2f800000 cmpwi cr7,r0,0x0
00013fb0 409e0008 bne cr7,0x13fb8 return;
00013fb4 981e0151 stb r0,0x151(r30)
00013fb8 80010068 Iwz r0,0x68(r1)
00013fbc 38210060 addi r1,r1,0x60
00013fcO bb41ffe8 Imw r26,0xffe8(r1)
00013fc4 7c0803a6 mtspr Ir,r0
00013fc8 4e800020 blir

At the end is the key here. We see that over the entire thing, there is only one branch that will directly result in a return (the function reaching the end, or hitting "blIr")
00013fb0 409e0008 bne cr7,0x13fb8 return;

00013fb4 981e0151 stb r0,0x151(r30)

00013fb8 80010068 Iwz r0,0x68(r1)

if a condision is met it will branch to 0x13fb8, skipping over 0x13fb4. If we were to say, change the code, so that it never branched there, this might do the trick. Heres how we want the
code to look after we are done

00013fb0 60000000 nop
00013fb4 981e0151 stb r0,0x151(r30)
00013fb8 80010068 Iwz r0,0x68(r1)

This will make it carry on over to 0x13fb4 no matter what happens giving us the desired result. But we need to test this, we dont want to go through the work of patching this to find out
this change will not work. So to save our self work in the long run, we want to test it.

For this we will use GDB.

Lets start up GDB. To do this open another terminal window or clear the last one by typing Command + K and type:

gdb
®0e gdb-powerpc-appl — 125x18
Lazt login: Tue Dec 23 21:22:82 on ttvpl =]

Welcome to Darwin!

G4:~ corzect gdb

GNU gdb 5.3-20A38128 (Apple version gdb-3897% (Thu Dec 4 15:41:38 GMT 2@83)
Copyright 28@3 Free Software Foundotion, Inc.

GDE is free softwore, covered by the GHU General Public License, and you are
welcome to change it andfor distribute copies of it under certain conditions.
Type "show copying" to see the conditions.

There is obsolutely no warranty for GDE. Type "show worronty" for detoils.
This GDE wos configured as "powerpc-apple-darwin®.

CEEY |

This is the what you should see after you type "gdb". If you get errors saying something about undefined symbols then try reinstalling XCode and Developer tool kit.

Next We want to attach to the application. So start up Viewlt simply by opening it the normal way, and then in the gdb window type "attach Viewlt". NOTE: Theres an easier way then
typing out the full name, simply type "attach Vie" and then hit tab. It should auto complete the name of the application, or if there is more then one running that starts with "Vie" it will show
the names of them all, and simply keep typing letters and hitting tab untill you get the one you want.

®06 gdb-powerpc-appl — 125x18

Last login: Sat Dec 27 21:11:18 on console 5
Welcome to Darwin!

G4~ corsect gdb

GNU gdb 5.3-20838128 (Apple version gdb-389) (Thu Dec 4 15:41:38 GHT 2883%

Copyright 20883 Free Software Foundotion, Inc.

GDE iz free softwore, covered by the GMU General Public License, and you are

welcome o change it andfor distribute copies of it under certain conditions.

Type "show copying" to sse the conditions.

There iz absolutely no warranty for GDB. Type "show worranty" for detoils.

Thiz GDB was configured as "powerpc-opple-darwin® .

{gdb’ attoch ViewIt.1356

Attaching to process 1386.

Reading synbols for shored librories . done

Reading symbols FOr Shored LIBTOETES v v euse e sasararesasararerasasasssasasasisasasarissrasararsranararas done
Bx9BAATECE in mach_msg_trop ()

[CE |

Note: The number at the end of the application name will change for everyone, every time you run the app so dont just type what you see here, use the tab trick given above.

For this test we want to change

00013fb0 409e0008 bne cr7,0x13fb8 return;
00013fb4 981e0151 stb r0,0x151(r30)
00013fb8 80010068 Iwz r0,0x68(r1)

to

00013fb0 60000000 nop
00013fb4 981e0151 stb r0,0x151(r30)
00013fb8 80010068 Iwz r0,0x68(r1)

GDB will let us do this temporarily by writing the new values to memory and letting us test the crack without having to change anything. For this we will use the "set" command in GDB.
We want to set a value for a memory address. To do this we would type

set *0x00013fb0 = 0x60000000

Lets break this down. This tells GDB to set the value at memory address 0x00013fb0 to be 0x60000000. 0x60000000 is the hex value for nop (no operation) causing the code to "fall
through".

'
®06 gdb-powerpc-appl — 125x18

Last login: Sat Dec 27 21:11:18 on console 5
Welcome to Darwin!

G4:~ corsect gdb

GNU gdb 5.3-20838128 (Apple version gdb-389) (Thu Dec 4 15:41:38 GHT 2883)

Copyright 20883 Free Software Foundotion, Inc.

GDE iz free softwore, covered by the GMU General Public License, and you are

welcome to change it anddfor distribute copies of it under certain conditions.

Type "show copying” to see the conditions.

There is absolutely no warranty for GDB. Type "show worranty" for detoils.

Thiz GDB wos configured as "powerpc-apple—darwin®.

{gdb’ attoch ViewIt.1356

Attaching to process 1386.

Reading synbols for shored librories . done

Reading synbols for shored LiBrOries .o eoeeane e aseanatsansansassensassasinsnasnnsnnsnnnnnnnsnnnnnnns dane

Bx9EAATECE in mach_msg_trap)

{gdb’ set *AxEEELITDE = AxCABABAEA

[CEY |

Then simply type ¢ to let the program continue executing.

®006 gdb-powerpc-appl — 125x18
Welcone to Darwin! =]
G4:~ corsect gdb

GNU gdb 5.3-20838128 (Apple version gdb-389) (Thu Dec 4 15:41:38 GHT 2883) -~
Copyright 20883 Free Software Foundotion, Inc. |
GDE iz free softwore, covered by the GMU General Public License, and you are
welcome to change it anddfor distribute copies of it under certain conditions.
Type "show copying” to see the conditions.

There is absolutely no warranty for GDB. Type "show worranty" for detoils.
Thiz GDB wos configured as "powerpc-apple—darwin®.

{gdb’ attoch ViewIt.1356

Attaching to process 1366.

Reading synbols for shored librories . done

Reading synbols for shared libraries
Bx9EAATECE in mach_msg_trap) |
{gdb’ set *AxEEALITDE = AxCABABAEA W/
(gdb) o
Continuing.

[

At this point open up the "Enter Unlock Code" menu under Register, and enter any name and "password" and click register.
Register program

Please enter data you received exactly as it appears in your email:

User name: Cracked

Password: -MyPassword D

(Cancel) [Register)

Registration successful

Thank you for registering our program. We will put
much effort into making it a great product.

Ding Ding Ding, we have a winner. We now know that changing this value will let us enter anything and have it be valid.
Now come the part that seams to mystify everyone, where these big long strings you search for and replace come from. Lets look at the otoolit output one more time

00013fa4 9050140 stw r2,0x140(r30)
00013fa8 8010140 Iwz r0,0x140(r30)
00013fac 2f800000 cmpwi cr7,r0,0x0
00013fb0 409e0008 bne cr7,0x13fb8 return;
00013fb4 981e0151 stb r0,0x151(r30)
00013fb8 80010068 Iwz r0,0x68(r1)
00013fbc 38210060 addi r1,r1,0x60
00013fcO bb41ffe8 Imw r26,0xffe8(r1)
00013fc4 7c0803a6 mtspr Ir,r0

00013fc8 4e800020 blir

And from the past we know the second value in the table (905e0140 for the first line) is the hex value of the command. We now need to build a hex string to find and replace the branch.
Since assembly only has a limited number of commands, all these command will appear more then once in an application. So to find the right one, we need to find it relative to the stuff
around it. Example

The hex string 905e0140 will appear more then once in the application. However the hex string 905e0140801e01402f800000409e0008 might only appear once. (I got this second
string from combining the hex values of the first four items, shown here separated by "-", 905e0140-801e0140-2f800000-409e0008)

So, in the Application we need to find 905e0140801e01402f800000409€0008, and replace it with 905e0140801e01402f80000060000000.
This second string i got from replacing the branch command in the first string (409e0008) with the hex value of nop (no operation) (60000000)
Note: in the executable hex values are NOT preceded with a "Ox" or "*0x"

To replace this string we need to open up Resorcerer (or hexEdit). Then open the Executable (All screenshots are with Resorcerer)

Open :‘ f{e sorcerer 2.4.1 (OSX)

Enable: | Al files ﬂ
" Macos Iy
B _ .DS_Store | .DS_Store _ .DS_Store
class-dump.txt | Contents » __ Info.plist
+ Info.rtfd » [Macos P
%J Master “ Pkglinfo
@ otoolit-lite_txt L,_." Resources L4
@ otoolit.txt
~ [Res 2.4.1 05X »
3 Resorcerer...4.1 CD.img
B8 ResorcererCD.img.sitx
[ResorcererLite.sitx
U & Viewlt 2.38 >
.
v €) L
[K Browse) K Mew File)

This will open up a window like the following. Click on "Data Fork" and click Open

r Al
®06 Viewlt
Types 1 “<DF>’ (Data Fork) Resource - |
DF> q 248K 0 “<Data Fork>" ,}
I i
Y Y
P P
Select A | Reverse | [Hex) Data
|'. .\I |'. .\I H |'.—.\| |'.—.\|
Changed None | Info New

When the new window opens up press Command + F for find, or select find from the menus. Some new text fields will be shown.

806

<DF> 0 “<Data Fork>" from Viewlt

Y @Hex (Find:) 905¢0140801e01402F800000409e0008
(" Replace with:) 905e0140801e01402f80000060000000]

Replace & Find) (All)

1 found

(GotoOffset) (0)

| S S

0

Selection Range: [12F A4, 12FB4) 10 bytes Checksum: 809 A0288

Offset Hex Data 2-Byte

12F98 | 7FA2 4A78 5442 @73E 3842 [1xTEB8 >88B

12FA2 | @001 9@5E 0140 8Q1E 0140

12FAC | 2F80 @RQ0 409E Q@8 981E

12FB6 | @151 8001 0068 3821 0060 QN h 8!) 0

12FC@ | BB41 FFE8 7C08 @3A6c 4E80 ¥ AL 7NN

12FCA | @020 7C08 ©2A6 BFALl FFF4 | 7Y

12FD4 | 3880 0000 2001 @008 33AQ \ 8

12FDE | @0@A 9421 FFA@ 3BA1l 0040 M @

12FEB | 7FA3 EB78 4802 072D 7FA3 | = H - I

12FF2 | EB78 3830 Q000 4802 QBO1 = 8 \ H a
i 12FFC | 2F83 0000 38360 @00@ 4@9E | / 8 @ b
(= ~p
Length: 3DE48 (Cancel |

Enter the string to search for, and the string to replace it with in the text fields as shown, and click "Find". It should find only one, but click find again to make sure it beeps and stays there

meaning there is no other occurrences of the search string in the file.

Then click "Replace with" and it will replace the search string with the new string. (You must click "Find" first so it selects the string in the hex view window)

Then Simply save (Command + S or File..Save) and quit.

Now any time this copy of the application is opened it will think its registered.

One thing i do suggest is to trash the Prefs file (ViewlIt (BJL).plist in this case) and open the cracked app again. Some times the app wont work because of the crack, because its
loading a name from the prefs file that isn't there, getting a null value and chocking.

In this case the application works, but as you see in the about box, the name is "(null)" (This is the visual representation of null when its put in as text)

Viewlt
Version 2.3.8

Registered to: (null)
Single license

Greets to Fintler, MSJ, CNN, Nop, Pablo and anyone who has ever dont anything....ever.
Brought to you by Corsec AT CorruptFire.Com

