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ABSTRACT 

A technique for designing YIG (yttrium-iron garnet)-

tuned transistor oscillators, tunable over the range of

frequencies from 500 to 950 MHZ, is presented. The

approach taken differs appreciably from that used in the

design of conventional LC-tuned oscillators. One major

difference is that the YIG tuning mechanism is electrical-

ly controlled. The YIG tuning element is treated as a

single unit and is not resolved into an equivalent LC

circuit. Instead, a direct method using reflection

coefficients measured at network terminals to characterize

various design stages is applied. The transistor is also

characterized by reflection and transmission coefficients,

i.e., S-parameters. Thus the Smith Chart becomes a

useful tool and network calculations are greatly simplified

by means of signal flow analysis with application of

Mason's rule. Because S-parameters are measured when the

device is terminated in the characteristic impedance of

the measuring system, they are more accurately determined

at high frequencies than other parameters requiring open

and short circuit terminations for their measurement.

Furthermore, the availability of network analyzers, such

as the Hewlett-Packard S-Parameter Test Set, simplifies

such measurements. As a result, a concise method using

S-parameters is most applicable for the design of

transistor YIG-tuned oscillators.
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PREFACE

The purpose of this thesis is to develop a concise

method for the design of YIG-tuned oscillators. The

first chapter is an introduction to the structure and

resonance phenomenon of YIG. A description of the

properties and characteristics of YIG resonators is

presented in Chapter 2. Design considerations in using

YIG as part of a tuning element are also included.

Chapter 3 describes the structure of the electro-

magnet used to provide the biasing dc magnetic field for

the YIG resonator. The design of a YIG-tuned transistor

oscillator is analysed in Chapter 4 • Smith Charts are

used to clarify explanations.

The final chapter summarizes conclusions based on

experiments performed and discusses recommendations for

future work related to this subject.

It is a great pleasure to thank Dr. Gerald Whitman

and Dr. Joseph Frank, project directors, of New Jersey

Institute of Technology, for their continued interest,

encouragement and helpful suggestions; the staff of

Airtron Division of Litton Industries, for their fine

cooperation and construction of the YIG mount and

electromagnet. Thanks are also due Mr. Frank Peragine,

of Bell Laboratories, for providing measured S-parameter
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data for type 2N2857 transistors; Mrs. Marguerite

Gribbon, of the Foundation at New Jersey Institute of

Technology, for typing the original manuscript. Finally,

thanks are due Airtron Division of Litton Industries for

providing YIG spheres, test equipment, and funding for

the project.

The author will very much appreciate having any

oversights or errors brought to his attention.

January, 1975 	 T. L. Jin
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INTRODUCTION

Since its discovery, yttrium-iron garnet (YIG)

has been widely used in microwave applications. Some

of the major applications for YIG tuned devices include

microwave frequency generators, fast scanning preselectors

for commercial and military equipment, local oscillators

in microwave surveillance receivers, sweep signal sources,

frequency synthesizers, and filter resonators. One great

advantage of such devices is the linear tuneability due

to the resonance property of the YIG material in a do

magnetic field. However, most of these applications

involve devices operating in the gigahertzs frequency

band.

It is therefore the primary objective of this paper

to introduce the fundamental concepts of the structure and

behavior of YIG resonators as tuning elements, and to

develop a concise method for the design of YIG tuned

oscillators operating in the lower microwave or ultra-

high frequency band, which coincides with the UHF TV

broadcasting band.
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CHAPTER 1

YTTRIUM-IRON GARNET (YIG) 

1.1. Structure of YIG 

Yttrium-iron garnet (YIG4, represented by the unit

formula Y3Fe2(Fe03 or 3Y20 3 .5Fe20 3' is a polycrystal-

line garnet prepared by two methods: by ball milling the

constituent oxides and by coprecipitation as hydroxides

followed by a sintering process. In the former method,

the reacted powders obtained by presintering in an

oxygen atmosphere are ball milled, pressed into shape and

then sintered in an oxygen atmosphere. This method

produces specimens with higher densities. Toroidal

specimens prepared from oxides presintered at 950 ° C

attained densities as high as 99% of the theoretical

density (11.

The crystal structure of the garnets consists of

cubic unit cells each made up of eight of the formula

units Y3Fe2(Fe043' Sixteen Fe 3+ ions occupy octahedral

sites, called a-sites, each at the center of an octa-

hedron. These sites represent magnetic A sublattices.

Twenty-four Fe 3+ ions occupy d-sites each at the center

of a tetrahedron, forming the magnetic D sublattice. The

Y3+ ions occupy twenty-four c-sites, each at the center

of an 8-cornered 12-sided polyhedron, as shown in Fig. 1.1.1.



(a) Fe3+ ion surrounded by six oxygen
ions in octahedral symmetry.

2

(b) Fe3+ ion surrounded by four oxygen
ions in tetrahedral symmetry.

(c) Y3+ ion surrounded by eight oxygen ions
in the 8-corners of a 12-sided poly-
hedron.

Fig. 1.1.1. 	 (a) a-site, (b) d-site,
(c) c-site of YIG crystal (16j.
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The 96 oxygen ions in the unit cell occupy the

h-sites which correspond to a point where a corner of

a tetrahedron, octahedron, and two large polyhedra meet,

as shown in Fig. 1.1.2.

Fig. 1.1.2. Distances (in Angstrom
units) of each metal ion from
common oxygen neighbor (h-site)
for YIG [161. (second large
polyhedron not shown)
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Thus, each oxygen ion is surrounded by an Fe 3+ (a-

site4 ion, an Fe 3+ (d-site4 ion, and two Y 3+ (c-site4

ions. However, these are not regular polyhedra

because the corresponding sides of each geometrical

figure are not always equal [161.

Polycrystalline garnets may also be fabricated by

partial substitution for yttrium or iron in YIG. These

garnets can be represented by two generalized chemical

formulas. The formula 3Y203(5-x)Fe203xGa203, where x

varies from 0 to 1, represents the series of garnets in

which varying amounts of gallium substitute for iron in

the tetrahedral sites; the formula (3-x)Y203*xR203*5Fe203,

where R is a rare earth and x varies from 0 to 3,

represents the series in which rare earth ions, substitute

for yttrium. The lattice constant of polycrystalline
0

YIG was determined to be 12.374+0.005 A. Some slight

variations in the lattice constant were found in samples

in which rare earth ions replace the yttrium ions {1}.

The magnetic properties of the garnet result from

the superexchange interactions between pairs of sub-

lattices. The strongest interactions occur when the

angle between the magnetic ions approaches 180 degrees,

and the weakest for angles near 90 degrees. Thus, a

stronger A-D sublattices interaction is expected because

3+, 	 -2- -the angle Fe 0..)-u 	 (d4 formed by the Fe 3+ ions in
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the two sublattices is 126.6 0 . Such interaction is

strong enough to permit considerable overlap of the wave

functions of oxygen and iron. A weaker coupling between

Y3+ and Fe 3+ (a) can be explained by the smaller

Y3+-02- -Fe3+(a) angle of 100
0
 t161.

Since the trivalent yttrium, Y 3+ , consisting of

the inert Krypton core, has its 4p layer completely

filled with electrons, there are no unpaired spins.

Thus Y3+ has no permanent spin magnetic moment. There-

fore, the net magnetization of YIG is contributed by

the difference between the magnetic moments of 3Fe 3+ (d)

ions and the 2Fe 3+ (a) ions, each having a magnetic

moment of 5 Bohr magnetons (5μB). Because of the

dominant D sublattice, there is a net magnetization of

5 Bohr magnetons per formula unit of YIG (161.

1.2. Motion of the Magnetization Vector 

Consider a single-crystal YIG sphere in a dc magnetic

field. If the dc field of strength H o is applied to the

sphere in a vertical z-direction, the magnetic moment

A due to the spinning of the unpaired electrons in the

YIG material will precess about HQ . The precessional

frequency ωo will depend upon the associated angular mo-

mentum J. This angular momentum and the magnetic moment

/C4 are parallel vectors. For the electron, they are
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oppositely directed and the gyromagnetic ratio is thus

defined by

where o.  2.21 x 10 5 (rad/sec)/(A-t/m), and μ= -eh/2m,

with e the absolute value of the electronic charge, m

its mass and h, Planck's constant.

Under equilibrium conditions, the dipole moment

vector μ lies in the direction opposite to that of Ho.

Now suppose that the magnetic dipole moment is tilted by

a small external force so that it makes an angle G with

H o . A torque T is then exerted on the spinning electron

and its angular momentum vector J precesses about a

cone with angular velocity ωo= dΦ/dt, as shown in

Fig. 1.2.1.

Fig. 1.2.1. Precession of magnetic moment
about the dc magnetic field L14}.
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The time rate of change of the angular momentum

vector is equal to the torque, i.e.,

In the time interval dt, the change in angular mo-

mentum is dt and the change in 0 is d0. The angle

d4 is equal to the arc dJ divided by the radius of the

precession circle J sin e; thus,

i.e.,

Since T = dJ/dt,

or in vector notation as

ωo= 	 zωo
where ωo= zωo)0 with z a unit vector in the z-direction.

Since the only field acting on h(--", is Ho, the torque

exerted on μ is

From equations (1.2.2) and (1.2.1), the torque can also
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be written as

Combining equations (1.2.5) and (1.2.6) gives the equation

of motion of a single dipole:

Equations (1.2.4.b) and (1.2.7.a) establish the relation

as the natural precession frequency of a magnetic dipole

in a constant magnetic field.

The total magnetization of a system of magnetically

aligned spins is given by

where N is the number of unbalanced spins per unit

volume 14j. Equation (1.2.7.b) now becomes

Usually only the absolute value of the electronic charge

is used in defining,. As a consequence, M in equation

(1.2.9.a) becomes negative and can be written as
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where

= ge/2mc

g = Lande g factor ,742

m = mass of the electron

e = absolute value of the electronic charge

c = velocity of light

r00	 o

/4 = intrinsic permeability of free space

M=magnetization vector

Ho- = applied magnetic field vector

1.3. Damping and Resonance Phenomenon

The precession frequency of the magnetization vector

about the constant magnetic field is determined by the

field strength. Because of damping, the electron-spin

magnetic moments will spiral in until the magnetization

aligns itself with the H o field. By sampling the fields

around the sphere during this process, a circularly

polarized rf field would be observed about the sphere.

This field would die out exponentially with time in the

same way that transient voltages and currents die out in

a resonant circuit having dissipation loss L181.

Magnetic loss or damping takes two basic forms:
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the Bloch-Bloembergen (B-B) form and the Landau-Lifshitz

(L-L) form. The B-B form of the equation of motion is

given by

where

magnetic field vector

T
1 
= spin-lattice relaxation time

T2= loss associated with any process that

disturbs or opposes the precessional

motion

M = magnetization vector

Mo = do magnetization

x,y,z = subscripts indicating the x,y, and z

components of the vector.

The L-L form is given by

where A is a damping factor with dimensions of frequency

called the relaxation frequency, and is the inverse of

a relaxation time. Since Μ●Μ = M2, equation (1.3.2)

can be rearranged as



After applying the vector identity

to the equation, it becomes

Equation (1.3.2.b) shows that the damping term is a

vector perpendicular to M. Therefore, the damping term

affects only the precession angle. The magnitude of the

magnetization vector remains unaffected L16).

However, the precession can be sustained by super-

imposing a small rf magnetic field in the plane perpendic-

ular to the do magnetic field as shown in Fig. 1.3.1.

When the frequency of the rf magnetic field, h rf ,

coincides with the natural precession frequency of the

magnetization, the precession angle will grow in size.

The energy absorbed from the rf magnetic field by the

spins will go through a maximum until further growth in

angle is limited by damping. Thus, to observe the

resonance condition, the operating frequency or the

applied dc magnetic field can be varied until the driving

frequency equals the natural precession frequency t16]..

11
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(a) Magnetic dipoles 	 (b) Net magnetization
aligned in direction 	 produced by combined
of applied do field. 	 effects of aligned

dipoles.

(c) Precession of magnet- 	 (d) Oscillations of magnet-
ization vector under 	 ization vector under
influence of applied rf 	 influence of applied rf
field with w=o
	

field with w w
o

(e) Components of the
precessing magnet-
ization vector.

Fig. 1.3.1. Effects of rf magnetic field
applied in the plane perpendicular
to the dc magnetic field [161.
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When the frequency of the rf magnetic field is not

equal to the natural precession frequency, oscillations

of the magnetization vector [161, as shown in Fig.

1.3.1 (d), result.
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CHAPTER 2 

FERRIMAGNETIC RESONATORS 

2.1. Characteristics of Ferrimagnetic Resonators 

The physical parameters that affect the design of

ferrimagnetic resonators are the Curie temperature T c ,

the saturation magnetization M s , the anisotropy field

constant K1/Ms, and the resonance line widthΔH [18].

2.1.1. Curie Temperature T c

The Curie temperature is the temperature at which

the saturation magnetization M s drops to zero. There-

fore, resonance operation near or above this temperature

is impossible.

2.1.2. Saturation Magnetization M s

The saturation magnetization M s is determined by

the number of electron spins per unit volume of the

material. It is a measure of the ease with which the

fields associated with external circuitry can couple to

the resonator; the larger the M s , the easier the

coupling. Furthermore, the saturation magnetization and

the shape of the resonator determine the minimum resonant

frequency, f o
min , which saturates the material. If a

'nresonator is tuned to a frequency lower than fomin the
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applied field would be approximately equal to or less

than the demagnetizing field. In such a case the

resonator would cease to function. The relationship

between the approximate minimum resonant frequency f omin

and the saturation magnetization M s is shown in

Fig. 2.1.2.1 181.

Fig. 2.1.2.1. Approximate minimum resonant
frequency of ferrimagnetic sphere.
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2.1.3. Anisotropy Field Constant K1/Ms

Since YIG and GaYIG have cubic crystal structure,

they have three types of principal axes: three [100] ,

six [110] and four [111] axes in each single crystal.

The lattice structure of the single-crystal material

gives rise to the effects of magneto-crystalline

anisotropy, which is represented by the first-order

anisotropy field constant K1/Ms. This is a measure of

the ease with which the crystal magnetizes along certain

crystal axes rather than along others. Therefore, the

biasing magnetic field required to produce resonance

depends upon the orientation of the crystal axis with

respect to the applied magnetic field. For YIG or GaYIG,

the lowest field strength that gives resonance occurs

when a [111] axis is parallel to the applied field.

The opposite effect occurs when a [100] axis is parallel

to the applied field. Therefore, the [111] axes are

known as "easy" axes while the [100] axes are known as

"hard" axes. Second-order anisotropy field constant

also exists; however, its effect on resonance is

negligible t181.

The variations of biasing magnetic field, for a

single-crystal YIG or GaYIG having cubic symmetry, as a

function of crystal axes orientation, are shown in

Fig. 2.1.3.1 and given by the equation,



Fig. 2.1.3.1 Field strength required
to give resonance as a YIG sphere is
rotated about a [l10] axis which is
perpendicular to Ho .

17
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and

f
o 
= resonant frequency in MHZ

K
1
/M

s 
= first-order anisotropy field constant.

e is the angle between the applied magnetic field H o and

the [106] axis which becomes parallel to H o as the

sphere is rotated about the given [110] axis.

Orientation of a particular axis with respect to the

biasing magnetic field can be achieved by rotating the

sphere around a [110] axis which is perpendicular to

the applied field {6}.

The [110] axis can be determined by X-ray techniques

or by using the device developed by Y. Sato and

P.S. Carter L21].. The operating principle of this

device is based on the method proposed by M. Auer 04 , 1.

The device consists of an electromagnet placed on a

rotating mount. Thus the field can be oriented in any

desired direction with respect to the crystal sphere.

The sphere is placed on a dimpled rod in such a way
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that it is free to rotate. When the sphere is subject-

ed to a strong magnetic field, it will rotate until one

of its easy [111] axis aligns itself in the direction

of the applied field. A wire is temporarily attached

to the sphere along the direction of this axis. Next,

the wire is placed in a radial hole, where it is free

to rotate, at the side of the aligning jig. The magnet

is then rotated 70.5 degrees from its original position.

This angle can accurately be measured by means of the

milling head protractor of the device. Now the sphere

rotates around the wire until the second easy axis

aligns itself with the field.

Finally, an insulating rod is attached with a drop

of cement to the sphere along the [110] axis. This is

done by means of the radial hole drilled at the side of

the alignment jig along the bisector of the angle

between the two easy axes. Fig. 2.1.3.2 shows the

geometry of a cubic crystal structure.



Fig. 2.1.3.2. Geometry of a cubic crystal.
(a) cubic crystal whose body diagonals
are easy axes, (b) cutoff section of
cubic crystal showing relative locations
of crystal axes.

20
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2.1.4. Line Width Ali

Another property of the ferrimagnetic material is

the resonance line widthΔH, which depends upon the

shape and surface polish of the material. To achieve

the narrowest possible line width, the internal field

of the material must be uniform and the surface of the

resonator must be very highly polished. However, the

line width, though independent of the external circuits,

may be degraded if located near metallic walls (181.

The theoretical unloaded Q, Q u , is a function of

the line width and is defined by (61

where

fo = resonant frequency in MHZ

OH = line width in oersteds.

However, when a homogeneous specimen is placed in

a uniform magnetic field, it becomes polarized. The

polarization induces magnetic dipoles at the surface

and creates a component of the magnetic field opposing

the applied field. This induced field is given by
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Hd = induced field

Nz = demagnetizing factor in the direction

of the applied field

Mo = d.c. magnetization

The demagnetizing factor N measures the degree of

induction and depends upon the shape of the resonator.

For spheres, these factors are Nx = Ny = Nz = 1/3, where

the subscripts x, y, and z denote the direction of the

axes of the chosen rectangular coordinate system shown

in Fig. 2.1.4.1 {16}.

Fig. 2.1.4.1. Polarization of a homogeneous
specimen in a uniform magnetic field.
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Taking the effects of the demagnetizing field into

account, the unloaded Q is given by equation

(2.1.4.2) 	 ).7].

Т is the Bloch-Bloembergen phenomenological relaxation

time and the rest of the symbols are as previously

defined.

2.2. Single-loop Coupled Resonator

The coupling of small ferrimagnetic spheres to two

orthogonal loops or semi-loops has been analyzed by

Comstock [101. The results are summarized below.

A YIG sphere is placed in the center of two loops.

The loop axes are perpendicular to each other and to the

direction of the applied dc magnetic field, as shown in



Fig. 2.2.1.

Fig. 2.2.1. Loop coupling by a
ferrimagnetic sphere.

With no external field there is little coupling

between the input and output terminals since the loops

are orthogonal to each other. However when a dc magnetic

field is applied, coupling through the magnetized YIG

sphere takes place. The amount of coupling depends

upon the input rf signal frequency and the dc magnetic

field strength. Signals at the gyromagnetic resonance

frequency, f o = 2.8 x Ho , are strongly coupled while

at other frequencies the coupling is quite weak.

In the case where loop coupling is used, voltages

V
1 

and V
2 
developed around the loops are shown to be [101
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where I1 and I2 are the currents flowing in the loops

and

W = radian frequency

μo = intrinsic permeability of free space

vs = volume of sphere

ro = radius of coupling loop

Xexx = Xeyy = 	 (x-x), (y-y) component of effectivexx 	 YY
rf tensor susceptibility

xexy = -Xeyx = (x-y), (y-x) component of effective

rf tensor susceptibility.

The effective or external susceptibility is the

ratio of the rf magnetic moment to the applied rf

magnetic field (not the rf magnetic field inside the

ferrite). For a spherical sample the approximate

expressions for the components of the effective rf

tensor susceptibility are given by L71



The external Q, Qe , of ferrimagnetic resonators

has also been derived. The approximate expression is

given by

where

r
o = radius of the loop

Ro = terminating resistance connected to the loop

= self-inductance of the loop.

Equation (2.2.3) shows the external Q of the resonator

as a function of loop radius.

To derive an expression for single-loop coupling,

remove the second loop and let 1 2 = 0 in equation

(2.2.1). V 1 then becomes

26
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into equation (2.2.4) gives the expression for the

impedance at the terminal of a single YIG coupled loop

as

Figure 2.2.2 shows the results for the evaluation

of equation (2.2.5) at various resonant frequencies.

It can be seen from the figure that a single YIG

coupled loop behaves like a parallel LC resonant

circuit.

2.3. Design Considerations 

Changes in temperature affect the values of K1/Ms,

Ms, and ΔH; but changes in K1/Ms have the most adverse

effect on the resonant frequency. To minimize the

variations in the resonant frequency due to changes in

the anisotropy field constant, the resonator sphere must

be properly aligned with respect to the applied magnetic

field. This orientation of the sphere is determined by

the second term of equation (2.1.3.1) which contains

the anisotropy field constant K 1/Ms . Notice that if 6



Fig. 2.2.2. Impedance (Z) of single
loop coupled to a YIG resonator
at various resonant frequencies.
(a) magnitude, and (b) phase

of Z.

28
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is chosen to be approximately plus or minus 30 degrees,

this term becomes very small. Thus the anisotropy

effects can be minimized. In this case the resonant

frequency is approximately given by 2.8xH o , where Ho

is the applied magnetic field in oersteds. Therefore,

frequency variations due to changes in temperature can

be minimized (18.

Higher order magnetostatic modes can be excited

when the ferrimagnetic sphere is inhomogeneous or when

the applied magnetic field is not uniform. These modes

are due to the differences in phases of precession of

the magnetic moments in various parts of the sphere

sample. They cause spurious resonances which couple to

and distort the "main" [110] mode. In order to minimize

coupling to the higher order modes, the size of the

resonator should be small, so that the field within the

sample can be more uniform. Thus the ratio D m/λo, where

Dm is the diameter of the resonator sphere and A, the
0

wavelength at the operating frequency, should be as

small as possible provided that coupling from external

circuits is adequate. Usually, the diameter of the

sphere is chosen to be about two orders of magnitude

smaller than the rf wavelength [23.

The size of the coupling-loop is chosen such that

the loop-to-sphere ratio is greater than 1.5:1. This
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condition minimizes spurious responses. However, the

size of the loop must be made as small as possible to

minimize the coupling-loop inductance which is

necessary to prevent self-resonances {24.

At the design center frequency of a system tunable

over the frequency range from f l to f 2 , the inductance

for the maximun loop size is given by

where

o = impedance terminating the loop (ohms)

fd = design center frequency (GHZ)

and the design center frequency is defined by

The condition established by equation (2.3.1) yields

minimum coupling variation over the frequency range.

Furthermore, it reduces the effects of spurious magneto-

static modes by providing the maximum rf loop-to-sphere

diameter ratio t23}.
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2.4. YIG Tuning Element 

The tuning element of the oscillator consists of a

single-loop coupled YIG resonator. It is designed to

be tunable over the frequency range from 500 to 950 MHZ.

For a YIG sphere to operate in this frequency range,

its saturation magnetization, 4πMs, must not be larger

than 265 gausses, as shown in Fig. 2.1.2.1.

Since the YIG sphere has a diameter of 0.087 in.,

the diameter of the loop is made at least 0.13 in., i.e.

(0.087x 1.5). This condition minimizes in-band spurious

responses. However, the maximum loop diameter is limit-

ed by the condition set in equation (2.3.1). In this

case, the maximum inductance is approximately 12 nH

when the terminating impedance is 50 ohms.

The self-inductance of a circular ring of round

wire at radio frequencies, for nonmagnetic materials,

is given by (15j

where

a = mean radius of ring in inches

d - = diameter of wire in inches

and
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a/d > 2.5 .

Using wire with a diameter of 0.0195 in., the

maximum loop diameter obtained from equation (2.4.1)

for an inductance of 12 nH is approximately 0.27 in.

Therefore, the condition for the choice of the size of

the loop is

0.13 in. < coupling loop diameter < 0.27 in.

The YIG tuning element chosen for the oscillator

has the following dimensions:

sphere diameter = 0.087 in.

wire diameter = 0.0195 in.

mean diameter of coupling loop = 0.14 in.

The response of the YIG tuning element is measured

with an HP 8745A S-Parameter Test Set which forms part

of the 8542A Automatic Network Analyzer System. The

procedure is outlined below:

(a) apply a fixed current I through the electromagnet

(this provides the do magnetic field).

(b) apply a signal of a certain frequency within a

predetermined range about the resonant frequency

at the terminals of the loop enclosing the YIG

sphere.

(c) measure the reflection coefficient.
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(d) change the frequency of the signal and again

measure the reflection coefficient. Repeat the

process until the entire range of frequencies is

covered.

(e) change the current through the electromagnet and

determine the next range of frequencies about the

new resonant point.

(f) repeat the measurements by following the procedure

from step (b) on.

The results obtained from the measurements described

above are plotted in Fig. 2.4.1.



,Fig. 2.4.1.a. Reflection coefficients of
YIG tuning element for signals from
450 to 550 MHZ and electromagnet
current I of 25 mA.
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2.4.1.b. Reflection coefficients of
YIG tuning element for signals from
550 to 650 MHZ and electromagnet
current I of.32.5 mA.
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Fig. 2.4.1.c. Reflection coefficients of
YIG tuning element for signals from
700 to 800 MHZ and electromagnet
current I of 41 mA.
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Fig. 2.4.1.d. Reflection coefficients of
YIG tuning element far signals from
750 to 850 MHZ and electromagnet
current I of 46 mA.
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Fig. 2.4.1.e. Reflection coefficients of
YIG tuning element for signals from
850 to 950 MHZ and electromagnet
current I of‘ 52 mA.
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°Fig. 2.4.1.f. Reflection coefficients of
YIG tuning element for signals from
900 to 1000 MHZ and electromagnet
current I of 55 mA.
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Fig. 2.4.1.g ? Reflection coefficients of
YIG tuning element for signals from
950 to 1050 MHZ and electromagnet
current I of. 58 mA.

4o
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CHAPTER 3 

MAGNETIC STRUCTURE

3.1. The Electromagnet 

The electromagnet used to provide the biasing do

magnetic field for the YIG sphere is shown in Fig. 3.1.1.

Fig. 3.1.1. Magnetic structure and
dimensions of the iron core.
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The magnetic structure was designed to satisfy the

following conditions:

(1) large pole faces to provide a uniform field over

the YIG sphere,

(2) sufficiently wide air gap to contain the YIG and

coupling loop,

(3) to provide a magnetic field variable from 150 to

350 gausses in the air gap.

The choice of this particular structure is based on the

simplicity of its construction. The core of the

electromagnet is made of two sections of L-shaped iron

blocks held together with machine screws. A (1/1+)" air

gap in one leg of the core is designed to be occupied

by the mounting and coupling structure of the YIG sphere.

The coil is wound with 5,000 turns of #30 wire and

the total resistance of the windings is approximately

200 ohms. Therefore, power dissipation of approximately

0.7 watts at 60 mA can be expected.

3.2. Magnetic-Circuit Calculations 

Magnetic-circuit calculations take into account

the effects of fringing and leakage fluxes. Thus, if

the cross-sectional dimensions of the core are the same

on both faces of the gap, a correction factor of 26,
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where o is the length of the actual air gap, would be

applied in computing the equivalent air-gap area. Such

corrections account for the increase in flux density in

the iron as a result of fringing and leakage fluxes (201.

Thus, the effective cross-sectional area of the gap is

given by

where

Aa effective area of air gap

ѕ= length of actual air-gap

a and b are the cross-sectional dimensions of the

actual core faces.

Assuming the flux density within the equivalent

gap is uniform, then the total flux is

where

Φa=total flux in air gap

Ba = flux density in air gap.

The magnetomotive force required of the coil to

establish the magnetizing force H a in the air gap is

given by
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where

F = magnetomotive force for the circuit = NI

Ha = magnetizing force in air gap

H. = magnetizing force in iron

l a = length of air gap

= length of mean path in iron

N = number of turns in coil

I = current through the coil.

Since the total flux in the air gap is approximate-

ly equal to the flux in the iron Φi, the flux density

in the iron can be derived from

where

B. = flux density in iron core

Ai = actual core area = a x b

B
a and Aa are as previously defined.

The magnetizing force in iron, Hi , can be

determined from intrinsic magnetization curves £20].

Substituting the values read from the curves and those
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shown in Fig. 3.1.1 into equation (3.2.3) and applying

the unit conversion formulas

to the equations above, the values listed in Table I

are obtained.

TABLE I. Magnetizing Forces and Currents

Ha	B.	 H. 	 I

	

1 	 1

200 3.58 	 5 	 27.46

250 4.48 	 5.5 	 33.24

300 5.38 	 6 	 39.02

350 6.28 	 6.5 	 44.80

where

H
a 
= magnetizing force in the air gap in oersteds

B. = flux density of iron in kilolines/sq. in.

H. = magnetizing force in the iron in amp-turns/in.

(read from magnetization curve)

I = current in mA through the windings of the

electromagnet.
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The results from the tabulation are plotted in

Fig. 3.2.1. In the same figure, the measured data of

the actual magnetic circuit is also shown.

Fig. 3.2.1. Magnetic field in the air
gap versus current through the
windings of the electromagnet.
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The discrepancies between computed values and

measured data are due to the approximations involved

in the calculations. Furthermore, the values of H i are

not obtained from the actual magnetization curve of the

core material. However, the measured data indicate

that the magnetizing force in the air gap varies

linearly with the current through the windings of the

electromagnet.
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CHAPTER 4 

OSCILLATOR DESIGN

A technique for designing YIG-tuned transistor

oscillators, tunable over the range of frequencies from

500 to 950 MHZ, is presented. The analysis of the

oscillator circuit is based on reflection coefficients

measured at network terminals of various design stages.

Smith Charts and signal flow graph analysis are used to

simplify network calculations.

The choice of a transistor for the oscillator

circuit depends on whether the condition for oscillation

can be satisfied. This requirement is met if measured

reflection coefficients of the transistor have mag-

nitudes greater than unity over the specified range of

frequencies. Otherwise, the transistor must be properly

terminated or external feedback must be provided to

derive such condition.

When an RCA 2N2857 transistor connected in common-

base configuration has its emitter lead terminated in

50 ohms, reflection coefficients measured at the

collector have magnitudes greater than unity. There-

fore, this transistor is chosen for the oscillator

circuit. The necessary condition for oscillation

results when the transistor is operated at a quiescent
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point of Vce = 6 volts and I c = 12 mA. Detailed

analyses of the oscillator circuit are covered in

subsequent sections.

4.1. DC Analysis 

The do analysis of the transistor circuit is based

on Fig. 4.1.1.

Fig. 4.1.1. Transistor circuit for do
analysis. (a) do biasing circuit,
(b) simplified do circuit.

The transistor circuit is to be designed for the

following quiescent operating point:

Vce = 6 volts

Ic =12 mA.
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In Fig. 4.1.1(a), L 1 and L 2 are radio-frequency

chokes; C l and C 2 are feed-thru capacitors. Since

their do resistances are negligible, their effects are

ignored in the do analysis of the circuit.

From the simplified circuit shown in Fig. 4.1.1(b),

the following equations can be obtained:

In order to stabilize the quiescent operating point,

resistor R1 is connected in series with the emitter of

the transistor. To examine stability, let

where I ceo is the current flowing across the reverse-

biased collector junction as a result of thermal

generation of carriers near the junction {3.

Substituting equations (4.1.4) and (4.1.5) into

equation (4.1.1), and solving for I, gives
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If I ced changes to (Iceo+ΔIceo ), Ic also changes

and is given by

Subtracting equation (4.1.6) from (4.1.7) yields

The stability factor is then defined by

Notice that if β»1, then equations (4.1.6) and (4.1.9)

give
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Calculations:

If Vee were chosen such that Vee >> Vbe, then

equation (4.1.6.a) for I c becomes independent of the

transistor parameters. Since Vbe = 0.7 volts, Vee is

chosen to be 7 volts. Thus, for V ce = 6 volts and

I c = 12 mA,

The approximations made above for I c and S hold

because the measured value of p for the 2N2857

transistor is approximately 100, which is much larger

than 1.

To summarize, the operating levels and components are

4.2. AC Analysis 

As shown in Fig. 2.2.2, a single YIG coupled loop

behaves like a parallel LC resonant circuit. Therefore,

it can be used as a frequency determining network for
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the oscillator. Figures 2.4.1a through 2.4.1g show the

characterization of the YIG resonator by reflection

coefficients measured at terminals of the loop around

the YIG sphere.

The transistor can also be characterized by

reflection and transmission coefficients, i.e.,

s(scattering)-parameters. Scattering-parameters relate

the waves reflected from a two-port network to those

waves incident upon the network. These relationships

can be summarized by two sets of equations [21:

where a1, a2, b1 and b 2 are defined by
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Ei1 	 Ei1and 	 are voltage waves incident upon terminals

1 and 2 of the network, respectively; and E ra_ and Er2

are voltage waves reflected from terminals 1 and 2 of

the network, respectively. Z o is the characteristic

impedance of the transmission line in ohms. Therefore,

a21 , 2a
2 
' 1b

2 and b 2
2 will have dimensions of power.

The scattering-parameters are defined by:

Scattering-parameters for 2N2857 transistor,

measured with an HP 8745A S-Parameter Test Set, are
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plotted in Figure 4.2.1. The characteristic impedance

of the reference system is 50 ohms. Test signal levels

of -15 dBm and -35dBm are applied to obtain two sets of

measured parameters in the frequency range from 500 to

1000 MHZ. The normalized input and output impedances

can be read directly as [z] = Re(z) 	 jIm(z) from the

curves of S 11 and S22" respectively. Actual impedances

are then obtained by multiplying the normalized values

by 50.

Since the magnitude of S 22 is greater than one,

(1/S22) is plotted instead. A normalized complex

impedance [zi] can be read as before. The actual

normalized impedance [z] , however, is the negative of

[6 1]. Actual impedance is again obtained by multiply-

ing the normalized value by 50.

Using signal flow graph techniques 2L the

transistor can be represented by the diagram shown in

Fig. 4.2.2, in which the S-parameters form the branches

while the incident and reflected waves form the nodes.

In this representation, branches originate from the

independent variable nodes (al and a2 ) and enter the

dependent nodes (b 1 and b2).
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Fig. 4.2,1.a. S11 and (1/S 22 ) parameters,
from 500 - to 1000 MHZ at 50 MHZ intervals,
of 2N2857 transistor in common-:base
configuration.



Fig. 4.2.1.b. S lz parameter, from 500 to
1000 MHZ, of 2N2857 transistor
in common-base configuration.

Fig. 4.2.1.c. S 21 parameter, from 500 to
1000 MHZ, of 2N2857 transistor
in common-base configuration.
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Fig. 4.2.2. (a) transistor, (b) flow
graph representation.

The signal flow graph representation of a load

connected at the output port is simply FL , the complex

reflection coefficient of the load, as shown in Fig.

4.2.3.

Fig. 4.2.3. (a) load Z L , (b) flow
graph representation.
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The modified reflection coefficient, S11 , with the

output port terminated in any arbitrary load and Z s = Z o

can be determined from Fig. 4.2.4.

Fig. 4.2.4. (a) Transistor with output
termination arbitrary and Z s = Z o ,
(b) flow graph of (a).

Applying Mason's rule [21 to Fig. 4.2.4(b), S 11 becomes

With certain transistors S
11 

can be made greater than

unity by introducing external feedback or by proper

choice of L. This means that the real part of the



6o

input impedance of the network will be negative. In

this case the network can be used for oscillator

circuits t21.

The stability of the circuit also depends upon the

source impedance. A source with some internal voltage

Vs and internal impedance Z s can be represented by the

diagrams in Fig. 4.2.5.

Fig. 4.2.5. (a) Source representation,
(b) flow graph of source.

s  is the source reflection coefficient given by

and bs, the wave from the source, is given by
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The magnitude of b s squared, therefore, has the

dimensions of power, which conforms with the definitions

of incident and reflected waves given previously.

By connecting the source to the input terminals of

the network, Fig. 4.2.6 is obtained.

Fig. 4.2.6. (a) Flow graph of network
with source and load connected,
(b) simplified diagram.

Based on the simplified diagram shown in Fig. 4.2.6(b),

the ratio of the reflected wave b
1 

to the input wave

b
s 
can be determined by applying Mason's rule again.

Thus
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At a frequency such that

the circuit becomes unstable and will oscillate.

However, if

the circuit will cease to oscillate [2j.

If the source were replaced by a tuned circuit, I's

becomes I'm , where r is the reflection coefficient of

the tuned circuit. In order for the circuit to oscillate

at a certain frequency, the tuned circuit must be adjust-

ed so that r'm satisfies the equation

at that frequency.

If equation (4.2.12.a) is not satisfied by the

transistor and tuned circuit, an impedance transforming

network can be inserted between them to satisfy the

condition for oscillation, The design of such a network

is discussed in the next section.
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4.3. Impedance Transforming Network

The condition for oscillation can be achieved by

means of an impedance transforming network connected

between the YIG tuning element and the transistor.

This network, shown in Fig. 4.3.1, consists of a shunt

capacitance C 3 
and a length of transmission line making

up the series inductance L3 . The approximate length

of this line can be determined from the equation for

the self-inductance of straight round wires(22

where

Lo = self-inductance of straight round wire

2 = length of wire in inches

d = diameter of wire in inches.

Fig. 4.3.1. Impedance transforming network.
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C 4 is a dc blocking capacitor.

The performance of this network for various

frequencies of oscillation is shown in Fig. 4.3.2.

Portions of curves of reflection coefficients of the

YIG tuning element (from Fig. 2.4.1) are repeated in

this figure. These diagrams show the transformation

between the impedance at the output of the YIG tuning

element, represented by 	 and the input of the

transistor, represented by S 11 , such that oscillating

conditions can be satisfied.

Since the collector terminal of transistor 2N2857

has a negative real part, as shown by a reflection

coefficient of magnitude greater than unity, it can be

used at the input terminal with no external feedback.

Thus S 11 is equal to S 22 of transistor 2N2857. In

order for the circuit to oscillate, Tm. must satisfy
equation (4.2.12.a). Therefore, any point B lying on

the line |m| 	|(1/S22)| and phase rim = phase ( l/S 22 )
l

will satisfy this requirement. Notice that the curve

of (1/S
22

) is also plotted in Fig. 4.3.2 for reference.

It can be seen from the same figure that due to the

shunt capacitance, the transformation from the YIG

tuning element follows a constant conductance circle

by the amount ωC3 until point A is reached. From point

A the transformation follows a constant resistance



Fig. 4.3.2.a. Smith chart diagram showing
transformation which satisfies con-
dition for oscillation at 494 MHZ and
electromagnet current I of 25 mA.
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Fig. 4.3.2.b. Smith chart diagram showing
transformation which satisfies con-
dition for oscillation at 560 MHZ and
electromagnet current I of 32.5 mA.
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Fig. 4.3.2.c. Smith chart diagram showing
 transformation Which satisfies con-

dition for oscillation at 750 MHZ and
electromagnet current I of 41 mA.
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Fig. 4.3.2.d. Smith . chart diagram showing
transformation which satisfies con-
dition for oscillation at 800 MHZ and
electromagnet current I of 46 mA.
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Fig. 4.3.2.e. Smith chart diagram showing
transformation which satisfies con-
dition for oscillation at 893 MHZ and
electromagnet current I of 52 mA..
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Fig. 4.3.2.f .. Smith chart diagram showing
transformation which satisfies con-
dition for oscillation at 934 MHZ and
electromagnet current .1 of 55 mA.

70



Fig. 4.3.2.g. smith chart diagram showing
transformation which satisfies con-
dition for oscillation at 973 MHZ and
electromagnet current I of 58 mA.

71
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circle by the amount ωL3 until point B is reached [21.

The value of reflection coefficient at this point

corresponds toI'm in equation (4.2.12.a).

The choice of values for C 3 and L3 is arbitrary.

However, a combination that will satisfy as broad a

range of frequencies as possible is desired. Careful

consideration and repeated trials give a satisfactory

combination such as

C3 = 2 pF

and 	 L3 = 25 nH.

Figure 4.3.3 shows the schematic diagram of the

YIG tuned transistor oscillator. Values for the

various components are indicated in Table II.



Fig. 4.3.3. Schematic diagram of
YIG-tuned transistor
oscillator.

TABLE II. 	 Values for Components of Oscillator

R1 = 1 K 	 pot

C 1, C 2 = 1500 pF Feed-thru

L1, L2 = RFC

C 3 = 2 pF

L3 = 25 nH

C 4, C5 = 2000 pF
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

A method for designing YIG-tuned transistor

oscillators is presented in this thesis. The analysis

of the oscillator is based on reflection coefficients

measured at network terminals of the transistor and the

YIG resonator. The tuning element of the oscillator

consists of a YIG sphere enclosed by a loop of wire in

a do magnetic field. The mounting structure that holds

the YIG sphere and loop in position is shown in Fig.5.1.

Fig. 5.1. Mounting structure for
YIG sphere and coupling loop.
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Reflection coefficients measured at the terminals of the

YIG tuning element, for various currents through the

electromagnet that provides the do magnetic field, are

shown in Fig. 2.4.1. It can be seen that the response

of the YIG tuning element to radio frequency signals is

similar to that of a parallel LC resonant circuit.

Ideally, a perfect circle with a center at a point

on the real axis and the corresponding circumference

passing through the zero-impedance point on the Smith

chart characterizes a parallel LC resonant circuit.

The resonant frequency is the frequency at which the

phase of the corresponding reflection coefficient is

zero. The normalized resonant resistance at that point

can be read directly from the Smith chart.

However, there is a slight rotation in the response

curves of the YIG resonator tested, i.e., the center of

the open end of the curves does not coincide with the

zero-impedance point on the Smith chart. This shift is

due to the inductance of the length of transmission line

between the loop enclosing the YIG sphere and the

connector where the reference plane of all the measure-

ments is located.

In addition, smoother variations of measured

reflection coefficients occur in the lower end of the
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frequency band. As the frequency of the signal is

increased, parasitic modes begin to interfere with the

response. These are unwanted resonances which result

from non-uniform precessions of the magnetic moments

within the YIG sphere. The parasitic modes are

represented on Smith charts by small loops along the

response curve and a larger loop at the end of the

trace. Figures 2.4.1.d through 2.4.1.g show cases where

parasitic modes are visible. Therefore, this unit is

more suitable for operations in the lower end of the

frequency band. One way to reduce such unwanted modes

for a given coupling loop size is to use smaller YIG

spheres. Such spheres occupy a more concentrated volume

where the precession of magnetic moments is more uniform.

The choice of a transistor for the oscillator

depends on whether the condition for oscillation can be

satisfied. This requirement is met if measured reflec-

tion coefficients of the transistor have magnitudes

greater than unity over the specified range of fre-

quencies. Otherwise, the transistor must be properly

terminated or external feedback must be provided to

obtain such a condition. For example, reflection

coefficients for signal frequencies from 500 MHZ to

1000 MHZ, measured at the collector terminal of a

2N2857 transistor operating in a common-base configura-
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tion, have magnitudes greater than unity when the

emitter is connected to a 50-ohm termination. The

necessary condition for oscillation is satisfied when

the transistor is operated at a quiescent point of

V
ce 

= 6 volts and I
c 
= 12 mA. Thus, the collector

terminal of the transistor is connected through an

impedance transforming network to the YIG tuning mech-

anism which is used to control the frequency of

oscillation.

In spite of the nonlinear behavior of the YIG

tuning unit in the high end of the frequency band, a

YIG-tuned transistor oscillator was designed. The

circuit is shown in Fig. 4.3.3, and values for the

elements in the circuit are listed in Table II. 01 and

02 are feed-thru capacitors; L1 and L 2 , RF chokes;

C 4 and C 5 ,

 dc blocking capacitors. A two element

impedance transforming network, consisting of shunt 0 3

and series L3, was chosen to simplify the design and to

show how a broadband YIG-tuned transistor oscillator can

be designed. This network is used to transform the

reflection coefficient or impedance at the output of

the YIG tuning element to the required impedance at the

collector terminal of the transistor so that the

condition for oscillation, specified by equation

(4.2.12.a), can be satisfied. Using this network in
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the analysis, the relationship between current used to

provide the biasing dc magnetic field for the YIG

sphere and the frequency of oscillation can be obtained,

as shown in Fig. 5.2.

Fig. 5.2. Frequency of oscillation
vs. electromagnet biasing
current.

In general, the degree of tuning linearity depends upon

the complexity of the impedance transforming network and

the uniformity in behavior of the YIG tuning mechanism.
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Recommendations for Improving Oscillator Circuit 

The response of a YIG resonator is highly sensitive

to the axial orientation of the YIG sphere with respect

to the applied dc magnetic field and the coupling loop.

Thus, in order to improve the performance of the YIG

tuning mechanism, the possibility of relative motion

between the coupling loop and the YIG sphere must be

minimized. A possible method of mounting the YIG sphere

and connecting it to the external circuitry which should

overcome many of the problems of mechanical instability

encountered is given below. The coupling loop can be

connected directly to the printed-circuit board which

is attached to the mounting structure, as shown in

Fig. 5.3.

Fig. 5.3. Connection of coupling loop
to printed-circuit board.
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This will eliminate any twisting of the loop which may

occur while tightening connectors whenever they are

used. Thus, only attachements for the YIG sphere remain

adjustable.

As great difficulties were encountered in orient-

ing the YIG sphere along the desired axis, it is

suggested that the rod, with the YIG sphere attached to

it, be provided with a graduated knob so that relative

locations of axes can be determined from a known axis,

for example, an "easy" axis. In addition, a finely

threaded rod can be used to hold the sphere so that,

once rotated to the desired position, it will stay

fixed. Horizontal motion can be compensated by mount-

ing the rod in a sliding block, as shown in Fig. 5.4,

so that the rod will not be disturbed while the set

screw is being tightened.

Fig. 5.4. Cross-section of mounting
structure with modified features.
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Transistor parameters can easily be measured with

network analyzers. The fixtures provided for such

measurements enable the reference plane to be placed at

the base plane of the transistor. However, in actual

application, good electrical connections can not be

made at the base plane of the transistor without

damaging it. Furthermore, biasing networks must be

provided to establish the required quiescent point in

the actual circuit. Thus, unless the biasing network

used is an exact replica of that found in the fixture,

the overall parameters will be different. Therefore,

it is advisable to use the network analyzer to

determine the quiescent point of the transistor such

that the condition for oscillation can be obtained,

i.e., the presence of a negative resistance region.

Then a biasing network is to be designed. Finally, the

parameters measured at the terminals of the actual

network is to be used for designing the impedance

transforming network. This procedure will not only

save time but will also give more accurate working

data.

Impedance transforming networks can be designed

with the aid of Smith charts. Since trial and error

method is still used, there may be several possible

networks. However, values of components must be
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carefully chosen if broadband operation is to be

achieved using readily available components. This

network links the YIG resonator and the transistor.

Because these are basically minute in size, strip line

techniques would be most appropriate for implementation,

particularly for high frequency broadband operations.
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